Annotation of OpenXM/src/kan96xx/Doc/oxasir.asir, Revision 1.3
1.1 maekawa 1: OxAsirDebug = 0$
2: OxVlist = [x,y,z]$
3:
4: def ox_ptod(F) {
5: extern OxVlist;
6: extern OxAsirDebug;
7: if (OxAsirDebug != 0) { print(["ox_ptod:", F, OxVlist]); }
8: if (type(F) == 4) return(map(ox_ptod,F));
9: else if (type(F) == 2) return(dp_ptod(F,OxVlist));
10: else return(F);
11: }
12:
13: def ox_dtop(F) {
14: extern OxVlist;
15: extern OxAsirDebug;
16: if (OxAsirDebug != 0) { print(["ox_dtop:", F, OxVlist]); }
17: if (type(F) == 4) return(map(ox_dtop,F));
18: else if (type(F) == 9) return(dp_dtop(F,OxVlist));
19: else return(F);
20: }
21:
22: /*** From gbhg3/Int/solv1.asir ***/
23: /* solv1.asir 1999, 1/28.
24: Finding rational number roots of systems of polynomials.
25: Make a substitution.
26: */
27:
28: def sm1_solv1a(F) {
29: V = var(F);
30: if (deg(F,V) != 1) return([]);
31: return([V,red(-coef(F,0)/coef(F,1))]);
32: }
33:
34:
35: def sm1_solv1(L,V) {
36: N = length(L);
37: Ans = newvect(length(V));
38: for(J=0; J<length(V); J++) {
39: Ans[J] = "?";
40: }
41: for (I=0; I<N; I++) {
42: S = sm1_solv1a(L[I]);
43: if (S == []) return([]);
44: for (J=0; J<length(V); J++) {
45: if (V[J] == S[0]) {
46: Ans[J] = S[1];
47: }
48: }
49: }
50: return(Ans);
51: }
52:
53: def sm1_rationalRoots(F,V) {
54: F = primadec(F,V);
55: print(F);
56: N = length(F);
57: Ans = [ ];
58: for (I=0; I<N; I++) {
59: P = F[I][1]; /* associated prime */
60: R = sm1_solv1(P,V);
61: if (R != []) {
62: Ans = append(Ans,[R]);
63: }
64: }
65: return(Ans);
66: }
67:
68: /* sm1_rationalRoots([x^2+y-2,x^2-1/9],[x,y]); */
69:
70: def sm1_inner00(A,B) {
71: P = 0;
72: for (I=0; I<size(A)[0]; I++) {
73: P = P + A[I]*B[I];
74: }
75: return(red(P));
76: }
77:
78: def sm1_rationalRoots2(F,V,W) {
79: print([F,V,W]);
80: print(type(W[0]));
81: R = sm1_rationalRoots(F,V);
82: Ans = [ ];
83: Ans2 = [ ];
84: W = newvect(length(W),W);
85: for (I=0; I<length(R); I++) {
86: T = sm1_inner00(W,R[I]);
87: if (dn(T) == 1) {
88: Ans = append(Ans,[T]);
89: Ans2 = append(Ans2,[R[I]]);
90: }
91: }
92: print([Ans,Ans2]);
93: return(Ans);
94: }
95:
96: /* W is a weight vector */
97: /* sm1_rationalRoots2([(z-3)*(z^2+z+1),x^2+y-2,x^2-1/9],[x,y,z],[9,9,1]); */
98:
99: def sm1_ptozp_subst(F,X,V) {
100: /* sm1_ptozp_subst(x*y-1,x,[1,2]); ptozp(subst(x*y,x,1/2)) ; */
101: A=ptozp(subst(F,X,V[0]/V[1]));
102: return(A);
103: }
104:
105: /* A = ((1/2)*x^2+(1/4)*x+1)/((1/5)*x^4+x^8);
106: B= sm1_rat2plist( A);
107: print(red(A-B[0]/B[1]));
108: */
109: def sm1_rat2plist(T) {
110: T = red(T);
111: T1 = nm(T); T1a = ptozp(T1);
112: T1b = red(T1a/T1);
113: T2 = dn(T);
114: return([T1a*dn(T1b),T2*nm(T1b)]);
115: }
116:
117: def sm1_rat2plist2(TT) {
118: T = red(TT[0]/TT[1]);
119: T1 = nm(T); T1a = ptozp(T1);
120: T1b = red(T1a/T1);
121: T2 = dn(T);
122: return([T1a*dn(T1b),T2*nm(T1b)]);
123: }
124:
125:
1.2 takayama 126: def oxasir_bfct(F) {
127: G = bfct(F);
128: return rtostr(G);
129: }
1.1 maekawa 130:
1.3 ! takayama 131: def oxasir_generic_bfct(I,V,D,W) {
! 132: G = generic_bfct(I,V,D,W);
! 133: return rtostr(G);
! 134: }
! 135:
1.1 maekawa 136:
137:
138: end$
139:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>