version 1.1, 1999/10/08 02:12:02 |
version 1.7, 2003/11/21 02:10:37 |
|
|
|
/* $OpenXM: OpenXM/src/kan96xx/Kan/Kclass/indeterminate.c,v 1.6 2001/09/01 01:37:48 takayama Exp $ */ |
/* Kclass/indeterminate.c */ |
/* Kclass/indeterminate.c */ |
/* This file handles indeterminate, tree, recursivePolynomial, |
/* This file handles indeterminate, recursivePolynomial, |
polynomialInOneVariable |
polynomialInOneVariable |
*/ |
*/ |
#include <stdio.h> |
#include <stdio.h> |
Line 42 void fprintIndeterminate(FILE *fp,struct object op) |
|
Line 43 void fprintIndeterminate(FILE *fp,struct object op) |
|
printObject(KopIndeterminate(op),0,fp); |
printObject(KopIndeterminate(op),0,fp); |
} |
} |
|
|
|
/* Functions for trees are moved to tree.c */ |
/* ---------------------------------------------------- */ |
/* ---------------------------------------------------- */ |
/* Data conversion function : see KclassDataConversion*/ |
|
struct object KpoTree(struct object ob) { |
|
struct object rob; |
|
struct object ob1,ob2,ob3; |
|
struct object *newobp; |
|
rob.tag = Sclass; |
|
rob.lc.ival = CLASSNAME_tree; |
|
newobp = (struct object *) sGC_malloc(sizeof(struct object)); |
|
if (newobp == NULL) errorKan1("%s\n","Kclass/indeterminate.c, no more memory."); |
|
if (ob.tag != Sarray) { |
|
errorKan1("%s\n","Kclass/indeterminate.c, only properly formatted list object can be transformed into tree. [name, cdname, arglist]."); |
|
} |
|
if (getoaSize(ob) < 3) { |
|
errorKan1("%s\n","Kclass/indeterminate.c, the length must 3 or more than 3. [name, cdname, arglist]."); |
|
} |
|
ob1 = getoa(ob,0); ob2 = getoa(ob,1); ob3 = getoa(ob,2); |
|
if (ob1.tag != Sdollar || ob2.tag != Sdollar || ob3.tag != Sarray) { |
|
errorKan1("%s\n","Kclass/indeterminate.c, [string name, string cdname, list arglist]."); |
|
} |
|
*newobp = ob; |
|
rob.rc.voidp = newobp; |
|
return(rob); |
|
} |
|
|
|
|
|
/* Printing function : see fprintClass */ |
|
void fprintTree(FILE *fp,struct object op) |
|
{ |
|
printObject(KopTree(op),0,fp); |
|
} |
|
|
|
int isTreeAdd(struct object ob) { |
|
struct object name; |
|
if (ob.tag != Sclass) { |
|
return(0); |
|
} |
|
if (ectag(ob) != CLASSNAME_tree) { |
|
return(0); |
|
} |
|
ob = KopTree(ob); |
|
if (ob.tag != Sarray) { |
|
errorKan1("%s\n","CLASSNAME_tree is broken. Should be array."); |
|
} |
|
name = getoa(ob,0); |
|
if (name.tag != Sdollar) { |
|
errorKan1("%s\n","CLASSNAME_tree is broken. Should be string."); |
|
} |
|
if (strcmp(KopString(name),"add") == 0) { |
|
return(1); |
|
}else{ |
|
return(0); |
|
} |
|
} |
|
|
|
struct object addTree(struct object ob1, struct object ob2) |
|
{ |
|
struct object rob,aob; |
|
struct object ob3,ob4; |
|
int i; |
|
if (isTreeAdd(ob1) && !isTreeAdd(ob2)) { |
|
ob1 = KopTree(ob1); |
|
ob3 = getoa(ob1,2); |
|
aob = newObjectArray(getoaSize(ob3)+1); |
|
for (i=0; i<getoaSize(ob3); i++) { |
|
putoa(aob,i,getoa(ob3,i)); |
|
} |
|
putoa(aob,getoaSize(ob3),ob2); |
|
}else if (!isTreeAdd(ob1) && isTreeAdd(ob2)) { |
|
ob2 = KopTree(ob2); |
|
ob3 = getoa(ob2,2); |
|
aob = newObjectArray(getoaSize(ob3)+1); |
|
putoa(aob,0,ob1); |
|
for (i=0; i<getoaSize(ob3); i++) { |
|
putoa(aob,1+i,getoa(ob3,i)); |
|
} |
|
}else if (isTreeAdd(ob1) && isTreeAdd(ob2)) { |
|
ob1 = KopTree(ob1); |
|
ob2 = KopTree(ob2); |
|
ob3 = getoa(ob1,2); |
|
ob4 = getoa(ob2,2); |
|
aob = newObjectArray(getoaSize(ob3)+getoaSize(ob4)); |
|
for (i=0; i<getoaSize(ob3); i++) { |
|
putoa(aob,i,getoa(ob3,i)); |
|
} |
|
for (i=0; i<getoaSize(ob4); i++) { |
|
putoa(aob,getoaSize(ob3)+i,getoa(ob4,i)); |
|
} |
|
}else{ |
|
aob = newObjectArray(2); |
|
putoa(aob,0,ob1); |
|
putoa(aob,1,ob2); |
|
} |
|
