[BACK]Return to ex.tex CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Doc

Annotation of OpenXM/src/kan96xx/Doc/ex.tex, Revision 1.1.1.1

1.1       maekawa     1: \documentstyle{article}
                      2: \title{\bf kan/examples}
                      3: \author{Nobuki Takayama}
                      4: \date{January 7,1995 : Revised, August 15, 1996; \\ Revised December 17, 1998.}
                      5:
                      6: \def\kansm{ {\tt kan/sm1}\ }
                      7: \def\pd#1{ \partial_{#1} }
                      8: \newtheorem{example}{Example}
                      9: \newtheorem{grammer}{Grammer}
                     10:
                     11: \begin{document}
                     12: \maketitle
                     13: \tableofcontents
                     14:
                     15: \section{About this document}
                     16:
                     17: The system \kansm is a Gr\"obner engine specialized especially
                     18: to the ring of differential operators with a subset of
                     19: Postscript language and an extension for object oriented programming.
                     20: It is designed to be a back-end engine for a
                     21: heterotic distributed computing system.
                     22: However, it is not difficult to control \kansm directly.
                     23: This document is a collection of programs for \kansm Version 2.xxxx.
                     24: Since the system is still evolving, there is no comprehensive manual
                     25: for the libraries of kan and the Postscript-like language {\tt sm1}.
                     26: However, all operators in \kansm are shortly explained in
                     27: {\tt onlinehelp.tex} in this directory and
                     28: it will be enough once one understands the fundamental design of the system.
                     29: This document provides introductory examples
                     30: and explains the fundamental design of the system.
                     31: If there are questions,
                     32: please send an E-mail to the author
                     33: ({\tt kan\at math.kobe-u.ac.jp}).
                     34:
                     35:
                     36: There are two design goals of \kansm.
                     37: \begin{enumerate}
                     38: \item Providing a backend engine in a distributed computing system for
                     39:       computations in the ring of differential operators.
                     40: \item Providing a virtual machine based on stacks to teach intermediate
                     41: level computer science especially for mathematics students.
                     42: \end{enumerate}
                     43:
                     44: \section{Getting started}
                     45:
                     46: To start the system, type in {\tt sm1}.
                     47: To quit the system, type in {\tt quit}.
                     48: You can make a program run in \kansm by the operator
                     49: \begin{verbatim}
                     50:         (filename) run  ;
                     51: \end{verbatim}
                     52: or
                     53: \begin{verbatim}
                     54:         $filename$ run  ;
                     55: \end{verbatim}
                     56: The two expressions \verb! $xyz$ ! and {\tt (xyz)} have the same meaning;
                     57: they means the string {\tt xyz}.
                     58: The pair of brackets generates a string object.
                     59: The dollar sign is used for a compatibility to \kansm Version 1.x.
                     60:
                     61:
                     62: There are three groups of functions.
                     63: The first group is those of primitive operators.
                     64: They are functions written in C.
                     65: The second group is those of macro operators.
                     66: They are functions written in {\tt sm1} language and automatically
                     67: loaded when the system starts.
                     68: The third group is those of macro operators defined in the library files
                     69: in {\tt lib/} directory.
                     70: These operators provide a user friendly interfaces of computing
                     71: characteristic ideal, holonomic rank, $b$-function, annihilating
                     72: ideal, hypergeometric differential operators,
                     73: restrictions, de Rham cohomology groups.
                     74: You can get a list of primitive operators and macros
                     75: by {\tt ?} and {\tt ??} respectively.
                     76: To see the usage of a macro, type in
                     77: {\tt (macro name) usage ; }.
                     78: Note that you need a space before {\tt ;}.
                     79: All tokens should be separated by the space
                     80: or special characters \verb+ ( ) [ ] { } $ % +.
                     81: The help message usually provides examples.
                     82: For example, the line
                     83: {\tt (add) usage } present the example
                     84: \verb+ Example:  2 3 add ::  ==> 5+
                     85: You may try the input line
                     86: {\tt 2 3 add ::}
                     87: and will get the output {\tt 5}.
                     88: All printable characters except the special characters
                     89: \verb+ ( ) [ ] { } $ % +
                     90: can be a part of a name
                     91: of a macro or primitive operator.
                     92: For example, {\tt ::} is a name of macro which
                     93: outputs the top of the stack and the prompt.
                     94:
                     95:
                     96: \kansm is a stack machine.
                     97: Any object that has been input is put on the top of the stack.
                     98: Any operator picks up objects from the stack, executes computations and
                     99: puts results on the stack.
                    100: For example, the primitive operator {\tt print} picks up one object
                    101: from the stack and print it to the screen.
                    102: If you type in
                    103: {\tt (Hello World) print},
                    104: then the string ``Hello World'' is put on the stack and the operator
                    105: {\tt print} picks up the string and print it.
                    106: The macro {\tt message} works like {\tt print} and outputs the newline.
                    107: The macro {\tt :: } is similar to {\tt message},
                    108: but it also outputs the newline and the prompt;
                    109: it picks up one object from the stack, print the object to the screen and
                    110: output the prompt {\tt sm1>}.
                    111: For example, when you type in
                    112: \begin{verbatim}
                    113:     (Hello World) ::
                    114: \end{verbatim}
                    115: you get
                    116: \begin{verbatim}
                    117: Hello World
                    118: sm1>
                    119: \end{verbatim}
                    120: We introduce two more useful stack operators.
                    121: \begin{enumerate}
                    122: \item[] {\tt pop} \quad Remove the top element from the stack.
                    123: \item[] {\tt pstack} \quad Print the contents of the entire stack.
                    124: \end{enumerate}
                    125: You can use \kansm as a reverse Polish calculator; try the following lines.
                    126: \begin{verbatim}
                    127:      11 4 mul ::
                    128:      3 4 add /a set
                    129:      5 3 mul /b set
                    130:      a b add ::
                    131: \end{verbatim}
                    132:
                    133: Mathematical expressions such as \verb! x^2-1 ! are not parsed by the
                    134: stackmachine.
                    135: The parsing is done by the primitive operator {\tt .} (dot) in the current
                    136: ring.
                    137: For example,  type in the following line just after you started \kansm
                    138: \begin{verbatim}
                    139: (  (x+2)^10 ).   ::
                    140: \end{verbatim}
                    141: then you will get the expansion of $ (x+2)^{10} $.
                    142: \verb! (  (x+2)^10 ) ! is a string and is pushed on the stack.
                    143: Next, the operator {\tt .} parses the expression and convert it
                    144: to an internal expression of the polynomial.
                    145: Note that the given string is parsed in the current ring.
                    146: In order to see the current ring, use the operator
                    147: {\tt show\_ring}.
                    148: Note that the polynomials in {\tt sm1} means
                    149: polynomials with the coefficients in a given ring such as {\bf Z}.
                    150: So,
                    151: \verb! (x/3+2). !
                    152: is {\em not accepted}.
