[BACK]Return to kanExport0.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport0.c, Revision 1.19

1.19    ! takayama    1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport0.c,v 1.18 2003/08/26 12:46:05 takayama Exp $  */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: #define universalToPoly(un,rp) (isZero(un)?ZERO:coeffToPoly(un,rp))
                     13:
                     14: static void checkDuplicateName(char *xvars[],char *dvars[],int n);
                     15:
                     16: static void yet() { fprintf(stderr,"Not implemented."); }
                     17:
                     18: int SerialCurrent = -1;  /* Current Serial number of the recieved packet as server. */
                     19:
                     20: int ReverseOutputOrder = 1;
                     21: int WarningNoVectorVariable = 1;
1.19    ! takayama   22: extern int QuoteMode;
1.1       maekawa    23:
                     24: /** :arithmetic **/
                     25: struct object KooAdd(ob1,ob2)
1.7       takayama   26:      struct object ob1,ob2;
1.1       maekawa    27: {
                     28:   extern struct ring *CurrentRingp;
                     29:   struct object rob = NullObject;
                     30:   POLY r;
                     31:   int s,i;
                     32:   objectp f1,f2,g1,g2;
                     33:   struct object nn,dd;
                     34:
                     35:   switch (Lookup[ob1.tag][ob2.tag]) {
                     36:   case SintegerSinteger:
                     37:     return(KpoInteger(ob1.lc.ival + ob2.lc.ival));
                     38:     break;
                     39:   case SpolySpoly:
                     40:     r = ppAdd(ob1.lc.poly,ob2.lc.poly);
                     41:     rob.tag = Spoly; rob.lc.poly = r;
                     42:     return(rob);
                     43:     break;
                     44:   case SarraySarray:
                     45:     s = getoaSize(ob1);
                     46:     if (s != getoaSize(ob2)) {
                     47:       errorKan1("%s\n","Two arrays must have a same size.");
                     48:     }
                     49:     rob = newObjectArray(s);
                     50:     for (i=0; i<s; i++) {
                     51:       putoa(rob,i,KooAdd(getoa(ob1,i),getoa(ob2,i)));
                     52:     }
                     53:     return(rob);
                     54:     break;
                     55:   case SuniversalNumberSuniversalNumber:
                     56:     rob.tag = SuniversalNumber;
                     57:     rob.lc.universalNumber = newUniversalNumber(0);
                     58:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                     59:     return(rob);
                     60:     break;
                     61:   case SuniversalNumberSpoly:
                     62:     rob.tag = Spoly;
                     63:     r = ob2.lc.poly;
                     64:     if (r ISZERO) {
                     65:       /*warningKan("KooAdd(universalNumber,0 polynomial) cannot determine the ring for the result. Assume the current ring.");
                     66:         rob.lc.poly = universalToPoly(ob1.lc.universalNumber,CurrentRingp);*/
                     67:       rob = ob1;
                     68:       return(rob); /* returns universal number. */
                     69:     }
                     70:     rob.lc.poly = ppAdd(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                     71:     return(rob);
                     72:     break;
                     73:   case SpolySuniversalNumber:
                     74:     return(KooAdd(ob2,ob1));
                     75:     break;
                     76:   case SuniversalNumberSinteger:
                     77:     rob.tag = SuniversalNumber;
                     78:     rob.lc.universalNumber = newUniversalNumber(0);
                     79:     nn.tag = SuniversalNumber;
                     80:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                     81:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                     82:     return(rob);
                     83:     break;
                     84:   case SintegerSuniversalNumber:
                     85:     rob.tag = SuniversalNumber;
                     86:     rob.lc.universalNumber = newUniversalNumber(0);
                     87:     nn.tag = SuniversalNumber;
                     88:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                     89:     Cadd(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                     90:     return(rob);
                     91:     break;
                     92:
                     93:   case SrationalFunctionSrationalFunction:
                     94:     f1 = Knumerator(ob1);
                     95:     f2 = Kdenominator(ob1);
                     96:     g1 = Knumerator(ob2);
                     97:     g2 = Kdenominator(ob2);
                     98:     nn = KooAdd(KooMult(*g2,*f1),KooMult(*f2,*g1));
                     99:     dd = KooMult(*f2,*g2);
                    100:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    101:     KisInvalidRational(&rob);
                    102:     return(rob);
                    103:     break;
                    104:   case SpolySrationalFunction:  /* f1 + g1/g2 = (g2 f1 + g1)/g2 */
                    105:   case SuniversalNumberSrationalFunction:
                    106:     g1 = Knumerator(ob2);
                    107:     g2 = Kdenominator(ob2);
                    108:     nn = KooAdd(KooMult(*g2,ob1),*g1);
                    109:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    110:     KisInvalidRational(&rob);
                    111:     return(rob);
                    112:     break;
                    113:   case SrationalFunctionSpoly:
                    114:   case SrationalFunctionSuniversalNumber:
                    115:     return(KooAdd(ob2,ob1));
                    116:     break;
                    117:   case SdoubleSdouble:
                    118:     return(KpoDouble( KopDouble(ob1) + KopDouble(ob2) ));
                    119:     break;
                    120:   case SdoubleSinteger:
                    121:   case SdoubleSuniversalNumber:
                    122:   case SdoubleSrationalFunction:
                    123:     return(KpoDouble( KopDouble(ob1) + toDouble0(ob2) ) );
                    124:     break;
                    125:   case SintegerSdouble:
                    126:   case SuniversalNumberSdouble:
                    127:   case SrationalFunctionSdouble:
                    128:     return(KpoDouble( toDouble0(ob1) + KopDouble(ob2) ) );
                    129:     break;
                    130:   case SclassSclass:
                    131:   case SclassSinteger:
                    132:   case SclassSpoly:
                    133:   case SclassSuniversalNumber:
                    134:   case SclassSrationalFunction:
                    135:   case SclassSdouble:
                    136:   case SpolySclass:
                    137:   case SintegerSclass:
                    138:   case SuniversalNumberSclass:
                    139:   case SrationalFunctionSclass:
                    140:   case SdoubleSclass:
                    141:     return(Kclass_ooAdd(ob1,ob2));
                    142:     break;
                    143:
                    144:
                    145:   default:
1.19    ! takayama  146:     if (QuoteMode) {
        !           147:          rob = addTree(ob1,ob2);
        !           148:     }else{
        !           149:       warningKan("KooAdd() has not supported yet these objects.\n");
        !           150:     }
1.1       maekawa   151:     break;
                    152:   }
                    153:   return(rob);
                    154: }
                    155:
                    156: struct object KooSub(ob1,ob2)
1.7       takayama  157:      struct object ob1,ob2;
1.1       maekawa   158: {
                    159:   struct object rob = NullObject;
                    160:   POLY r;
                    161:   int s,i;
                    162:   objectp f1,f2,g1,g2;
                    163:   extern struct coeff *UniversalZero;
                    164:   struct object nn,dd;
                    165:
                    166:   switch (Lookup[ob1.tag][ob2.tag]) {
                    167:   case SintegerSinteger:
                    168:     return(KpoInteger(ob1.lc.ival - ob2.lc.ival));
                    169:     break;
                    170:   case SpolySpoly:
                    171:     r = ppSub(ob1.lc.poly,ob2.lc.poly);
                    172:     rob.tag = Spoly; rob.lc.poly = r;
                    173:     return(rob);
                    174:     break;
                    175:   case SarraySarray:
                    176:     s = getoaSize(ob1);
                    177:     if (s != getoaSize(ob2)) {
                    178:       errorKan1("%s\n","Two arrays must have a same size.");
                    179:     }
                    180:     rob = newObjectArray(s);
                    181:     for (i=0; i<s; i++) {
                    182:       putoa(rob,i,KooSub(getoa(ob1,i),getoa(ob2,i)));
                    183:     }
                    184:     return(rob);
                    185:     break;
                    186:   case SuniversalNumberSuniversalNumber:
                    187:     rob.tag = SuniversalNumber;
                    188:     rob.lc.universalNumber = newUniversalNumber(0);
                    189:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    190:     return(rob);
                    191:     break;
                    192:
                    193:   case SuniversalNumberSpoly:
                    194:     rob.tag = Spoly;
                    195:     r = ob2.lc.poly;
                    196:     if (r ISZERO) {
                    197:       rob = ob1;
                    198:       return(rob); /* returns universal number. */
