[BACK]Return to hol.sm1 CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Doc

Diff for /OpenXM/src/kan96xx/Doc/hol.sm1 between version 1.19 and 1.21

version 1.19, 2004/06/03 08:10:44 version 1.21, 2004/07/29 08:13:42
Line 1 
Line 1 
 % $OpenXM: OpenXM/src/kan96xx/Doc/hol.sm1,v 1.18 2004/05/15 12:00:48 takayama Exp $  % $OpenXM: OpenXM/src/kan96xx/Doc/hol.sm1,v 1.20 2004/06/10 06:01:50 takayama Exp $
 %% hol.sm1, 1998, 11/8, 11/10, 11/14, 11/25, 1999, 5/18, 6/5. 2000, 6/8  %% hol.sm1, 1998, 11/8, 11/10, 11/14, 11/25, 1999, 5/18, 6/5. 2000, 6/8
 %% rank, rrank, characteristic  %% rank, rrank, characteristic
 %% This file is error clean.  %% This file is error clean.
Line 1864  message-quiet
Line 1864  message-quiet
   arg1    arg1
 } def  } def
   
   /gb.reduction_noh {
     /arg2 set
     /arg1 set
     [/in-gb.reduction_noh /gbasis /flist /ans /gbasis2
     ] pushVariables
     [(CurrentRingp) (KanGBmessage) (Homogenize)] pushEnv
     [
        /gbasis arg2  def
        /flist  arg1  def
        gbasis 0 get tag 6 eq { }
        { (gb.reduction_noh: the second argument must be a list of lists) error }
        ifelse
   
        gbasis length 1 eq {
          gbasis getRing ring_def
          /gbasis2 gbasis 0 get def
        } {
          [ [(1)] ] gbasis rest join gb 0 get getRing ring_def
          /gbasis2 gbasis 0 get ,,, def
        } ifelse
   
   
        flist ,,, /flist set
        [(Homogenize) 0] system_variable
        flist tag 6 eq {
          flist { gbasis2 reduction } map /ans set
        }{
          flist gbasis2 reduction /ans set
        } ifelse
        /arg1 ans def
   
     ] pop
     popEnv
     popVariables
     arg1
   } def
   
 /gb.reduction.test {  /gb.reduction.test {
   [    [
     [( 2*(1-x-y) Dx + 1 ) ( 2*(1-x-y) Dy + 1 )]      [( 2*(1-x-y) Dx + 1 ) ( 2*(1-x-y) Dy + 1 )]
Line 1896  message-quiet
Line 1933  message-quiet
   $ ((h-x-y)^2*Dx*Dy) ggg gb.reduction :: $    $ ((h-x-y)^2*Dx*Dy) ggg gb.reduction :: $
 ]] putUsages  ]] putUsages
   
   [(gb.reduction_noh)
   [ (f basis gb.reduction_noh r)
     (f is reduced by basis by the normal form algorithm.)
     (The first element of basis <g_1,...,g_m> must be a Grobner basis.)
     (r is the return value format of reduction;)
     (r=[h,c0,syz,input], h = c0 f + \sum syz_i g_i)
     (basis is given in the argument format of gb.)
     (cf. gb.reduction, gb )
     $Example:$
     $ [[( 2*Dx + 1 ) ( 2*Dy + 1 )] $
     $   (x,y) [[(Dx) 1 (Dy) 1]]] /ggg set $
     $ ((1-x-y)^2*Dx*Dy) ggg gb.reduction_noh :: $
   ]] putUsages
   
 ( ) message-quiet ;  ( ) message-quiet ;
   
   /hol_loaded 1 def
   
   
   

Legend:
Removed from v.1.19  
changed lines
  Added in v.1.21

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>