                    153:
                    154: A variable is defined by placing the variable's name, value and
                    155: {\tt def} operator on the stack of \kansm as in the following
                    156: line:
                    157: \begin{verbatim}
                    158:    /abc  23  def
                    159: \end{verbatim}
                    160: The macro {\tt set} is an alternative way to define a variable and set a value.
                    161: \begin{verbatim}
                    162:    23 /abc set
                    163: \end{verbatim}
                    164: means to set the value {\tt 23} to the variable {\tt abc}.
                    165:
                    166: In order to output an expression to a file,
                    167: the macro {\tt output} is convinient.
                    168: For example, the lines
                    169: \begin{verbatim}
                    170:  ( (x+2)^10 ). /a set
                    171:  a output
                    172: \end{verbatim}
                    173: output the expansion of $(x+2)^{10}$ to the file
                    174: {\tt sm1out.txt}.
                    175:
                    176: If you need to run a start-up script,
                    177: modify the shell script {\tt Doc/startsm1} and write what you need
                    178: in the file {\tt Doc/Sm1rc}.
                    179:
                    180: \smallbreak
                    181: The system \kansm  is not designed for a heavy interactive use.
                    182: So, unless you are a stackmachine fan,
                    183: it is recommended to write your input in a file, for example,
                    184: in {\tt abc.sm1}, and execute your input as
                    185: {\footnotesize \begin{verbatim}
                    186:     sm1 -q <abc.sm1
                    187: \end{verbatim}}
                    188: \noindent Here is an example of an input file {\tt abc.sm1}:
                    189: {\footnotesize \begin{verbatim}
                    190:     (cohom.sm1) run
                    191:     [(y^2-x^3-2) (x,y)] deRham ::
                    192: \end{verbatim}}
                    193: \noindent The option {\tt -q} is for not outputting starting messages.
                    194:
                    195:
                    196: \medbreak
                    197:
                    198: We close this section with introducing some useful references.
                    199:
                    200: For the reader who are interested in writing a script for {\tt kan/sm1},
                    201: it is strongly recommended to go through Chapters 2 and 4
                    202: (stack and arithmetic, procedures and variables) of the so called
                    203: ``postscript blue book'' \cite{Postscript}.
                    204: The control structure of {\tt Kan/sm1} is based on a subset of
                    205: Postscript.
                    206:
                    207: The book \cite{Oaku} is a nice introduction to compute $D$-module invariants
                    208: with Gr\"obner bases.
                    209: The book \cite{SST} is the latest book on this subject.
                    210: This book explains the notion of homogenized Weyl algebra,
                    211: which is the main ring for computations in \kansm.
                    212: and algorithms for $D$-modules.
                    213: As to an introduction to mathematical aspect of $D$-modules,
                    214: Chapter 5 of \cite{Hotta} is recommended.
                    215:
                    216: The latest information on {\tt kan/sm1} and related papers are put on the
                    217: http address \cite{www}.
                    218:
                    219: \section{Package files in the Doc/ (lib/) directory}
                    220:
                    221: A set of user friendly packages are provided
                    222: for people who are interested in $D$-modules
                    223: ($D$ is the ring of differential operators), but
                    224: are not interested in the aspect of {\tt sm1}
                    225: as a part of distributed computing system.
                    226: Here is a list of packages.
                    227: \begin{enumerate}
                    228: \item {\tt bfunction.sm1} : Computing b-functions.
                    229:                         This script is written by T.Oaku.
                    230: \item{\tt factor-a.sm1} : A sample interface with {\tt risa/asir} \cite{asir}
                    231: to factor given polynomials.
                    232: \item{\tt hol.sm1} : A basic package for holonomic systems (Gr\"obner basis and
                    233: initial ideals, holonomic rank, characteristic variety, annihilating ideal
                    234: of $f^s$).
                    235: \item{\tt gkz.sm1} : Generate GKZ system for a given $A$ and $b$.
                    236: \item{\tt appell.sm1} : Generate Appell hypergeometric differential equations.
                    237: \item{\tt cohom.sm1} : An experimental package for computing restrictions
                    238: and de Rham cohomology groups mainly written by T.Oaku.
                    239: \item {\tt kanlib1.c} : An example to explain an interface between kan and
                    240:  C-program. Type in ``make kanlib1'' to compile it.
                    241: \item{\tt ox.sm1} : A package for communication based on the open XM protocol.
                    242: The open sm1 server {\tt ox\_sm1} can be obtainable from the same ftp cite
                    243: of {\tt kan/sm1}.
                    244: See {\tt http://www.math.kobe-u.ac.jp/openxxx} for the protocol design.
                    245: \item{\tt oxasir.sm1} : A package to use open asir server based on the open
                    246:                         XM protocol.
                    247: Open asir server {\tt ox\_asir} will be distributed from \cite{asir}.
                    248: The package {\tt cohom.sm1} ({\tt deRham}) and {\tt annfs} need this package
                    249: to analyze the roots of $b$-functions.
                    250: The built-in function to analyze the roots is slow. The open asir server
                    251: and {\tt oxasir.sm1} should be used for efficient analysis of the roots
                    252: of $b$-functions.
                    253: See the usage of {\tt oxasir} for the latest information.
                    254: \item{\tt intw.sm1} : Compute $0$-th integration of a given $D$-module
                    255: by using a generic weight vector.
                    256: \end{enumerate}
                    257:
                    258: See the section three of {\tt onlinehelp.tex} for more informations.
                    259:
                    260: \subsection{Examples: {\tt gb, rrank, gkz, bfunction, deRham}}
                    261:
                    262: Execute {\tt Loadall} to load packages before executing examples.
                    263: {\tt Dx} means $\partial_x$.
                    264:
                    265: \begin{example} \rm
                    266: Compute a Gr\"obner basis and the initial ideal
                    267: with respect to the weight vector
                    268: $(0,0,1,1)$ of the $D$-ideal
                    269: $$D \cdot \{ (x \partial_x)^2 + (y \partial_y)^2 -1,
                    270:              x y \partial_x \partial_y-1 \}.$$
                    271: See \cite{SST} on the notion of
                    272: Gr\"obner basis and the initial ideal with respect
                    273: to a weight vector.
                    274: \begin{verbatim}
                    275:  [ [( (x Dx)^2 + (y Dy)^2 -1) ( x y Dx Dy -1)] (x,y)
                    276:              [ [ (Dx) 1 (Dy) 1] ] ] gb pmat ;
                    277: \end{verbatim}
                    278: {\footnotesize
                    279: Output:
                    280: \begin{verbatim}
                    281:  [
                    282:   [ x^2*Dx^2+y^2*Dy^2+x*Dx+y*Dy-1 , x*y*Dx*Dy-1 , y^3*Dy^3+3*y^2*Dy^2+x*Dx ]
                    283:   [ x^2*Dx^2+y^2*Dy^2 , x*y*Dx*Dy , y^3*Dy^3 ]
                    284:  ]
                    285: \end{verbatim}
                    286: }
                    287: The first line is the Gr\"obner basis and the second line is a set of
                    288: generators of the initial ideal with respect to the weight
                    289: vector $(0,0,1,1)$.