                    199:     }
                    200:     rob.lc.poly = ppSub(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    201:     return(rob);
                    202:     break;
                    203:   case SpolySuniversalNumber:
                    204:     rob.tag = Spoly;
                    205:     r = ob1.lc.poly;
                    206:     if (r ISZERO) {
                    207:       rob.tag = SuniversalNumber;
                    208:       rob.lc.universalNumber = newUniversalNumber(0);
                    209:       Csub(rob.lc.universalNumber,UniversalZero,ob2.lc.universalNumber);
                    210:       return(rob); /* returns universal number. */
                    211:     }
                    212:     rob.lc.poly = ppSub(r,universalToPoly(ob2.lc.universalNumber,r->m->ringp));
                    213:     return(rob);
                    214:     break;
                    215:
                    216:   case SuniversalNumberSinteger:
                    217:     rob.tag = SuniversalNumber;
                    218:     rob.lc.universalNumber = newUniversalNumber(0);
                    219:     nn.tag = SuniversalNumber;
                    220:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    221:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    222:     return(rob);
                    223:     break;
                    224:   case SintegerSuniversalNumber:
                    225:     rob.tag = SuniversalNumber;
                    226:     rob.lc.universalNumber = newUniversalNumber(0);
                    227:     nn.tag = SuniversalNumber;
                    228:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    229:     Csub(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    230:     return(rob);
                    231:     break;
                    232:
                    233:   case SrationalFunctionSrationalFunction:
                    234:     f1 = Knumerator(ob1);
                    235:     f2 = Kdenominator(ob1);
                    236:     g1 = Knumerator(ob2);
                    237:     g2 = Kdenominator(ob2);
                    238:     nn = KooSub(KooMult(*g2,*f1),KooMult(*f2,*g1));
                    239:     dd = KooMult(*f2,*g2);
                    240:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    241:     KisInvalidRational(&rob);
                    242:     return(rob);
                    243:     break;
                    244:   case SpolySrationalFunction:  /* f1 - g1/g2 = (g2 f1 - g1)/g2 */
                    245:   case SuniversalNumberSrationalFunction:
                    246:     g1 = Knumerator(ob2);
                    247:     g2 = Kdenominator(ob2);
                    248:     nn = KooSub(KooMult(*g2,ob1),*g1);
                    249:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    250:     KisInvalidRational(&rob);
                    251:     return(rob);
                    252:     break;
                    253:   case SrationalFunctionSpoly:
                    254:   case SrationalFunctionSuniversalNumber: /* f1/f2 - ob2= (f1 - f2*ob2)/f2 */
                    255:     f1 = Knumerator(ob1);
                    256:     f2 = Kdenominator(ob1);
                    257:     nn = KooSub(*f1,KooMult(*f2,ob2));
                    258:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    259:     KisInvalidRational(&rob);
                    260:     return(rob);
                    261:     break;
                    262:
                    263:   case SdoubleSdouble:
                    264:     return(KpoDouble( KopDouble(ob1) - KopDouble(ob2) ));
                    265:     break;
                    266:   case SdoubleSinteger:
                    267:   case SdoubleSuniversalNumber:
                    268:   case SdoubleSrationalFunction:
                    269:     return(KpoDouble( KopDouble(ob1) - toDouble0(ob2) ) );
                    270:     break;
                    271:   case SintegerSdouble:
                    272:   case SuniversalNumberSdouble:
                    273:   case SrationalFunctionSdouble:
                    274:     return(KpoDouble( toDouble0(ob1) - KopDouble(ob2) ) );
                    275:     break;
                    276:
                    277:   default:
                    278:     warningKan("KooSub() has not supported yet these objects.\n");
                    279:     break;
                    280:   }
                    281:   return(rob);
                    282: }
                    283:
                    284: struct object KooMult(ob1,ob2)
1.7       takayama  285:      struct object ob1,ob2;
1.1       maekawa   286: {
                    287:   struct object rob = NullObject;
                    288:   POLY r;
                    289:   int i,s;
                    290:   objectp f1,f2,g1,g2;
                    291:   struct object dd,nn;
                    292:
                    293:
                    294:   switch (Lookup[ob1.tag][ob2.tag]) {
                    295:   case SintegerSinteger:
                    296:     return(KpoInteger(ob1.lc.ival * ob2.lc.ival));
                    297:     break;
                    298:   case SpolySpoly:
                    299:     r = ppMult(ob1.lc.poly,ob2.lc.poly);
                    300:     rob.tag = Spoly; rob.lc.poly = r;
                    301:     return(rob);
                    302:     break;
                    303:   case SarraySarray:
                    304:     return(KaoMult(ob1,ob2));
                    305:     break;
                    306:   case SpolySarray:
                    307:   case SuniversalNumberSarray:
                    308:   case SrationalFunctionSarray:
                    309:   case SintegerSarray:
                    310:     s = getoaSize(ob2);
                    311:     rob = newObjectArray(s);
                    312:     for (i=0; i<s; i++) {
                    313:       putoa(rob,i,KooMult(ob1,getoa(ob2,i)));
                    314:     }
                    315:     return(rob);
                    316:     break;
                    317:
                    318:   case SarraySpoly:
                    319:   case SarraySuniversalNumber:
                    320:   case SarraySrationalFunction:
                    321:   case SarraySinteger:
                    322:     s = getoaSize(ob1);
                    323:     rob = newObjectArray(s);
                    324:     for (i=0; i<s; i++) {
                    325:       putoa(rob,i,KooMult(getoa(ob1,i),ob2));
                    326:     }
                    327:     return(rob);
                    328:     break;
                    329:
                    330:
                    331:   case SuniversalNumberSuniversalNumber:
                    332:     rob.tag = SuniversalNumber;
                    333:     rob.lc.universalNumber = newUniversalNumber(0);
                    334:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    335:     return(rob);
                    336:     break;
                    337:
                    338:   case SuniversalNumberSpoly:
                    339:     r = ob2.lc.poly;
                    340:     if (r ISZERO) {
                    341:       rob.tag = SuniversalNumber;
                    342:       rob.lc.universalNumber = newUniversalNumber(0);
                    343:       return(rob); /* returns universal number. */
                    344:     }
                    345:     if (isZero(ob1.lc.universalNumber)) {
                    346:       rob.tag = Spoly;
                    347:       rob.lc.poly = ZERO;
                    348:       return(rob);
                    349:     }
                    350:     rob.tag = Spoly;
                    351:     rob.lc.poly = ppMult(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    352:     return(rob);
                    353:     break;
                    354:   case SpolySuniversalNumber:
                    355:     return(KooMult(ob2,ob1));
                    356:     break;
                    357:
                    358:   case SuniversalNumberSinteger:
                    359:     rob.tag = SuniversalNumber;
                    360:     rob.lc.universalNumber = newUniversalNumber(0);
                    361:     nn.tag = SuniversalNumber;
                    362:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    363:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    364:     return(rob);
                    365:     break;
                    366:   case SintegerSuniversalNumber:
                    367:     rob.tag = SuniversalNumber;
                    368:     rob.lc.universalNumber = newUniversalNumber(0);
                    369:     nn.tag = SuniversalNumber;
                    370:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    371:     Cmult(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    372:     return(rob);
                    373:     break;
                    374:
                    375:   case SrationalFunctionSrationalFunction:
                    376:     f1 = Knumerator(ob1);
                    377:     f2 = Kdenominator(ob1);
                    378:     g1 = Knumerator(ob2);
                    379:     g2 = Kdenominator(ob2);
                    380:     nn = KooMult(*f1,*g1);
                    381:     dd = KooMult(*f2,*g2);
                    382:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    383:     KisInvalidRational(&rob);
                    384:     return(rob);
                    385:     break;
                    386:   case SpolySrationalFunction:  /* ob1 g1/g2 */
                    387:   case SuniversalNumberSrationalFunction:
                    388:     g1 = Knumerator(ob2);
                    389:     g2 = Kdenominator(ob2);
                    390:     nn = KooMult(ob1,*g1);
                    391:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    392:     KisInvalidRational(&rob);
                    393:     return(rob);
                    394:     break;