rob = newObjectArray(3); |
|
putoa(rob,0,KpoString("add")); |
|
putoa(rob,1,KpoString("Basic")); |
|
putoa(rob,2,aob); |
|
return(KpoTree(rob)); |
|
} |
|
|
|
|
|
/*------------------------------------------*/ |
|
|
|
struct object KpoRecursivePolynomial(struct object ob) { |
struct object KpoRecursivePolynomial(struct object ob) { |
struct object rob; |
struct object rob; |
struct object *newobp; |
struct object *newobp; |
Line 162 struct object KpoRecursivePolynomial(struct object ob) |
|
Line 62 struct object KpoRecursivePolynomial(struct object ob) |
|
} |
} |
|
|
static void printBodyOfRecursivePolynomial(struct object body, |
static void printBodyOfRecursivePolynomial(struct object body, |
struct object vlist, FILE *fp) |
struct object vlist, FILE *fp) |
{ |
{ |
int i,j; |
int i,j; |
int k; |
int k; |
Line 181 static void printBodyOfRecursivePolynomial(struct obj |
|
Line 81 static void printBodyOfRecursivePolynomial(struct obj |
|
for (j=1; j<getoaSize(body); j = j+2) { |
for (j=1; j<getoaSize(body); j = j+2) { |
k = KopInteger(getoa(body,j)); |
k = KopInteger(getoa(body,j)); |
if (k != 0) { |
if (k != 0) { |
fprintf(fp,"%s",KopString(getoa(vlist,i))); |
if (getoa(vlist,i).tag == Sdollar) { |
|
fprintf(fp,"%s",KopString(getoa(vlist,i))); |
|
}else if (ectag(getoa(vlist,i)) == CLASSNAME_tree) { |
|
fprintClass(fp,getoa(vlist,i)); |
|
}else{ |
|
errorKan1("%s\n","printBodyOfRecursivePolynomial: format error."); |
|
} |
if (k > 1) { |
if (k > 1) { |
fprintf(fp,"^%d ",k); |
fprintf(fp,"^%d ",k); |
}else if (k == 1) { |
}else if (k == 1) { |
}else{ |
}else{ |
fprintf(fp,"^(%d) ",k); |
fprintf(fp,"^(%d) ",k); |
} |
} |
fprintf(fp," * "); |
fprintf(fp," * "); |
} |
} |
Line 203 static void printBodyOfRecursivePolynomial(struct obj |
|
Line 109 static void printBodyOfRecursivePolynomial(struct obj |
|
void fprintRecursivePolynomial(FILE *fp,struct object op) |
void fprintRecursivePolynomial(FILE *fp,struct object op) |
{ |
{ |
/* old code |
/* old code |
printObject(KopRecursivePolynomial(op),0,fp); return; |
printObject(KopRecursivePolynomial(op),0,fp); return; |
*/ |
*/ |
struct object ob; |
struct object ob; |
struct object vlist; |
struct object vlist; |
Line 297 struct object polyToRecursivePoly(struct object p) { |
|
Line 203 struct object polyToRecursivePoly(struct object p) { |
|
putoa(rob,0,vlist2); putoa(rob,1,ob1); |
putoa(rob,0,vlist2); putoa(rob,1,ob1); |
/* format of rob |
/* format of rob |
[ list of variables, poly or universalNumber or yyy to express |
[ list of variables, poly or universalNumber or yyy to express |
a recursive polynomial. ] |
a recursive polynomial. ] |
format of yyy = CLASSNAME_polynomialInOneVariable |
format of yyy = CLASSNAME_polynomialInOneVariable |
[Sinteger, Sinteger, coeff obj, Sinteger, coeff obj, .....] |
[Sinteger, Sinteger, coeff obj, Sinteger, coeff obj, .....] |
name of var, exp, coeff, exp, coeff |
name of var, exp, coeff, exp, coeff |
This format is checked by isRecursivePolynomial2(). |
This format is checked by isRecursivePolynomial2(). |
*/ |
*/ |
rob = KpoRecursivePolynomial(rob); |
rob = KpoRecursivePolynomial(rob); |
if (isRecursivePolynomial2(rob)) { |
if (isRecursivePolynomial2(rob)) { |
Line 398 static int isRecursivePolynomial2a(struct object ob2, |
|
Line 304 static int isRecursivePolynomial2a(struct object ob2, |
|
if (ectag(tmp) == CLASSNAME_polynomialInOneVariable) { |
if (ectag(tmp) == CLASSNAME_polynomialInOneVariable) { |
if (isRecursivePolynomial2a(tmp,n)) { |
if (isRecursivePolynomial2a(tmp,n)) { |
}else{ |
}else{ |
fprintf(stderr,"isRecursivePolynomial2a: entry is not a polynomial in one variable.\n"); |