                    290: In order to get syzygies, use {\tt syz}.
                    291: \end{example}
                    292:
                    293: \begin{example} \rm
                    294: Generate the GKZ system for $A=\pmatrix{1 & 1 & 1 & 1  \cr
                    295:                                    0 & 1 & 3 & 4 \cr}$
                    296: and $\beta = (1,2)$.
                    297: Here, the GKZ system is a holonomic system of differential equations
                    298: introduced by Gel'fand, Kapranov and Zelevinsky.
                    299: The system is also called ${\cal A}$-hypergeometric system.
                    300: \begin{verbatim}
                    301:    [ [[1 1 1 1] [0 1 3 4]] [1 2]] gkz  ::
                    302: \end{verbatim}
                    303: {\footnotesize
                    304: Output:
                    305: \begin{verbatim}
                    306:  [ x1*Dx1+x2*Dx2+x3*Dx3+x4*Dx4-1 , x2*Dx2+3*x3*Dx3+4*x4*Dx4-2 ,
                    307:    Dx2*Dx3-Dx1*Dx4 , -Dx1*Dx3^2+Dx2^2*Dx4 , Dx2^3-Dx1^2*Dx3 ,
                    308:    -Dx3^3+Dx2*Dx4^2 ]
                    309: \end{verbatim}
                    310: }
                    311: \end{example}
                    312:
                    313: \begin{example} \rm
                    314: Evaluate the holonomic rank of
                    315:     the GKZ systems for $A=\pmatrix{1 & 1 & 1 & 1  \cr
                    316:                                    0 & 1 & 3 & 4 \cr}$
                    317: and $\beta = (1,2)$ and $\beta=(0,0)$.
                    318: Show also the time of the execution.
                    319: \begin{verbatim}
                    320:   { [ [[1 1 1 1] [0 1 3 4]] [1 2]] gkz  rrank ::} timer
                    321:   { [ [[1 1 1 1] [0 1 3 4]] [0 0]] gkz  rrank ::} timer
                    322: \end{verbatim}
                    323: {\footnotesize
                    324: Output:
                    325: \begin{verbatim}
                    326:    5
                    327: User time: 1.000000 seconds, System time: 0.010000 seconds, Real time: 1 s
                    328:    4
                    329: User time: 1.320000 seconds, System time: 0.000000 seconds, Real time: 1 s
                    330: \end{verbatim}
                    331: }
                    332: \end{example}
                    333:
                    334: \begin{example} \rm
                    335: Compute the $b$-function of  $f=x^3-y^2 z^2$
                    336: and the annihilating ideal of $f^{r_0}$ where
                    337: $r_0$ is the minimal integral root of the $b$-function.
                    338: \begin{verbatim}
                    339:    (oxasir.sm1) run
                    340:    [(x^3 - y^2 z^2) (x,y,z)] annfs /ff set
                    341:    ff message
                    342:    ff 1 get 1 get fctr ::
                    343: \end{verbatim}
                    344: {\footnotesize
                    345: Output:
                    346: \begin{verbatim}
                    347: [  [ -y*Dy+z*Dz , 2*x*Dx+3*y*Dy+6 , -2*y*z^2*Dx-3*x^2*Dy ,
                    348:    -2*y^2*z*Dx-3*x^2*Dz , -2*z^3*Dx*Dz-3*x^2*Dy^2-2*z^2*Dx ]  ,
                    349:  [-1,-139968*s^7-1119744*s^6-3802464*s^5-7107264*s^4-7898796*s^3-5220720*s^2-1900500*s-294000]]
                    350: [[ -12 , 1 ] , [ s+1 , 1 ], [3*s+5 , 1], [ 3*s+4, 1], [6*s+7, 2], [6*s+5, 2]]
                    351: \end{verbatim}
                    352: }
                    353: The first two rows of the output give generators of the annihilating
                    354: ideal of
                    355: $(x^3-y^2 z^2)^{-1}$.
                    356: The $b$-function is
                    357: $(s+1)(3s+5)(3s+4)(6s+7)^2(6s+5)^2$
                    358: and $-1$ is the minimal integral root.
                    359: \end{example}
                    360:
                    361:
                    362: \begin{example} \rm
                    363: Compute the de Rham cohomology group
                    364: of $X={\bf C}^2 \setminus V(x^3-y^2)$.
                    365: \begin{verbatim}
                    366:     (cohom.sm1) run
                    367:     [(x^3-y^2) (x,y)] deRham ;
                    368: \end{verbatim}
                    369: {\footnotesize
                    370: Output:
                    371: \begin{verbatim}
                    372:   0-th cohomology:  [    0 , [   ]  ]
                    373:   -1-th cohomology:  [    1 , [   ]  ]
                    374:   -2-th cohomology:  [    1 , [   ]  ]
                    375:  [1 , 1 , 0 ]
                    376: \end{verbatim}
                    377: }
                    378: This means that $H^2(X,{\bf C}) = 0$,
                    379: $H^1(X,{\bf C}) = {\bf C}^1$,
                    380: $H^0(X,{\bf C}) = {\bf C}^1$.
                    381: \end{example}
                    382:
                    383: \begin{example} \rm
                    384: Compute the integral of
                    385: $ I=D\cdot \{\partial_t -(3 t^2-x) ,\,  \partial_x+t \}$,
                    386: which annihilates the function $e^{t^3-x t}$,
                    387: with respect to $t$.
                    388: \begin{verbatim}
                    389:  (cohom.sm1) run
                    390:  [ [(Dt - (3 t^2-x)) (Dx + t)] [(t)]
                    391:    [ [(t) (x)] [ ]] 0] integration
                    392: \end{verbatim}
                    393: {\footnotesize Output:
                    394: \begin{verbatim}
                    395: [    [    1 , [    3*Dx^2-x ]  ]  ]
                    396: \end{verbatim} }
                    397:
                    398: \end{example}
                    399:
                    400:
                    401:
                    402: \section{Data types}
                    403:
                    404: Each object in {\tt sm1} has a data type.
                    405: Here is a list of main primitive data types,
                    406: which are common to other languages except the type polynomial
                    407: and the type ring.
                    408: \begin{enumerate}
                    409: \item[] {\bf null}
                    410: \item[] {\bf integer}(machine integer), \quad
                    411:    32 bit integer. \quad Example: {\tt 152}
                    412: \item[] {\bf literal}, \quad
                    413:    literal. \quad Example: {\tt /abc}
                    414: \item[] {\bf string}, \quad
                    415:    string. \quad Example: {\tt (Hello)}
                    416: \item[] {\bf executableArray}, \quad
                    417:    program data. \quad Example: {\tt \{ add\ 2 \ mul \} }
                    418: \item[] {\bf array}, \quad
                    419:    array, \quad Example: {\tt [(abc) \ 5 ]}
                    420: \item[] {\bf polynomial}, \quad
                    421:    polynomial, \quad Example: \verb! (x^2-1). !