                    395:   case SrationalFunctionSpoly:
                    396:   case SrationalFunctionSuniversalNumber: /* f1*ob2/f2 */
                    397:     f1 = Knumerator(ob1);
                    398:     f2 = Kdenominator(ob1);
                    399:     nn = KooMult(*f1,ob2);
                    400:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    401:     KisInvalidRational(&rob);
                    402:     return(rob);
                    403:     break;
                    404:
                    405:   case SdoubleSdouble:
                    406:     return(KpoDouble( KopDouble(ob1) * KopDouble(ob2) ));
                    407:     break;
                    408:   case SdoubleSinteger:
                    409:   case SdoubleSuniversalNumber:
                    410:   case SdoubleSrationalFunction:
                    411:     return(KpoDouble( KopDouble(ob1) * toDouble0(ob2) ) );
                    412:     break;
                    413:   case SintegerSdouble:
                    414:   case SuniversalNumberSdouble:
                    415:   case SrationalFunctionSdouble:
                    416:     return(KpoDouble( toDouble0(ob1) * KopDouble(ob2) ) );
                    417:     break;
                    418:
                    419:   default:
                    420:     warningKan("KooMult() has not supported yet these objects.\n");
                    421:     break;
                    422:   }
                    423:   return(rob);
                    424: }
                    425:
                    426:
                    427:
                    428: struct object KoNegate(obj)
1.7       takayama  429:      struct object obj;
1.1       maekawa   430: {
                    431:   struct object rob = NullObject;
                    432:   extern struct ring SmallRing;
                    433:   struct object tob;
                    434:   switch(obj.tag) {
                    435:   case Sinteger:
                    436:     rob = obj;
                    437:     rob.lc.ival = -rob.lc.ival;
                    438:     break;
                    439:   case Spoly:
                    440:     rob.tag = Spoly;
                    441:     rob.lc.poly = ppSub(ZERO,obj.lc.poly);
                    442:     break;
                    443:   case SuniversalNumber:
                    444:     rob.tag = SuniversalNumber;
                    445:     rob.lc.universalNumber = coeffNeg(obj.lc.universalNumber,&SmallRing);
                    446:     break;
                    447:   case SrationalFunction:
                    448:     rob.tag = SrationalFunction;
                    449:     tob = KoNegate(*(Knumerator(obj)));
                    450:     Knumerator(rob) = copyObjectp( &tob);
                    451:     Kdenominator(rob) = Kdenominator(obj);
                    452:     break;
                    453:
                    454:   case Sdouble:
                    455:     rob = KpoDouble( - toDouble0(obj) );
                    456:     break;
                    457:
                    458:   default:
                    459:     warningKan("KoNegate() has not supported yet these objects.\n");
                    460:     break;
                    461:   }
                    462:   return(rob);
                    463: }
                    464:
                    465: struct object KoInverse(obj)
1.7       takayama  466:      struct object obj;
1.1       maekawa   467: {
                    468:   struct object rob = NullObject;
                    469:   extern struct coeff *UniversalOne;
                    470:   objectp onep;
                    471:   struct object tob;
                    472:   switch(obj.tag) {
                    473:   case Spoly:
                    474:     tob.tag = SuniversalNumber;
                    475:     tob.lc.universalNumber = UniversalOne;
                    476:     onep = copyObjectp(& tob);
                    477:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    478:     KisInvalidRational(&rob);
                    479:     break;
                    480:   case SuniversalNumber:
                    481:     tob.tag = SuniversalNumber;
                    482:     tob.lc.universalNumber = UniversalOne;
                    483:     onep = copyObjectp(& tob);
                    484:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    485:     KisInvalidRational(&rob);
                    486:     break;
                    487:   case SrationalFunction:
                    488:     rob = obj;
                    489:     Knumerator(rob) = Kdenominator(obj);
                    490:     Kdenominator(rob) = Knumerator(obj);
                    491:     KisInvalidRational(&rob);
                    492:     break;
                    493:   default:
                    494:     warningKan("KoInverse() has not supported yet these objects.\n");
                    495:     break;
                    496:   }
                    497:   return(rob);
                    498: }
                    499:
                    500:
                    501: static int isVector(ob)
1.7       takayama  502:      struct object ob;
1.1       maekawa   503: {
                    504:   int i,n;
                    505:   n = getoaSize(ob);
                    506:   for (i=0; i<n; i++) {
                    507:     if (getoa(ob,i).tag == Sarray) return(0);
                    508:   }
                    509:   return(1);
                    510: }
                    511:
                    512: static int isMatrix(ob,m,n)
1.7       takayama  513:      struct object ob;
                    514:      int m,n;
1.1       maekawa   515: {
                    516:   int i,j;
                    517:   for (i=0; i<m; i++) {
                    518:     if (getoa(ob,i).tag != Sarray) return(0);
                    519:     if (getoaSize(getoa(ob,i)) != n) return(0);
                    520:     for (j=0; j<n; j++) {
                    521:       if (getoa(getoa(ob,i),j).tag != Spoly) return(-1);
                    522:     }
                    523:   }
                    524:   return(1);
                    525: }
                    526:
                    527:
                    528: struct object KaoMult(aa,bb)
1.7       takayama  529:      struct object aa,bb;
                    530:      /* aa and bb is assumed to be array. */
1.1       maekawa   531: {
                    532:   int m,n,m2,n2;
                    533:   int i,j,k;
                    534:   POLY tmp;
                    535:   POLY fik;
                    536:   POLY gkj;
                    537:   struct object rob;
                    538:   int r1,r2;
                    539:   int rsize;
                    540:   struct object tob;
                    541:   struct object ob1;
                    542:   extern struct ring SmallRing;
                    543:
                    544:   m = getoaSize(aa); m2 = getoaSize(bb);
                    545:   if (m == 0 || m2 == 0) errorKan1("%s\n","KaoMult(). Invalid matrix size.");
                    546:
                    547:   /*  new code for vector x vector,... etc */
                    548:   r1 = isVector(aa); r2 = isVector(bb);
                    549:   if (r1 && r2 ) { /* vector X vector ---> scalar.*/
                    550:     rsize = getoaSize(aa);
                    551:     if (rsize != getoaSize(bb)) {
                    552:       errorKan1("%s\n","KaoMult(vector,vector). The size of the vectors must be the same.");
                    553:     }
                    554:     if (r1 != 0) {
                    555:       ob1 = getoa(aa,0);
                    556:       if (ob1.tag == Spoly) {
1.7       takayama  557:         rob.tag = Spoly; rob.lc.poly = ZERO;
1.1       maekawa   558:       }else if (ob1.tag == Sinteger) {
1.7       takayama  559:         rob.tag = Sinteger; rob.lc.ival = 0;
1.1       maekawa   560:       }else {
1.7       takayama  561:         rob.tag = SuniversalNumber;
                    562:         rob.lc.universalNumber = intToCoeff(0,&SmallRing);
1.1       maekawa   563:       }
                    564:     }else{
                    565:       rob.tag = Spoly; rob.lc.poly = ZERO;
                    566:     }
                    567:     for (i=0; i<rsize; i++) {
                    568:       rob = KooAdd(rob,KooMult(getoa(aa,i),getoa(bb,i)));
                    569:     }
                    570:     return(rob);
                    571:   } else if (r1 == 0 && r2 ) { /* matrix X vector ---> vector */
1.7       takayama  572:     /* (m n) (m2=n) */
1.1       maekawa   573:     n = getoaSize(getoa(aa,0));
                    574:     if (isMatrix(aa,m,n) == 0) {
                    575:       errorKan1("%s\n","KaoMult(matrix,vector). The left object is not matrix.");
                    576:     }else if (n != m2) {
                    577:       errorKan1("%s\n","KaoMult(). Invalid matrix and vector sizes for mult.");
                    578:     } else ;
                    579:     rob = newObjectArray(m);
                    580:     for (i=0; i<m; i++) {
                    581:       getoa(rob,i) = KooMult(getoa(aa,i),bb);
                    582:     }
                    583:     return(rob);
                    584:   }else if (r1 && r2 == 0) { /* vector X matrix ---> vector */
                    585:     tob = newObjectArray(1);
                    586:     getoa(tob,0) = aa;  /* [aa] * bb and strip [ ] */
                    587:     tob = KooMult(tob,bb);
                    588:     return(getoa(tob,0));
                    589:   } else ; /* continue: matrix X matrix case. */
                    590:   /* end of new code */
                    591:
                    592:   if (getoa(aa,0).tag != Sarray || getoa(bb,0).tag != Sarray) {
                    593:     errorKan1("%s\n","KaoMult(). Matrix must be given.");
                    594:   }
                    595:   n = getoaSize(getoa(aa,0));