fprintf(stderr,"isRecursivePolynomial2a: entry is not a polynomial in one variable.\n"); |
printObject(tmp,0,stderr); fprintf(stderr,"\n"); |
printObject(tmp,0,stderr); fprintf(stderr,"\n"); |
return(0); |
return(0); |
} |
} |
} |
} |
} |
} |
Line 434 int isRecursivePolynomial2(struct object ob) { |
|
Line 340 int isRecursivePolynomial2(struct object ob) { |
|
n = getoaSize(ob1); |
n = getoaSize(ob1); |
for (i=0; i<n; i++) { |
for (i=0; i<n; i++) { |
tmp = getoa(ob1,i); |
tmp = getoa(ob1,i); |
if (tmp.tag != Sdollar) { |
if (tmp.tag == Sdollar) { |
fprintf(stderr,"%s [list vlist, body]. Element of the vlist must be a string.\n",s); printObject(ob,1,stderr); |
}else if (ectag(tmp) == CLASSNAME_tree) { |
|
}else{ |
|
fprintf(stderr,"%s [list vlist, body]. Element of the vlist must be a string or a tree.\n",s); printObject(ob,1,stderr); |
return(0); |
return(0); |
} |
} |
} |
} |
Line 477 struct object recursivePolyToPoly(struct object rp) { |
|
Line 385 struct object recursivePolyToPoly(struct object rp) { |
|
} |
} |
|
|
|
|
|
struct object KrvtReplace(struct object rp_o,struct object v_o, struct object t_o) { |
|
/* rp_o : recursive polynomial. |
|
v_o : variable name (indeterminate). |
|
t_o : tree. |
|
*/ |
|
struct object rp, vlist, newvlist, newrp; |
|
int i,m; |
|
/* Check the data types. */ |
|
if (ectag(rp_o) != CLASSNAME_recursivePolynomial) { |
|
errorKan1("%s\n","KrvtReplace() type mismatch in the first argument."); |
|
} |
|
if (ectag(v_o) != CLASSNAME_indeterminate) { |
|
errorKan1("%s\n","KrvtReplace() type mismatch in the second argument."); |
|
} |
|
if (ectag(t_o) != CLASSNAME_tree) { |
|
errorKan1("%s\n","KrvtReplace() type mismatch in the third argument."); |
|
} |
|
|
|
rp = KopRecursivePolynomial(rp_o); |
|
vlist = getoa(rp,0); |
|
m = getoaSize(vlist); |
|
newvlist = newObjectArray(m); |
|
for (i=0; i<m; i++) { |
|
if (KooEqualQ(getoa(vlist,i),KopIndeterminate(v_o))) { |
|
/* should be KooEqualQ(getoa(vlist,i),v_o). It's not a bug. |
|
Internal expression of vlist is an array of string |
|
(not indetermiante). */ |
|
putoa(newvlist,i,t_o); |
|
}else{ |
|
putoa(newvlist,i,getoa(vlist,i)); |
|
} |
|
} |
|
newrp = newObjectArray(getoaSize(rp)); |
|
m = getoaSize(rp); |
|
putoa(newrp,0,newvlist); |
|
for (i=1; i<m; i++) { |
|
putoa(newrp,i,getoa(rp,i)); |
|
} |
|
return(KpoRecursivePolynomial(newrp)); |
|
} |
|
|
|
|
|
struct object KreplaceRecursivePolynomial(struct object of,struct object rule) { |
|
struct object rob,f; |
|
int i; |
|
int n; |
|
struct object trule; |
|
|
|
|
|
if (rule.tag != Sarray) { |
|
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be array."); |
|
} |
|
n = getoaSize(rule); |
|
|
|
if (of.tag ==Sclass && ectag(of) == CLASSNAME_recursivePolynomial) { |
|
}else{ |
|
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The first argument must be a recursive polynomial."); |
|
} |
|
f = of; |
|
|
|
for (i=0; i<n; i++) { |
|
trule = getoa(rule,i); |
|
if (trule.tag != Sarray) { |
|
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....]."); |
|
} |
|
if (getoaSize(trule) != 2) { |
|
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....]."); |
|
} |
|
|
|
if (ectag(getoa(trule,0)) != CLASSNAME_indeterminate) { |
|
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials."); |
|
} |
|
/* Do not check the second argument. */ |
|
/* |
|
if (getoa(trule,1).tag != Spoly) { |
|
errorKan1("%s\n"," KreplaceRecursivePolynomial(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials."); |
|
} |
|
*/ |
|
|
|
} |
|
|
|
rob = f; |
|
for (i=0; i<n; i++) { |
|
trule = getoa(rule,i); |
|
rob = KrvtReplace(rob,getoa(trule,0),getoa(trule,1)); |
|
} |
|
return(rob); |
|
} |
|
|