                    422: \item[] {\bf ring}, \quad
                    423:    ring definition.
                    424: \item[] {\bf number}(universalNumber), \quad
                    425:    Big num. \quad Example: \verb! (123).. 456 power !
                    426: \item[] {\bf class}, \quad
                    427:    Class.
                    428: \end{enumerate}
                    429:
                    430: \subsection{Array}
                    431: Array is a collection of one dimensional objects surrounded by square
                    432: brackets and
                    433: indexed by integers (machine integers) $0, 1, 2, \ldots$.
                    434: Elements of any array may be arrays again, so we can express
                    435: list structures by using arrays.
                    436: An array is constructed when the {\tt sm1} encounters the right square
                    437: bracket.
                    438: Note that square brackets are also operators.
                    439: Thus, the line
                    440: \begin{verbatim}
                    441:     [(Hello) 2  50  add]
                    442: \end{verbatim}
                    443: sets up an array
                    444: \begin{verbatim}
                    445:     [(Hello)  52]
                    446: \end{verbatim}
                    447: where the $0$-th element of the array is the string
                    448: {\tt (Hello)}
                    449: and the $1$-th element is the integer {\tt 52}.
                    450: The {\tt put} and {\tt get} operator store and fetch an element of
                    451: an array.
                    452: The {\tt get} operator takes an array and an index from the stack
                    453: and returned the object indexed by the second argument.
                    454: The line
                    455: \begin{verbatim}
                    456:    [(sm1)  12  [(is) (fun)] 15]   2    get
                    457: \end{verbatim}
                    458: would return the array
                    459: {\tt [(is) (fun)]} on the stack.
                    460: The {\tt put} operator takes an array, an index {\tt i}, an object
                    461: from the stack
                    462: and store the object at the $i$-th position of the array.
                    463: That is,
                    464: \begin{verbatim}
                    465:  /a [(sm1) (is) (fun)] def
                    466:  a 2 (a stackmachine) put
                    467: \end{verbatim}
                    468: would rewrite the contents of the variable {\tt a} as
                    469: \begin{verbatim}
                    470:    [(sm1) (is)  (a stackmachine)]
                    471: \end{verbatim}
                    472:
                    473: \subsection{Ring}
                    474:
                    475: The ring object is generated by the operator {\tt define\_ring}.
                    476: This operator has a side effect;
                    477: it also changes the {\it current ring}.
                    478: The line
                    479: \begin{verbatim}
                    480:   [(x,y)  ring_of_differential_operators 0] define_ring /R set
                    481: \end{verbatim}
                    482: would create the ring of differential operators
                    483: $$ {\bf Z} \langle x, y, \partial_x, \partial_y \rangle, $$
                    484: store it in the variable {\tt R} and changes the current ring
                    485: to this Weyl algebra.
                    486: $\partial_x$ is denoted by ${\tt Dx}$ on {\tt sm1}.
                    487: The suffix ${\tt D}$ can be changed;
                    488: for example, if you want to use {\tt dx} instead of {\tt Dx},
                    489: execute the command
                    490: {\tt /\at \at \at}\verb+.Dsymbol (d) def +
                    491: The current ring can be obtained by
                    492: {\tt [(CurrentRingp)] system\_variable }.
                    493: The current ring is the ring of polynomials of
                    494: two variables $x, h$ when the system starts.
                    495:
                    496: All polynomial except $0$ belongs to a ring.
                    497: For a non-zero polynomial {\tt f},
                    498: the line
                    499: \begin{verbatim}
                    500:    f (ring)  dc /rr set
                    501: \end{verbatim}
                    502: put the associated ring object of {\tt f} to the variable {\tt rr}.
                    503: As we have seen before,
                    504: a given string is parsed as a polynomial in the current ring by the operator
                    505: ``{\tt .}''.
                    506: To parse in a given ring,
                    507: the operator ``{\tt ,,}'' is used.
                    508: That is,
                    509: \begin{verbatim}
                    510:    [(x,y)  ring_of_differential_operators 0] define_ring /R set
                    511:    (x^2-y) R  ,,  /f  set
                    512: \end{verbatim}
                    513: means to parse the string \verb! x^2-y ! in the ring {\tt R}
                    514: and put the polynomial $x^2-y$ in the variable {\tt f}.
                    515: Arithmetic operators for two polynomials can be performed only
                    516: when the two polynomials belong to a same ring.
                    517: If you want to map a polynomial to a different ring,
                    518: the easiest way is to translate the polynomial into a string and
                    519: parse it in the ring.
                    520: That is,
                    521: \begin{verbatim}
                    522:    [(x,y) ring_of_polynomials 0] define_ring /R1 set
                    523:    (x-y). /f set
                    524:    [(x,y,z) ring_of_differential_operators 0] define_ring /R2 set
                    525:    (y+Dz). /g set
                    526:    f toString . /f set
                    527:    f g add ::
                    528: \end{verbatim}
                    529: would output
                    530: $ (x-y) + (y+Dz) = Dz$.
                    531:
                    532: It is convinient to have a class of numbers that is contained in
                    533: any ring.
                    534: The datatype number (universalNumber) is the class of bignum, which is
                    535: allowed to be added and multiplied to any polynomials with characteristic 0.
                    536:
                    537: \subsection{Tag}
                    538: Each object of {\tt kan/sm1} has the tag expressed by an integer.
                    539: The tag expresses the class to which the object belongs.
                    540: You can see the tag of a given object by the operator {\tt tag}.
                    541: For example, if you type in
                    542: \begin{verbatim}
                    543: 10 tag ::
                    544: \end{verbatim}
                    545: then you get the number $1$.
                    546: If you type in
                    547: \begin{verbatim}
                    548: [ 1  2]  tag ::
                    549: \end{verbatim}
                    550: then you get the number $6$.
                    551: The number $1$ is the tag of the integer objects and
                    552: the number $6$ is the tag of the array objects.
                    553: These tag numbers are stored in the variables
                    554: {\tt IntegerP} and {\tt ArrayP}.
                    555: In order to translate one object to that in a different class,
                    556: there is the operator {\tt data\_conversion} or {\tt dc}.
                    557: For example,
                    558: \begin{verbatim}
                    559: (10). (integer) dc  ::
                    560: \end{verbatim}
                    561: translates the polynomial $10$ in the current ring into the integer $10$
                    562: and
                    563: \begin{verbatim}
                    564: (10). (string) dc  ::
                    565: \end{verbatim}
                    566: translates the polynomial $10$ into the string 10.
                    567:
                    568: \section{Gr\"obner basis and Syzygy computation in \kansm}
                    569: \subsection{Computing Gr\"obner or standard basis in the ring of the polynomials}
                    570:
                    571: \begin{example}
                    572: Obtain the Gr\"obner basis of the ideal generated by
                    573: the polynomials $x^2+y^2-4$ and $xy-1$ in terms of the graded reverse
                    574: lexicographic order :
                    575: $$ 1 < x < y < x^2 < xy < y^2 < \cdots. $$
                    576: \end{example}
                    577:
                    578: All inputs must be homogenized to get Gr\"obner basis
                    579: by the command {\tt groebner}.