                    596:   n2 = getoaSize(getoa(bb,0));
                    597:   if (n != m2) errorKan1("%s\n","KaoMult(). Invalid matrix size for mult. ((p,q)X(q,r)");
                    598:   r1 = isMatrix(aa,m,n); r2 = isMatrix(bb,m2,n2);
                    599:   if (r1 == -1 || r2 == -1) {
                    600:     /* Object multiplication. Elements are not polynomials. */
                    601:     struct object ofik,ogkj,otmp;
                    602:     rob = newObjectArray(m);
                    603:     for (i=0; i<m; i++) {
                    604:       getoa(rob,i) = newObjectArray(n2);
                    605:     }
                    606:     for (i=0; i<m; i++) {
                    607:       for (j=0; j<n2; j++) {
1.7       takayama  608:         ofik = getoa(getoa(aa,i),0);
                    609:         ogkj = getoa(getoa(bb,0),j);
                    610:         otmp = KooMult( ofik, ogkj);
                    611:         for (k=1; k<n; k++) {
                    612:           ofik = getoa(getoa(aa,i),k);
                    613:           ogkj = getoa(getoa(bb,k),j);
                    614:           otmp = KooAdd(otmp, KooMult( ofik, ogkj));
                    615:         }
                    616:         getoa(getoa(rob,i),j) = otmp;
1.1       maekawa   617:       }
                    618:     }
                    619:     return(rob);
                    620:     /*errorKan1("%s\n","KaoMult().Elements of the matrix must be polynomials.");*/
                    621:   }
                    622:   if (r1 == 0 || r2 == 0)
                    623:     errorKan1("%s\n","KaoMult(). Invalid matrix form for mult.");
                    624:
                    625:   rob = newObjectArray(m);
                    626:   for (i=0; i<m; i++) {
                    627:     getoa(rob,i) = newObjectArray(n2);
                    628:   }
                    629:   for (i=0; i<m; i++) {
                    630:     for (j=0; j<n2; j++) {
                    631:       tmp = ZERO;
                    632:       for (k=0; k<n; k++) {
1.7       takayama  633:         fik = KopPOLY(getoa(getoa(aa,i),k));
                    634:         gkj = KopPOLY(getoa(getoa(bb,k),j));
                    635:         tmp = ppAdd(tmp, ppMult( fik, gkj));
1.1       maekawa   636:       }
                    637:       getoa(getoa(rob,i),j) = KpoPOLY(tmp);
                    638:     }
                    639:   }
                    640:   return(rob);
                    641: }
                    642:
                    643: struct object KooDiv(ob1,ob2)
1.7       takayama  644:      struct object ob1,ob2;
1.1       maekawa   645: {
                    646:   struct object rob = NullObject;
                    647:   switch (Lookup[ob1.tag][ob2.tag]) {
                    648:   case SintegerSinteger:
                    649:     return(KpoInteger((ob1.lc.ival) / (ob2.lc.ival)));
                    650:     break;
                    651:   case SuniversalNumberSuniversalNumber:
                    652:     rob.tag = SuniversalNumber;
                    653:     rob.lc.universalNumber = newUniversalNumber(0);
                    654:     universalNumberDiv(rob.lc.universalNumber,ob1.lc.universalNumber,
1.7       takayama  655:                        ob2.lc.universalNumber);
1.1       maekawa   656:     return(rob);
                    657:     break;
                    658:
                    659:
                    660:   default:
                    661:     warningKan("KooDiv() has not supported yet these objects.\n");
                    662:     break;
                    663:   }
                    664:   return(rob);
                    665: }
                    666:
                    667: /* :relation */
                    668: KooEqualQ(obj1,obj2)
1.7       takayama  669:      struct object obj1;
                    670:      struct object obj2;
1.1       maekawa   671: {
                    672:   struct object ob;
                    673:   int i;
                    674:   if (obj1.tag != obj2.tag) {
                    675:     warningKan("KooEqualQ(ob1,ob2): the datatypes of ob1 and ob2  are not same. Returns false (0).\n");
                    676:     return(0);
                    677:   }
                    678:   switch(obj1.tag) {
1.7       takayama  679:   case 0:
                    680:     return(1); /* case of NullObject */
                    681:     break;
                    682:   case Sinteger:
                    683:     if (obj1.lc.ival == obj2.lc.ival) return(1);
                    684:     else return(0);
                    685:     break;
                    686:   case Sstring:
                    687:   case Sdollar:
                    688:     if (strcmp(obj1.lc.str, obj2.lc.str)==0) return(1);
                    689:     else return(0);
                    690:     break;
                    691:   case Spoly:
                    692:     ob = KooSub(obj1,obj2);
                    693:     if (KopPOLY(ob) == ZERO) return(1);
                    694:     else return(0);
                    695:   case Sarray:
                    696:     if (getoaSize(obj1) != getoaSize(obj2)) return(0);
                    697:     for (i=0; i< getoaSize(obj1); i++) {
                    698:       if (KooEqualQ(getoa(obj1,i),getoa(obj2,i))) { ; }
                    699:       else { return(0); }
                    700:     }
                    701:     return(1);
                    702:   case Slist:
                    703:     if (KooEqualQ(*(obj1.lc.op),*(obj2.lc.op))) {
                    704:       if (isNullList(obj1.rc.op)) {
                    705:         if (isNullList(obj2.rc.op)) return(1);
                    706:         else return(0);
1.1       maekawa   707:       }else{
1.7       takayama  708:         if (isNullList(obj2.rc.op)) return(0);
                    709:         return(KooEqualQ(*(obj1.rc.op),*(obj2.rc.op)));
1.1       maekawa   710:       }
1.7       takayama  711:     }else{
                    712:       return(0);
1.1       maekawa   713:     }
1.7       takayama  714:     break;
                    715:   case SuniversalNumber:
                    716:     return(coeffEqual(obj1.lc.universalNumber,obj2.lc.universalNumber));
                    717:     break;
                    718:   case Sring:
                    719:     return(KopRingp(obj1) == KopRingp(obj2));
                    720:     break;
                    721:   case Sclass:
                    722:     return(KclassEqualQ(obj1,obj2));
                    723:     break;
                    724:   case Sdouble:
                    725:     return(KopDouble(obj1) == KopDouble(obj2));
                    726:     break;
                    727:   default:
                    728:     errorKan1("%s\n","KooEqualQ() has not supported these objects yet.");
                    729:     break;
                    730:   }
1.1       maekawa   731: }
                    732:
                    733:
                    734: struct object KoIsPositive(ob1)
1.7       takayama  735:      struct object ob1;
1.1       maekawa   736: {
                    737:   struct object rob = NullObject;
                    738:   switch (ob1.tag) {
                    739:   case Sinteger:
                    740:     return(KpoInteger(ob1.lc.ival > 0));
                    741:     break;
                    742:   default:
                    743:     warningKan("KoIsPositive() has not supported yet these objects.\n");
                    744:     break;
                    745:   }
                    746:   return(rob);
                    747: }
                    748:
                    749: struct object KooGreater(obj1,obj2)
1.7       takayama  750:      struct object obj1;
                    751:      struct object obj2;
1.1       maekawa   752: {
                    753:   struct object ob;
                    754:   int tt;
                    755:   if (obj1.tag != obj2.tag) {
                    756:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    757:   }
                    758:   switch(obj1.tag) {
1.7       takayama  759:   case 0:
                    760:     return(KpoInteger(1)); /* case of NullObject */
                    761:     break;
                    762:   case Sinteger:
                    763:     if (obj1.lc.ival > obj2.lc.ival) return(KpoInteger(1));
                    764:     else return(KpoInteger(0));
                    765:     break;
                    766:   case Sstring:
                    767:   case Sdollar:
                    768:     if (strcmp(obj1.lc.str, obj2.lc.str)>0) return(KpoInteger(1));
                    769:     else return(KpoInteger(0));
                    770:     break;
                    771:   case Spoly:
                    772:     if ((*mmLarger)(obj1.lc.poly,obj2.lc.poly) == 1) return(KpoInteger(1));
                    773:     else return(KpoInteger(0));
                    774:     break;
                    775:   case SuniversalNumber:
                    776:     tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    777:     if (tt > 0) return(KpoInteger(1));
                    778:     else return(KpoInteger(0));
                    779:     break;
                    780:   case Sdouble:
                    781:     if ( KopDouble(obj1) > KopDouble(obj2) ) return(KpoInteger(1));
                    782:     else return(KpoInteger(0));
                    783:     break;
                    784:   default:
                    785:     errorKan1("%s\n","KooGreater() has not supported these objects yet.");
                    786:     break;
                    787:   }
1.1       maekawa   788: }
                    789:
                    790: struct object KooLess(obj1,obj2)
1.7       takayama  791:      struct object obj1;
                    792:      struct object obj2;
1.1       maekawa   793: {
                    794:   struct object ob;
                    795:   int tt;