                    580: Usually, the variable $h$ is used for the homogenization.
                    581: In this example,
                    582: Gr\"obner bases in
                    583: ${\bf Q}[x,y,h]$ are computed,
                    584: but rational coefficients in the input is not allowed.
                    585: All coefficients must be integers.
                    586:
                    587: The operator {\tt groebner\_sugar} is for non-homogenized
                    588: computation of Gr\"obner basis.
                    589:
                    590: The following code is a convinient template to obtain
                    591: Gr\"obner bases.
                    592:
                    593: @gbrev.sm1
                    594:
                    595: The letters after the symbol {\tt \%} are ignored by \kansm ;
                    596: comments begin with the symbol {\tt \%}.
                    597: If one needs to compute Gr\"obner basis of a given set of polynomials,
                    598: one may only change the lines marked by the comment
                    599: {\tt \% Change here}.
                    600:
                    601: \begin{grammer}
                    602: Any string of alphabets can be used as a name of a variable except
                    603: {\tt h}, {\tt E}, {\tt H} and {\tt e\_}.
                    604: For $q$-difference operators, {\tt q} is also reserved.
                    605: Upper and lower case letters are distinct.
                    606: \end{grammer}
                    607:
                    608: \bigbreak
                    609:
                    610: \begin{example}
                    611: Obtain the Gr\"obner basis of the ideal generated by
                    612: the polynomials $x^2+y^2-4$ and $xy-1$ in terms of the
                    613: lexicographic order :
                    614: $$ 1 < x < x^2 < x^3 < \cdots < y < yx < yx^2 < \cdots. $$
                    615: \end{example}
                    616:
                    617:
                    618: @gblex.sm1
                    619: In this example, the order is specified by the weight vector.
                    620: If the line \\
                    621: \verb+ [vec1  vec2  ...] weight_vector +
                    622: is given in the definition of the ring,
                    623: monomials are compared by the weight vector {\tt vec1}.
                    624: If two monomials have the same weight, then they are
                    625: compared by the weight vector {\tt vec2}.
                    626: This procedure will be repeated until all weight vectors are used.
                    627:
                    628: The weigth vector is expressed in the form
                    629: {\tt [v1 \  w1 \ v2 \ w2 \  ... vp \ wp ]},
                    630: which
                    631: means that the variable {\tt v1} has the weight {\tt w1},
                    632: the variable {\tt v2} has the weight {\tt w2}, $\ldots$.
                    633: For example,
                    634: when the ring is defined by
                    635: \begin{verbatim}
                    636:   [(x,y,z) ring_of_polynomials
                    637:    [[(x) 1 (y) 3]  [(z) -5]] weight_vector 0]
                    638:   define_ring
                    639: \end{verbatim}
                    640: two monomials
                    641: $x^a y^b z^c \succ x^A y^B z^C$
                    642: if and only if
                    643: $ a+3b > A+3B$ or
                    644: ($ a+3b = A+3B$ and $ -5 c > -5 C$)
                    645: or
                    646: ($ a+3b = A+3B$ and $ -5 c = -5 C$ and $(a,b,c) \succ_{grlex} (A,B,C)$)
                    647: where $\succ_{grlex}$ denotes the graded reverse lexicographic order.
                    648: \bigbreak
                    649:
                    650: The Buchberger's criterion 1 is turned off by default,
                    651: because it does not work in case of the ring of differential operators.
                    652: To turn it on,
                    653: input \\
                    654: \verb! [(UseCriterion1) 1] system_variable !
                    655:
                    656: The operator {\tt groebner} outputs the status of degree by degree computation
                    657: of Gr\"obner basis.
                    658: To turn off this message, input
                    659: \verb! [(KanGBmessage) 0] system_variable !
                    660:
                    661:
                    662: \begin{example}
                    663: Obtain the Gr\"obner basis of the ideal generated by
                    664: the polynomials
                    665: $$x^2+y^2+z^2-1,xy+yz+zx-1,  xyz-1                   $$
                    666: in terms of the
                    667: elimination order
                    668: $ x,y > z. $
                    669: \end{example}
                    670:
                    671: @gbelim.sm1
                    672: \bigbreak
                    673:
                    674:
                    675: \subsection{Computing Gr\"obner basis in the ring of differential operators}
                    676:
                    677: \begin{example}
                    678: Obtain the Gr\"obner basis of the ideal in the Weyl algebra
                    679: $$  {\bf Q } \langle x,y,\pd{x},\pd{y} \rangle, \quad \hbox{ where }\
                    680:     \pd{x}=\frac{\partial}{\partial x},
                    681:     \pd{y}=\frac{\partial}{\partial y}
                    682: $$
                    683: generated by
                    684: the differential operators
                    685: $$ x \pd{x} + y \pd{y},
                    686:    \pd{x}^2 + \pd{y}^2
                    687: $$
                    688: in terms of the elimination order
                    689: $ \pd{x}, \pd{y} > x,y $
                    690: by using the homogenized Weyl algebra.
                    691: \end{example}
                    692:
                    693: @gbdiff.sm1
                    694: \bigbreak
                    695:
                    696: \subsection{Computing Gr\"obner basis in $R^n$}
                    697:
                    698: \begin{example}
                    699: Let $S$ be the ring of polynomials
                    700: $Q [x,y]$.
                    701: Obtain the Gr\"obner basis of the $S$-submodule of $S^3$
                    702: generated by the vectors
                    703: $$ (x-1,y-1,z-1), (xy-1,yz-2,zx-3). $$
                    704: \end{example}
                    705:
                    706: @gbvec.sm1
                    707: \bigbreak
                    708:
                    709: \subsection{Computing syzygies}
                    710:
                    711: Let $R$ be a ring and $f_1, \ldots, f_m$ be elements of $R$.
                    712: The left $R$-module
                    713: $$ \{ (s_1, \ldots, s_m \in R^m \,|\, \sum_{i=1}^m s_i f_i = 0 \} $$
                    714: is called the syzygy among $f_1, \ldots, f_m$.
                    715: The following script computes the generators of the syzygy
                    716: among
                    717: $$ x \pd{x} + y \pd{y},
                    718:    \pd{x}^2+\pd{y}^2
                    719: $$
                    720: in the homogenized Weyl algebra.
                    721:
                    722: @syz.sm1
                    723: The 0-th element of {\tt ans} is the Gr\"obner basis.
                    724: The 1st element of {\tt ans} is the transformation matrix from the input
                    725: to the Gr\"obner basis.
                    726: The 2nd element of {\tt ans} is a set of generators of the syzygies
                    727: of the input.
                    728:
                    729: \bigbreak
                    730:
                    731:
                    732: \section{Control Structures and programming}
                    733:
                    734: \subsection{if}
                    735: The conditional operator {\tt if} requires three objects on the stack:
                    736: an integer value and two executable arrays, which are program data.
                    737: The first executable array will be executed if the integer value is not 0.
                    738: The second executable array will be executed if the integer value is 0.
                    739: For example, the program line
                    740: \begin{verbatim}
                    741:     1 { op1 } {op2} ifelse
                    742: \end{verbatim}
                    743: executes {\tt \{ op1 \}} and the program line
                    744: \begin{verbatim}
                    745:     0 { op1 } {op2} ifelse
                    746: \end{verbatim}
                    747: executes {\tt \{ op2 \}}.
                    748:
                    749: Here is a list of comparison operators.
                    750: \begin{enumerate}
                    751: \item[] {\tt eq} \quad $=$ \quad  Example: {\tt [1 2] [1 3] eq }
                    752: \item[] {\tt gt} \quad $>$ \quad  Example: {\tt 3 2 gt}
                    753: \item[] {\tt lt} \quad $<$ \quad  Example: {\tt 3 2 lt}
                    754: \item[] {\tt not}  \quad  Example: {\tt 3 2 eq not}
                    755: \item[] {\tt and}  \quad  Example: {\tt 3 2 eq 5 6 lt and }
                    756: \item[] {\tt or}  \quad  Example: {\tt 3 2 eq 5 6 lt or }
                    757: \end{enumerate}
                    758:
                    759:
                    760: \subsection{for}
                    761: The {\tt for} operator implements a counting loop.
                    762: This operator takes three integers and one executable array:
                    763: \begin{verbatim}
                    764:    i0  d  i1  { ops } for
                    765: \end{verbatim}
                    766: {\tt i0} is the loop counter's starting value,
                    767: {\tt d} is the increment amount,
                    768: {\tt i1} is the final value.
                    769: The {\tt for} operator put the value of the counter on the stack before
                    770: each execution of {\tt ops}.
                    771: For example, the program line
                    772: \begin{verbatim}
                    773:   1 1 5  { /i set i message } for
                    774: \end{verbatim}
                    775: outputs
                    776: \begin{verbatim}
                    777:    1  2   3   4   5
                    778: \end{verbatim}
                    779:
                    780:
                    781:
                    782: \subsection{{\tt map} function}
                    783:
                    784: {\tt map} function is used to apply an operator to each element
                    785: of a given array.
                    786: For example, the following line is used to translate each polynomial
                    787: of the given array {\tt aa} into the corresponding string
                    788: \begin{verbatim}
                    789:           /aa [( (x-1)^2 ). (2^10).] def
                    790:           aa { (string) dc } map /ff set ;
                    791:           ff ::
                    792: \end{verbatim}
                    793: It becomes easier to writing script for {\tt kan/sm1} by using the {\tt map}
                    794: function.
                    795:
                    796: \subsection{Function definition}
                    797:
                    798: Programs are stored in executable arrays and
                    799: the curly brackets generate executable arrays.
                    800: For example, if you input the line
                    801: \begin{verbatim}
                    802:     {  add 2 mul }
                    803: \end{verbatim}
                    804: then the executable array object which represents the program
                    805: ``take two elements from the stack, add them, and multiply two
                    806: and put the result on the stack''
                    807: will be store on the top of the stack.
                    808: You can bind the program to a name.
                    809: That is,
                    810: \begin{verbatim}
                    811:    /abc { add 2 mul } def
                    812: \end{verbatim}
                    813: binds the executable array to the variable {\tt abc}.
                    814: The input \verb+ 2 4 abc :: + outputs {\tt 12}.
                    815: When {\tt sm1} encounters the name {\tt abc},
                    816: it looks up the user dictionary and finds that
                    817: the value of {\tt abc} is the executable array
                    818: \verb+ { add 2 mul } +.
                    819: The executable array is loaded to the stack machine and
                    820: executed.
                    821:
                    822: Funtions can be defined by using executable arrays.
                    823: Here is a complete example of a function definition in {\tt sm1}
                    824: following standard conventions.
                    825: \begin{verbatim}
                    826:    /foo {
                    827:      /arg1 set
                    828:      [/n /i /ans] pushVariables
                    829:      [
                    830:        /n arg1 def
                    831:        /ans 0 def
                    832:        1 1 n {
                    833:          /i set
                    834:          /ans ans i add def
                    835:        } for
                    836:        ans /arg1 set
                    837:      ] pop
                    838:      popVariables
                    839:      arg1
                    840:    } def
                    841: \end{verbatim}
                    842: The function returns the sum $1+2+\cdots+ n$.
                    843: For example,
                    844: {\tt 100 foo ::} outputs $5050$.
                    845: The arguments of the function should firstly be stored in the variables
                    846: {\tt arg1}, {\tt arg2}, $\ldots$.
                    847: It is a convension in {\tt sm1} programming.
                    848: The local variables are declared in the line
                    849: \begin{verbatim}
                    850:      [/n /i /ans] pushVariables
                    851: \end{verbatim}
                    852: The macro {\tt pushVariables} stores the previous values of
                    853: {\tt n}, {\tt i}, {\tt ans} on the stack and
                    854: the macro {\tt popVariables} restores the previous values.
                    855: So, you can use {\tt n}, {\tt i}, {\tt ans}
                    856: as a local variable of this function.
                    857: The function body should be enclosed as
                    858: \begin{verbatim}
                    859:     [
                    860:
                    861:     ] pop
                    862: \end{verbatim}
                    863: It is also a convension in {\tt sm1} programming
                    864: to avoid unmatched use of
                    865: {\tt pushVariables} and {\tt popVariables}.
                    866:
                    867:
                    868: \begin{example} \rm
                    869: {\tt cv0.sm1} is a script to compute characteristic variety
                    870: for $D$-submodules in $D^n$.
                    871:
                    872: {\tt cv2.sm1} is a script to compute the multiplicites of
                    873: $D$-modules.
                    874: \end{example}
                    875:
                    876:
                    877: \section{Dictionaries and contexts}
                    878:
                    879: The {\tt def} or {\tt set} operators associate a key with a value
                    880: and that key-value pair is stored in the current dictionary.
                    881: They key may starts with any printable character except
                    882: \verb+ ( ) [ ] { } $ % +
                    883: and numbers and be followed by any printable characters
                    884: except the special characters.
                    885: For example,
                    886: \begin{verbatim}
                    887:   foo  test   Test!   foo?59
                    888: \end{verbatim}
                    889: are accepted as names for keys.
                    890:
                    891: A key-value pair is stored in the current dictionary
                    892: when you use the operator {\tt def}
                    893: or the operator {\tt set}.
                    894: For example,
                    895: when you input the line
                    896: \begin{verbatim}
                    897:    /foo  15   def
                    898: \end{verbatim}
                    899: then the key-value pair
                    900: ({\tt foo}, 15) is stored in the current dictionary.