                    796:   if (obj1.tag != obj2.tag) {
                    797:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    798:   }
                    799:   switch(obj1.tag) {
1.7       takayama  800:   case 0:
                    801:     return(KpoInteger(1)); /* case of NullObject */
                    802:     break;
                    803:   case Sinteger:
                    804:     if (obj1.lc.ival < obj2.lc.ival) return(KpoInteger(1));
                    805:     else return(KpoInteger(0));
                    806:     break;
                    807:   case Sstring:
                    808:   case Sdollar:
                    809:     if (strcmp(obj1.lc.str, obj2.lc.str)<0) return(KpoInteger(1));
                    810:     else return(KpoInteger(0));
                    811:     break;
                    812:   case Spoly:
                    813:     if ((*mmLarger)(obj2.lc.poly,obj1.lc.poly) == 1) return(KpoInteger(1));
                    814:     else return(KpoInteger(0));
                    815:     break;
                    816:   case SuniversalNumber:
                    817:     tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    818:     if (tt < 0) return(KpoInteger(1));
                    819:     else return(KpoInteger(0));
                    820:     break;
                    821:   case Sdouble:
                    822:     if ( KopDouble(obj1) < KopDouble(obj2) ) return(KpoInteger(1));
                    823:     else return(KpoInteger(0));
                    824:     break;
                    825:   default:
                    826:     errorKan1("%s\n","KooLess() has not supported these objects yet.");
                    827:     break;
                    828:   }
1.1       maekawa   829: }
                    830:
                    831: /* :conversion */
                    832:
                    833: struct object KdataConversion(obj,key)
1.7       takayama  834:      struct object obj;
                    835:      char *key;
1.1       maekawa   836: {
                    837:   char tmps[128]; /* Assume that double is not more than 128 digits */
                    838:   char intstr[100]; /* Assume that int is not more than 100 digits */
                    839:   struct object rob;
                    840:   extern struct ring *CurrentRingp;
                    841:   extern struct ring SmallRing;
                    842:   int flag;
                    843:   struct object rob1,rob2;
                    844:   char *s;
                    845:   int i;
1.2       takayama  846:   double f;
                    847:   double f2;
1.1       maekawa   848:   /* reports the data type */
                    849:   if (key[0] == 't' || key[0] =='e') {
                    850:     if (strcmp(key,"type?")==0) {
                    851:       rob = KpoInteger(obj.tag);
                    852:       return(rob);
                    853:     }else if (strcmp(key,"type??")==0) {
                    854:       if (obj.tag != Sclass) {
1.7       takayama  855:         rob = KpoInteger(obj.tag);
1.1       maekawa   856:       }else {
1.7       takayama  857:         rob = KpoInteger(ectag(obj));
1.1       maekawa   858:       }
                    859:       return(rob);
                    860:     }else if (strcmp(key,"error")==0) {
                    861:       rob = KnewErrorPacketObj(obj);
                    862:       return(rob);
                    863:     }
                    864:   }
                    865:   switch(obj.tag) {
                    866:   case Snull:
                    867:     if (strcmp(key,"integer") == 0) {
                    868:       rob = KpoInteger(0);
                    869:       return(rob);
                    870:     }else if (strcmp(key,"universalNumber") == 0) {
                    871:       rob.tag = SuniversalNumber;
                    872:       rob.lc.universalNumber = intToCoeff(obj.lc.ival,&SmallRing);
                    873:       return(rob);
                    874:     }else if (strcmp(key,"poly") == 0) {
                    875:       rob = KpoPOLY(ZERO);
                    876:     }else{
                    877:       warningKan("Sorry. The data conversion from null to this data type has not supported yet.\n");
                    878:     }
                    879:     break;
                    880:   case Sinteger:
                    881:     if (strcmp(key,"string") == 0) { /* ascii code */
                    882:       rob.tag = Sdollar;
                    883:       rob.lc.str = (char *)sGC_malloc(2);
                    884:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    885:       (rob.lc.str)[0] = obj.lc.ival; (rob.lc.str)[1] = '\0';
                    886:       return(rob);
                    887:     }else if (strcmp(key,"integer")==0) {
                    888:       return(obj);
                    889:     }else if (strcmp(key,"poly") == 0) {
                    890:       rob.tag = Spoly;
                    891:       rob.lc.poly = cxx(obj.lc.ival,0,0,CurrentRingp);
                    892:       return(rob);
                    893:     }else if (strcmp(key,"dollar") == 0) {
                    894:       rob.tag = Sdollar;
                    895:       sprintf(intstr,"%d",obj.lc.ival);
                    896:       rob.lc.str = (char *)sGC_malloc(strlen(intstr)+2);
                    897:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    898:       strcpy(rob.lc.str,intstr);
                    899:       return(rob);
                    900:     }else if (strcmp(key,"universalNumber")==0) {
                    901:       rob.tag = SuniversalNumber;
                    902:       rob.lc.universalNumber = intToCoeff(obj.lc.ival,&SmallRing);
                    903:       return(rob);
                    904:     }else if (strcmp(key,"double") == 0) {
                    905:       rob = KpoDouble((double) (obj.lc.ival));
                    906:       return(rob);
                    907:     }else if (strcmp(key,"null") == 0) {
                    908:       rob = NullObject;
                    909:       return(rob);
                    910:     }else{
                    911:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    912:     }
                    913:     break;
                    914:   case Sdollar:
                    915:     if (strcmp(key,"dollar") == 0 || strcmp(key,"string")==0) {
                    916:       rob = obj;
                    917:       return(rob);
                    918:     }else if (strcmp(key,"literal") == 0) {
                    919:       rob.tag = Sstring;
                    920:       s = (char *) sGC_malloc(sizeof(char)*(strlen(obj.lc.str)+3));
                    921:       if (s == (char *) NULL)   {
1.7       takayama  922:         errorKan1("%s\n","No memory.");
1.1       maekawa   923:       }
                    924:       s[0] = '/';
                    925:       strcpy(&(s[1]),obj.lc.str);
                    926:       rob.lc.str = &(s[1]);
                    927:       /* set the hashing value. */
                    928:       rob2 = lookupLiteralString(s);
                    929:       rob.rc.op = rob2.lc.op;
                    930:       return(rob);
                    931:     }else if (strcmp(key,"poly")==0) {
                    932:       rob.tag = Spoly;
                    933:       rob.lc.poly = stringToPOLY(obj.lc.str,CurrentRingp);
                    934:       return(rob);
                    935:     }else if (strcmp(key,"array")==0) {
                    936:       rob = newObjectArray(strlen(obj.lc.str));
                    937:       for (i=0; i<strlen(obj.lc.str); i++) {
1.7       takayama  938:         putoa(rob,i,KpoInteger((obj.lc.str)[i]));
1.1       maekawa   939:       }
                    940:       return(rob);
                    941:     }else if (strcmp(key,"universalNumber") == 0) {
                    942:       rob.tag = SuniversalNumber;
                    943:       rob.lc.universalNumber = stringToUniversalNumber(obj.lc.str,&flag);
                    944:       if (flag == -1) errorKan1("KdataConversion(): %s",
1.7       takayama  945:                                 "It's not number.\n");
1.2       takayama  946:       return(rob);
                    947:     }else if (strcmp(key,"double") == 0) {
                    948:       /* Check the format.  2.3432 e2 is not allowed. It should be 2.3232e2.*/
                    949:       flag = 0;
                    950:       for (i=0; (obj.lc.str)[i] != '\0'; i++) {
1.7       takayama  951:         if ((obj.lc.str)[i] > ' ' && flag == 0) flag=1;
                    952:         else if ((obj.lc.str)[i] <= ' ' && flag == 1) flag = 2;
                    953:         else if ((obj.lc.str)[i] > ' ' && flag == 2) flag=3;
1.2       takayama  954:       }
                    955:       if (flag == 3) errorKan1("KdataConversion(): %s","The data for the double contains blanck(s)");
                    956:       /* Read the double. */
                    957:       if (sscanf(obj.lc.str,"%lf",&f) <= 0) {
1.7       takayama  958:         errorKan1("KdataConversion(): %s","It cannot be translated to double.");
1.2       takayama  959:       }
                    960:       rob = KpoDouble(f);
1.1       maekawa   961:       return(rob);
                    962:     }else if (strcmp(key,"null") == 0) {
                    963:       rob = NullObject;
                    964:       return(rob);
                    965:     }else{
                    966:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    967:     }
                    968:     break;
                    969:   case Sarray:
                    970:     if (strcmp(key,"array") == 0) {
                    971:       return(rob);
                    972:     }else if (strcmp(key,"list") == 0) {
                    973:       rob = *( arrayToList(obj) );
                    974:       return(rob);
                    975:     }else if (strcmp(key,"arrayOfPOLY")==0) {
                    976:       rob = KpoArrayOfPOLY(arrayToArrayOfPOLY(obj));
                    977:       return(rob);
                    978:     }else if (strcmp(key,"matrixOfPOLY")==0) {
                    979:       rob = KpoMatrixOfPOLY(arrayToMatrixOfPOLY(obj));
                    980:       return(rob);
                    981:     }else if (strcmp(key,"gradedPolySet")==0) {
                    982:       rob = KpoGradedPolySet(arrayToGradedPolySet(obj));
                    983:       return(rob);
                    984:     }else if (strcmp(key,"null") == 0) {
                    985:       rob = NullObject;
                    986:       return(rob);
                    987:     }else {
                    988:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    989:     }
                    990:     break;
                    991:   case Spoly:
1.15      takayama  992:     if ((strcmp(key,"poly")==0) || (strcmp(key,"numerator")==0)) {
1.5       takayama  993:       rob = obj;
1.1       maekawa   994:       return(rob);
                    995:     }else if (strcmp(key,"integer")==0) {
                    996:       if (obj.lc.poly == ZERO) return(KpoInteger(0));
                    997:       else {
1.7       takayama  998:         return(KpoInteger(coeffToInt(obj.lc.poly->coeffp)));
1.1       maekawa   999:       }
                   1000:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1001:       rob.tag = Sdollar;
                   1002:       rob.lc.str = KPOLYToString(KopPOLY(obj));
                   1003:       return(rob);
                   1004:     }else if (strcmp(key,"array") == 0) {
                   1005:       return( POLYToArray(KopPOLY(obj)));
                   1006:     }else if (strcmp(key,"map")==0) {
                   1007:       return(KringMap(obj));
                   1008:     }else if (strcmp(key,"universalNumber")==0) {
                   1009:       if (obj.lc.poly == ZERO) {
1.7       takayama 1010:         rob.tag = SuniversalNumber;
                   1011:         rob.lc.universalNumber = newUniversalNumber(0);
1.1       maekawa  1012:       } else {
1.7       takayama 1013:         if (obj.lc.poly->coeffp->tag == MP_INTEGER) {
                   1014:           rob.tag = SuniversalNumber;
                   1015:           rob.lc.universalNumber = newUniversalNumber2(obj.lc.poly->coeffp->val.bigp);
                   1016:         }else {
                   1017:           rob = NullObject;
                   1018:           warningKan("Coefficient is not MP_INT.");
                   1019:         }
1.1       maekawa  1020:       }
                   1021:       return(rob);
                   1022:     }else if (strcmp(key,"ring")==0) {
                   1023:       if (obj.lc.poly ISZERO) {
1.7       takayama 1024:         warningKan("Zero polynomial does not have the ring structure field.\n");
1.1       maekawa  1025:       }else{
1.7       takayama 1026:         rob.tag = Sring;
                   1027:         rob.lc.ringp = (obj.lc.poly)->m->ringp;
                   1028:         return(rob);
1.1       maekawa  1029:       }
                   1030:     }else if (strcmp(key,"null") == 0) {
                   1031:       rob = NullObject;
                   1032:       return(rob);
                   1033:     }else{
                   1034:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1035:     }
                   1036:     break;
                   1037:   case SarrayOfPOLY:
                   1038:     if (strcmp(key,"array")==0) {
                   1039:       rob = arrayOfPOLYToArray(KopArrayOfPOLYp(obj));
                   1040:       return(rob);
                   1041:     }else{
                   1042:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1043:     }
                   1044:     break;
                   1045:   case SmatrixOfPOLY:
                   1046:     if (strcmp(key,"array")==0) {
                   1047:       rob = matrixOfPOLYToArray(KopMatrixOfPOLYp(obj));
                   1048:       return(rob);
                   1049:     }else if (strcmp(key,"null") == 0) {
                   1050:       rob = NullObject;
                   1051:       return(rob);
                   1052:     }else{
                   1053:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1054:     }
                   1055:     break;
                   1056:   case Slist:
                   1057:     if (strcmp(key,"array") == 0) {
                   1058:       rob = listToArray(&obj);
                   1059:       return(rob);
                   1060:     }
                   1061:     break;
                   1062:   case SuniversalNumber:
1.15      takayama 1063:     if ((strcmp(key,"universalNumber")==0) || (strcmp(key,"numerator")==0)) {
1.1       maekawa  1064:       return(rob);
                   1065:     }else if (strcmp(key,"integer")==0) {
                   1066:       rob = KpoInteger(coeffToInt(obj.lc.universalNumber));
                   1067:       return(rob);
                   1068:     }else if (strcmp(key,"poly")==0) {
                   1069:       rob = KpoPOLY(universalToPoly(obj.lc.universalNumber,CurrentRingp));
                   1070:       return(rob);
                   1071:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1072:       rob.tag = Sdollar;
                   1073:       rob.lc.str = coeffToString(obj.lc.universalNumber);
                   1074:       return(rob);
                   1075:     }else if (strcmp(key,"null") == 0) {
                   1076:       rob = NullObject;
                   1077:       return(rob);
                   1078:     }else if (strcmp(key,"double") == 0) {
                   1079:       rob = KpoDouble( toDouble0(obj) );
                   1080:       return(rob);
                   1081:     }else{
                   1082:       warningKan("Sorry. This type of data conversion of universalNumber has not supported yet.\n");
                   1083:     }
                   1084:     break;
                   1085:   case SrationalFunction:
                   1086:     if (strcmp(key,"rationalFunction")==0) {
                   1087:       return(rob);
                   1088:     } if (strcmp(key,"numerator")==0) {
                   1089:       rob = *(Knumerator(obj));
                   1090:       return(rob);
                   1091:     }else if  (strcmp(key,"denominator")==0) {
                   1092:       rob = *(Kdenominator(obj));
                   1093:       return(rob);
                   1094:     }else if  (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1095:       rob1 = KdataConversion(*(Knumerator(obj)),"string");
                   1096:       rob2 = KdataConversion(*(Kdenominator(obj)),"string");
                   1097:       s = sGC_malloc(sizeof(char)*( strlen(rob1.lc.str) + strlen(rob2.lc.str) + 10));
                   1098:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1099:       sprintf(s,"(%s)/(%s)",rob1.lc.str,rob2.lc.str);
                   1100:       rob.tag = Sdollar;
                   1101:       rob.lc.str = s;
                   1102:       return(rob);
                   1103:     }else if  (strcmp(key,"cancel")==0) {
                   1104:       warningKan("Sorry. Data conversion <<cancel>> of rationalFunction has not supported yet.\n");
                   1105:       return(obj);
                   1106:     }else if (strcmp(key,"null") == 0) {
                   1107:       rob = NullObject;
                   1108:       return(rob);
                   1109:     }else if (strcmp(key,"double") == 0) {
                   1110:       rob = KpoDouble( toDouble0(obj) );
                   1111:       return(rob);
                   1112:     }else{
                   1113:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1114:     }
                   1115:     break;
                   1116:   case Sdouble:
                   1117:     if (strcmp(key,"integer") == 0) {
                   1118:       rob = KpoInteger( (int) KopDouble(obj));
                   1119:       return(rob);
                   1120:     } else if (strcmp(key,"universalNumber") == 0) {
                   1121:       rob.tag = SuniversalNumber;
                   1122:       rob.lc.universalNumber = intToCoeff((int) KopDouble(obj),&SmallRing);
                   1123:       return(rob);
                   1124:     }else if ((strcmp(key,"string") == 0) || (strcmp(key,"dollar") == 0)) {
                   1125:       sprintf(tmps,"%f",KopDouble(obj));
                   1126:       s = sGC_malloc(strlen(tmps)+2);
                   1127:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1128:       strcpy(s,tmps);
                   1129:       rob.tag = Sdollar;
                   1130:       rob.lc.str = s;
                   1131:       return(rob);
                   1132:     }else if (strcmp(key,"double")==0) {
                   1133:       return(obj);
                   1134:     }else if (strcmp(key,"null") == 0) {
                   1135:       rob = NullObject;
                   1136:       return(rob);
                   1137:     }else {
                   1138:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1139:     }
                   1140:     break;
                   1141:   case Sring:
                   1142:     if (strcmp(key,"orderMatrix")==0) {
                   1143:       rob = oGetOrderMatrix(KopRingp(obj));
                   1144:       return(rob);
                   1145:     }else{
                   1146:       warningKan("Sorryl This type of data conversion of ringp has not supported yet.\n");
                   1147:     }
                   1148:     break;
                   1149:   default:
                   1150:     warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1151:   }
                   1152:   return(NullObject);
                   1153: }
                   1154:
                   1155: /* conversion functions between primitive data and objects.