                    901: We can generate several dictionaries in {\tt sm1}.
                    902: Each dictionary must have its parent dictionary.
                    903: When you input a token (key) that is not a number or a string or a literal,
                    904: {\tt sm1} looks up the current dictionary to find the value of the key.
                    905: If the value is an executable array, then it will be executed.
                    906: If the value is not an executable array, then the value is put on the stack
                    907: as an object.
                    908: If the looking-up fails,
                    909: then it tries to find the value in the parent dictionary.
                    910: If it fails again, then it tries to find the value in the grandparent
                    911: dictionary and so on.
                    912: This mechanism enables us to write an object oriented system.
                    913: When the system starts, there are two dictionaries:
                    914: primitive dictionary and the standard user dictionary.
                    915: For example, the input {\tt ?} makes {\tt sm1} to look up
                    916: the standard user dictionary and {\tt sm1} finds the value of {\tt ?},
                    917: which is an executable array that displays all keys in the primitive
                    918: dictionary.
                    919:
                    920: A new dictionary can be created by the operator {\tt newcontext}.
                    921: Here is an example of creating a new dictionary.
                    922: \begin{verbatim}
                    923: /abc { (Bye) message } def
                    924: /aaa 20 def
                    925: abc  aaa ::
                    926: \end{verbatim}
                    927: The key-value pairs ({\tt abc}, \verb+ { (Bye) message } +
                    928: and
                    929: ({\tt aaa}, \verb+ 20 +)
                    930: are stored in the current dictionary ({\tt StandardContextp}).
                    931: Here is the output from the system.
                    932: {\footnotesize \begin{verbatim}
                    933: Bye
                    934: 20
                    935: \end{verbatim} }
                    936: \begin{verbatim}
                    937: (mycontext) StandardContextp newcontext /nc set ;
                    938: nc setcontext ;
                    939: \end{verbatim}
                    940: Create a new dictionary and change the current dictionary
                    941: by {\tt setcontext}.
                    942: \begin{verbatim}
                    943: /abc { (Hello) message } def ;
                    944: abc aaa ::
                    945: \end{verbatim}
                    946: Store a new key-value pair in the new dictionary.
                    947: Here is the output of the system.
                    948: {\footnotesize \begin{verbatim}
                    949: Hello
                    950: 20
                    951: \end{verbatim} }
                    952: The key {\tt abc} was found in the current dictionary, so
                    953: the system outputs {\tt Hello}.
                    954: The key {\tt aaa} was not found in the current dictionary,
                    955: so the system looked for it in the parent dictionary and
                    956: outputs the value {\tt 20}.
                    957:
                    958:
                    959: It is sometimes preferable to protect the key-value pairs
                    960: from unexpected rewriting.
                    961: If you input the following lines, then all pairs in the current dictionary
                    962: except
                    963: {\tt arg1}, {\tt arg2}, {\tt arg3}, {\tt v1}, {\tt v2}, {\tt \at.usages}
                    964: will become readonly pairs.
                    965: {\footnotesize \begin{verbatim}
                    966: [(Strict2) 1] system_variable  %% from var.sm1
                    967: [(chattrs) 2] extension
                    968: [(chattr) 0 /arg1] extension
                    969: [(chattr) 0 /arg2] extension
                    970: [(chattr) 0 /arg3] extension
                    971: [(chattr) 0 /v1] extension  %% used in join.
                    972: [(chattr) 0 /v2] extension
                    973: \end{verbatim}
                    974: {\tt [(chattr) 0 /\at.usages] extension}}
                    975:
                    976: \section{Using {\tt sm1} to teach computer science for
                    977: students in mathematics}
                    978:
                    979: There are two design goals in {\tt sm1}.
                    980: One  goal  is to provide a backend engine for the ring of differential
                    981: operators in a
                    982: heterotic distributed computing system.
                    983: Another interesting design goal is to help to teach basics of
                    984: intermediate level computer science quickly
                    985: and invite students to mathematical programmers' world.
                    986: It is a fun to learn computer science with {\tt sm1}!
                    987: Here are some topics that I tried in class rooms.
                    988: These are intermediate level topics that should be learned after
                    989: students have learned elementary programming by languages like
                    990: Pascal, C, C++, Java, Basic, Mathematica, Maple,  Macaulay 2, etc.
                    991:
                    992: \subsection{Recursive call and the stack}
                    993:
                    994: The notion of stack is one of the most important idea in computer science.
                    995: The notion of recursive call of functions is usually taught in the first
                    996: course of programming.
                    997: I think it is important to understand how the stack is used to emulate
                    998: recurisve calls.
                    999: The idea is the use of the stack.
                   1000: Function arguments and local variables are stored in the stack.
                   1001: It enables the system to restore the values of the local variables and arguments
                   1002: after an execution of the function.
                   1003: However, it should be noted that, for each function call, the stack
                   1004: dynamically grows.
                   1005:
                   1006: As an example that I used in a class room,
                   1007: let us evaluate the $n$-th Fibonacci number
                   1008: defined by
                   1009: $$ f_n = f_{n-1}+f_{n-2}, \ f_1 = f_2 = 1 $$
                   1010: by using a recurisive call.
                   1011: \begin{verbatim}
                   1012:   /fib {
                   1013:     /arg1 set
                   1014:     [/n /ans] pushVariables
                   1015:     pstack
                   1016:       /n arg1 def
                   1017:       (n=) messagen n message
                   1018:       (-------------------------------) message
                   1019:       n 2 le {
                   1020:         /ans  1  def
                   1021:       }
                   1022:       {
                   1023:         n 1 sub fib  n 2 sub fib add /ans set
                   1024:       } ifelse
                   1025:       /arg1 ans def
                   1026:     popVariables
                   1027:     arg1
                   1028:   } def
                   1029: \end{verbatim}
                   1030: The program would return the $n$-th Fibonacci number.
                   1031: That is,
                   1032: \verb+ 4 fib :: +
                   1033: would return $f_4=3$.
                   1034: It also output the entire stack at each call,
                   1035: so you can observe how stack grows during the computation
                   1036: and how local variables {\tt n}, {\tt ans} are stored
                   1037: in the stack.
                   1038: You would also realize that this program is not efficient
                   1039: and exhausts huge memory space.
                   1040:
                   1041:
                   1042: \subsection{Implementing  a Java-like language}
                   1043:
                   1044: One of the exciting topic in the course of computer science
                   1045: is mathematical theory of parsing.
                   1046: After learning the basics of the theory,
                   1047: it is a very good Exercise to design a small language and
                   1048: write a compiler or interpreter for the language.
                   1049: If you do not like to write a compiler for real CPU,
                   1050: the stackmachine {\tt sm1} will be a good target
                   1051: machine.
                   1052: For example, the language may accept the input
                   1053: \begin{verbatim}
                   1054:   12345678910111213*(256+2)
                   1055: \end{verbatim}
                   1056: and the interpreter or the compiler generate the following code for {\tt sm1}
                   1057: \begin{verbatim}
                   1058:   (12345678910111213)..