                   1156:    If it's not time critical, it is recommended to use these functions */
                   1157: struct object KpoInteger(k)
1.7       takayama 1158:      int k;
1.1       maekawa  1159: {
                   1160:   struct object obj;
                   1161:   obj.tag = Sinteger;
                   1162:   obj.lc.ival = k; obj.rc.ival = 0;
                   1163:   return(obj);
                   1164: }
                   1165: struct object KpoString(s)
1.7       takayama 1166:      char *s;
1.1       maekawa  1167: {
                   1168:   struct object obj;
                   1169:   obj.tag = Sdollar;
                   1170:   obj.lc.str = s; obj.rc.ival = 0;
                   1171:   return(obj);
                   1172: }
                   1173: struct object KpoPOLY(f)
1.7       takayama 1174:      POLY f;
1.1       maekawa  1175: {
                   1176:   struct object obj;
                   1177:   obj.tag = Spoly;
                   1178:   obj.lc.poly = f; obj.rc.ival = 0;
                   1179:   return(obj);
                   1180: }
                   1181: struct object KpoArrayOfPOLY(ap)
1.7       takayama 1182:      struct arrayOfPOLY *ap ;
1.1       maekawa  1183: {
                   1184:   struct object obj;
                   1185:   obj.tag = SarrayOfPOLY;
                   1186:   obj.lc.arrayp = ap; obj.rc.ival = 0;
                   1187:   return(obj);
                   1188: }
                   1189:
                   1190: struct object KpoMatrixOfPOLY(mp)
1.7       takayama 1191:      struct matrixOfPOLY *mp ;
1.1       maekawa  1192: {
                   1193:   struct object obj;
                   1194:   obj.tag = SmatrixOfPOLY;
                   1195:   obj.lc.matrixp = mp; obj.rc.ival = 0;
                   1196:   return(obj);
                   1197: }
                   1198:
                   1199: struct object KpoRingp(ringp)
1.7       takayama 1200:      struct ring *ringp;
1.1       maekawa  1201: {
                   1202:   struct object obj;
                   1203:   obj.tag = Sring;
                   1204:   obj.lc.ringp = ringp;
                   1205:   return(obj);
                   1206: }
                   1207:
                   1208: /*** conversion 2. Data conversions on arrays and matrices. ****/
                   1209: struct object arrayOfPOLYToArray(aa)
1.7       takayama 1210:      struct arrayOfPOLY *aa;
1.1       maekawa  1211: {
                   1212:   POLY *a;
                   1213:   int size;
                   1214:   struct object r;
                   1215:   int j;
                   1216:   struct object tmp;
                   1217:
                   1218:   size = aa->n; a = aa->array;
                   1219:   r = newObjectArray(size);
                   1220:   for (j=0; j<size; j++) {
                   1221:     tmp.tag = Spoly;
                   1222:     tmp.lc.poly= a[j];
                   1223:     putoa(r,j,tmp);
                   1224:   }
                   1225:   return( r );
                   1226: }
                   1227:
                   1228: struct object matrixOfPOLYToArray(pmat)
1.7       takayama 1229:      struct matrixOfPOLY *pmat;
1.1       maekawa  1230: {
                   1231:   struct object r;
                   1232:   struct object tmp;
                   1233:   int i,j;
                   1234:   int m,n;
                   1235:   POLY *mat;
                   1236:   struct arrayOfPOLY ap;
                   1237:
                   1238:   m = pmat->m; n = pmat->n; mat = pmat->mat;
                   1239:   r = newObjectArray(m);
                   1240:   for (i=0; i<m; i++) {
                   1241:     ap.n = n; ap.array = &(mat[ind(i,0)]);
                   1242:     tmp = arrayOfPOLYToArray(&ap);
                   1243:     /* ind() is the macro defined in matrix.h. */
                   1244:     putoa(r,i,tmp);
                   1245:   }
                   1246:   return(r);
                   1247: }
                   1248:
                   1249: struct arrayOfPOLY *arrayToArrayOfPOLY(oa)
1.7       takayama 1250:      struct object oa;
1.1       maekawa  1251: {
                   1252:   POLY *a;
                   1253:   int size;
                   1254:   int i;
                   1255:   struct object tmp;
                   1256:   struct arrayOfPOLY *ap;
                   1257:
                   1258:   if (oa.tag != Sarray) errorKan1("KarrayToArrayOfPOLY(): %s",
1.7       takayama 1259:                                   "Argument is not array\n");
1.1       maekawa  1260:   size = getoaSize(oa);
                   1261:   a = (POLY *)sGC_malloc(sizeof(POLY)*size);
                   1262:   for (i=0; i<size; i++) {
                   1263:     tmp = getoa(oa,i);
                   1264:     if (tmp.tag != Spoly) errorKan1("KarrayToArrayOfPOLY():%s ",
1.7       takayama 1265:                                     "element must be polynomial.\n");
1.1       maekawa  1266:     a[i] = tmp.lc.poly;
                   1267:   }
                   1268:   ap = (struct arrayOfPOLY *)sGC_malloc(sizeof(struct arrayOfPOLY));
                   1269:   ap->n = size;
                   1270:   ap->array = a;
                   1271:   return(ap);
                   1272: }
                   1273:
                   1274: struct matrixOfPOLY *arrayToMatrixOfPOLY(oa)
1.7       takayama 1275:      struct object oa;
1.1       maekawa  1276: {
                   1277:   POLY *a;
                   1278:   int m;
                   1279:   int n;
                   1280:   int i,j;
                   1281:   struct matrixOfPOLY *ma;
                   1282:
                   1283:   struct object tmp,tmp2;
                   1284:   if (oa.tag != Sarray) errorKan1("KarrayToMatrixOfPOLY(): %s",
1.7       takayama 1285:                                   "Argument is not array\n");
1.1       maekawa  1286:   m = getoaSize(oa);
                   1287:   tmp = getoa(oa,0);
                   1288:   if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY():%s ",
1.7       takayama 1289:                                    "Argument is not array\n");
1.1       maekawa  1290:   n = getoaSize(tmp);
                   1291:   a = (POLY *)sGC_malloc(sizeof(POLY)*(m*n));
                   1292:   for (i=0; i<m; i++) {
                   1293:     tmp = getoa(oa,i);
                   1294:     if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY(): %s",
1.7       takayama 1295:                                      "element must be array.\n");
1.1       maekawa  1296:     for (j=0; j<n; j++) {
                   1297:       tmp2 = getoa(tmp,j);
                   1298:       if (tmp2.tag != Spoly) errorKan1("arrayToMatrixOfPOLY(): %s",
1.7       takayama 1299:                                        "element must be a polynomial.\n");
1.1       maekawa  1300:       a[ind(i,j)] = tmp2.lc.poly;
                   1301:       /* we use the macro ind here.  Be careful of using m and n. */
                   1302:     }
                   1303:   }
                   1304:   ma = (struct matrixOfPOLY *)sGC_malloc(sizeof(struct matrixOfPOLY));
                   1305:   ma->m = m; ma->n = n;
                   1306:   ma->mat = a;
                   1307:   return(ma);
                   1308: }
                   1309:
                   1310: /* :misc */
                   1311:
                   1312: /* :ring    :kan */
                   1313: int objArrayToOrderMatrix(oA,order,n,oasize)
1.7       takayama 1314:      struct object oA;
                   1315:      int order[];