                   1059:   (256)..
                   1060:   (2).. add
                   1061:    mul message
                   1062: \end{verbatim}
                   1063: One can easily write an arbitrary precision calculator by using
                   1064: {\tt sm1}
                   1065: and also try algorithms in the number theory by one's own language.
                   1066:
                   1067: \noindent
                   1068: Exercise 1: parse a set of linear equations like
                   1069: {\tt  2x+3y+z = 2; y-z =4; }, output the equation in the matrix form
                   1070: and find solutions. \\
                   1071: Exercise 2:
                   1072: Modify the calculator {\tt hoc} so that it can use {\tt sm1} as the
                   1073: backend engine.
                   1074: The calculator {\tt hoc} is discussed in the book:
                   1075: Kerningham and Pike, Unix programming environment.
                   1076:
                   1077: The stackmachine {\tt sm1} provides a very strong virtual machine for
                   1078: object oriented system by the dictionary tree.
                   1079: We can easily implement a language, on which Java-like object
                   1080: oriented programming mechanism is installed,
                   1081: by using {\tt sm1}.
                   1082: Here is a sample program of {\tt kan/k0}, which is an object oriented
                   1083: language and works on {\tt sm1}.
                   1084: I taught a course on writing mathematical softwares
                   1085: in a graduate school with {\tt k0}.
                   1086: \begin{verbatim}
                   1087: class Complex extends Object {
                   1088:   local re, /* real part */
                   1089:         im; /* imaginary part*/
                   1090:   def new2(a,b) {
                   1091:     this = new(super.new0());
                   1092:     re = a;
                   1093:     im = b;
                   1094:     return(this);
                   1095:   }
                   1096:   def real() { return(re); }
                   1097:   def imaginary() { return(im); }
                   1098:   def operator add(b) {
                   1099:     return( new2(re+b.real(), im+b.imaginary()) );
                   1100:   }
                   1101:   def operator sub(b) {
                   1102:     return( new2(re-b.real(), im-b.imaginary()) );
                   1103:   }
                   1104:   def operator mul(b) {
                   1105:     return(new2( re*b.real()-im*b.imaginary(), re*b.imaginary()+im*b.real()));
                   1106:   }
                   1107:   def operator div(b) {
                   1108:     local den,num1,num2;
                   1109:     den = (b.real())^2 + (b.imaginary())^2 ;
                   1110:     num1 = re*b.real() + im*b.imaginary();
                   1111:     num2 = -re*b.imaginary()+im*b.real();
                   1112:     return(new2(num1/den, num2/den));
                   1113:   }
                   1114:
                   1115:   def void show() {
                   1116:     Print(re); Print(" +I["); Print(im); Print("]");
                   1117:   }
                   1118:   def void showln() {
                   1119:     this.show(); Ln();
                   1120:   }
                   1121: }
                   1122:
                   1123: \end{verbatim}
                   1124: \verb! a = Complex.new2(1,3); ! \\
                   1125: \verb! a: ! \\
                   1126: 1 +I[3]  \\
                   1127: \verb! a*a: ! \\
                   1128: -8 +I[6]  \\
                   1129:
                   1130:
                   1131:
                   1132: \subsection{Interactive distributed computing}
                   1133:
                   1134: The plugin modules file2, cmo, socket and the package file
                   1135: {\tt ox.sm1} provide functions for
                   1136: interactive distributed computing.
                   1137: To install these plugin modules, compile {\tt sm1} after modifying
                   1138: {\tt kan/Makefile}.
                   1139: See {\tt README} for details.
                   1140: These plugins are already installed in the binary distributions of {\tt sm1}.
                   1141: The sm1 server {\tt ox\_sm1} and {\tt ox} which are complient to the Open XM
                   1142: protocol
                   1143: (see \cite{openxxx})
                   1144: is distributed from the same ftp cite with {\tt sm1}.
                   1145: The sm1 server is also a stack machine.
                   1146: Here is an example input of server and client computation.
                   1147:
                   1148: \noindent Server:
                   1149: \begin{verbatim}
                   1150:      ./ox -ox ox_sm1 -data 1300 -control 1200
                   1151: \end{verbatim}
                   1152:
                   1153: \noindent Client:
                   1154: \begin{verbatim}
                   1155: (ox.sm1) run
                   1156: [(localhost) 1300 1200] oxconnect /oxserver set
                   1157: /f (123).. def ;
                   1158: oxserver f oxsendcmo ;     %% send the data f to the server
                   1159: oxserver f oxsendcmo ;     %% send the data f to the server
                   1160: oxserver (power) oxexec ;  %% execute f f power
                   1161: oxserver oxpopcmo ::       %% get data from the server.
                   1162: \end{verbatim}
                   1163: The output is $123^{123}$ and equal to
                   1164: $114374367....9267$.
                   1165:
                   1166:
                   1167: \noindent
                   1168: Exercise:
                   1169: write a graphical interface for functions in packages of {\tt sm1} by Java
                   1170: and call sm1 server to execute them.
                   1171:
                   1172: \subsection{More exercises}
                   1173:
                   1174: \begin{enumerate}
                   1175: \item \kansm contains the GNU MP package for computations of bignumbers.
                   1176: You can call the functions in GNU MP by the operator {\tt mpzext}.
                   1177: Write a program to find integral solution $(x,y)$ of
                   1178: $ a x + b y = d$ for given integers $a, b, d$.
                   1179: \item Write a program for RSA encryption.
                   1180: \end{enumerate}
                   1181:
                   1182: \begin{thebibliography}{99}
                   1183: \bibitem{asir} Risa/Asir --- computer algebra system, \hfill\break
                   1184: {\tt ftp://endaevor.fujitsu.co.jp/pub/isis/asir}.
                   1185: \bibitem{Postscript} PostScript --- Language Turorial and Cookbook,
                   1186: (1985), Addison-Wesley
                   1187: \bibitem{Hotta} R.Hotta, Introduction to Algebra, Asakura-shoten, Tokyo
                   1188: (in Japanese).
                   1189: \bibitem{Oaku} T.Oaku,
                   1190: Gr\"obner basis and systems of differential equations,
                   1191: (1994) Seminor note series of Sophia University.
                   1192: (in Japanese).
                   1193: \bibitem{SST}
                   1194: M.Saito, B.Sturmfels, N.Takayama,
                   1195: Gr\"obner deformations of hypergeometric differential equations,
                   1196: to appear from Springer.
                   1197: \bibitem{www} {\tt http://www.math.kobe-u.ac.jp/KAN} and \hfill\break
                   1198: {\tt http://www.math.kobe-u.ac.jp/$\tilde{\ }$taka}
                   1199: \bibitem{openxxx}
                   1200: {\tt http://www.math.kobe-u.ac.jp/openxxx}
                   1201: \end{thebibliography}
                   1202:
                   1203: \end{document}
                   1204:
                   1205:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>