                   1316:      int n;
                   1317:      int oasize;
1.1       maekawa  1318: {
                   1319:   int size;
                   1320:   int k,j;
                   1321:   struct object tmpOa;
                   1322:   struct object obj;
                   1323:   if (oA.tag != Sarray) {
                   1324:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1325:     return(-1);
                   1326:   }
                   1327:   size = getoaSize(oA);
                   1328:   if (size != oasize) {
                   1329:     warningKan("The row size of the array is wrong.");
                   1330:     return(-1);
                   1331:   }
                   1332:   for (k=0; k<size; k++) {
                   1333:     tmpOa = getoa(oA,k);
                   1334:     if (tmpOa.tag != Sarray) {
                   1335:       warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1336:       return(-1);
                   1337:     }
                   1338:     if (getoaSize(tmpOa) != 2*n) {
                   1339:       warningKan("The column size of the array is wrong.");
                   1340:       return(-1);
                   1341:     }
                   1342:     for (j=0; j<2*n; j++) {
                   1343:       obj = getoa(tmpOa,j);
                   1344:       order[k*2*n+j] = obj.lc.ival;
                   1345:     }
                   1346:   }
                   1347:   return(0);
                   1348: }
                   1349:
                   1350: int KsetOrderByObjArray(oA)
1.7       takayama 1351:      struct object oA;
1.1       maekawa  1352: {
                   1353:   int *order;
                   1354:   int n,c,l, oasize;
                   1355:   extern struct ring *CurrentRingp;
                   1356:   extern int AvoidTheSameRing;
                   1357:   /* n,c,l must be set in the CurrentRing */
                   1358:   if (AvoidTheSameRing) {
                   1359:     errorKan1("%s\n","KsetOrderByObjArray(): You cannot change the order matrix when AvoidTheSameRing == 1.");
                   1360:   }
                   1361:   n = CurrentRingp->n;
                   1362:   c = CurrentRingp->c;
                   1363:   l = CurrentRingp->l;
                   1364:   if (oA.tag != Sarray) {
                   1365:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1366:     return(-1);
                   1367:   }
                   1368:   oasize = getoaSize(oA);
                   1369:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1370:   if (order == (int *)NULL) errorKan1("%s\n","KsetOrderByObjArray(): No memory.");
                   1371:   if (objArrayToOrderMatrix(oA,order,n,oasize) == -1) {
                   1372:     return(-1);
                   1373:   }
                   1374:   setOrderByMatrix(order,n,c,l,oasize); /* Set order to the current ring. */
                   1375:   return(0);
                   1376: }
                   1377:
                   1378: static int checkRelations(c,l,m,n,cc,ll,mm,nn)
1.7       takayama 1379:      int c,l,m,n,cc,ll,mm,nn;
1.1       maekawa  1380: {
                   1381:   if (!(1<=c && c<=l && l<=m && m<=n)) return(1);
                   1382:   if (!(cc<=ll && ll<=mm && mm<=nn && nn <= n)) return(1);
                   1383:   if (!(cc<c || ll < l || mm < m || nn < n)) {
                   1384:     if (WarningNoVectorVariable) {
1.4       takayama 1385:       warningKanNoStrictMode("Ring definition: there is no variable to represent vectors.\n");
1.1       maekawa  1386:     }
                   1387:   }
                   1388:   if (!(cc<=c && ll <= l && mm <= m && nn <= n)) return(1);
                   1389:   return(0);
                   1390: }
                   1391:
                   1392: struct object KgetOrderMatrixOfCurrentRing()
                   1393: {
                   1394:   extern struct ring *CurrentRingp;
                   1395:   return(oGetOrderMatrix(CurrentRingp));
                   1396: }
                   1397:
                   1398:
                   1399: int KsetUpRing(ob1,ob2,ob3,ob4,ob5)
1.7       takayama 1400:      struct object ob1,ob2,ob3,ob4,ob5;
                   1401:      /* ob1 = [x(0), ..., x(n-1)];
                   1402:         ob2 = [D(0), ..., D(n-1)];
                   1403:         ob3 = [p,c,l,m,n,cc,ll,mm,nn,next];
                   1404:         ob4 = Order matrix
                   1405:         ob5 = [(keyword) value (keyword) value ....]
                   1406:      */
1.1       maekawa  1407: #define RP_LIMIT 500
                   1408: {
                   1409:   int i;
                   1410:   struct object ob;
                   1411:   int c,l,m,n;
                   1412:   int cc,ll,mm,nn;
                   1413:   int p;
                   1414:   char **xvars;
                   1415:   char **dvars;
                   1416:   int *outputVars;
                   1417:   int *order;
                   1418:   static int rp = 0;
                   1419:   static struct ring *rstack[RP_LIMIT];
                   1420:
                   1421:   extern struct ring *CurrentRingp;
                   1422:   struct ring *newRingp;
                   1423:   int ob3Size;
                   1424:   struct ring *nextRing;
                   1425:   int oasize;
                   1426:   static int ringSerial = 0;
                   1427:   char *ringName = NULL;
                   1428:   int aa;
                   1429:   extern int AvoidTheSameRing;
                   1430:   extern char *F_mpMult;
                   1431:   char *fmp_mult_saved;
                   1432:   char *mpMultName = NULL;
                   1433:   struct object rob;
                   1434:   struct ring *savedCurrentRingp;
                   1435:
                   1436:   /* To get the ring structure. */
                   1437:   if (ob1.tag == Snull) {
                   1438:     rob = newObjectArray(rp);
                   1439:     for (i=0; i<rp; i++) {
                   1440:       putoa(rob,i,KpoRingp(rstack[i]));
                   1441:     }
                   1442:     KSpush(rob);
                   1443:     return(0);
                   1444:   }
                   1445:
                   1446:   if (ob3.tag != Sarray) errorKan1("%s\n","Error in the 3rd argument. You need to give 4 arguments.");
                   1447:   ob3Size = getoaSize(ob3);
                   1448:   if (ob3Size != 9 && ob3Size != 10)
                   1449:     errorKan1("%s\n","Error in the 3rd argument.");
                   1450:   for (i=0; i<9; i++) {
                   1451:     ob = getoa(ob3,i);
                   1452:     if (ob.tag != Sinteger) errorKan1("%s\n","The 3rd argument should be a list of integers.");
                   1453:   }
                   1454:   if (ob3Size == 10) {
                   1455:     ob = getoa(ob3,9);
                   1456:     if (ob.tag != Sring)
                   1457:       errorKan1("%s\n","The last arguments of the 3rd argument must be a pointer to a ring.");
                   1458:     nextRing = KopRingp(ob);
                   1459:   } else {
                   1460:     nextRing = (struct ring *)NULL;
                   1461:   }
                   1462:
                   1463:   p = getoa(ob3,0).lc.ival;
                   1464:   c = getoa(ob3,1).lc.ival;  l = getoa(ob3,2).lc.ival;
                   1465:   m = getoa(ob3,3).lc.ival;  n = getoa(ob3,4).lc.ival;
                   1466:   cc = getoa(ob3,5).lc.ival;  ll = getoa(ob3,6).lc.ival;
                   1467:   mm = getoa(ob3,7).lc.ival;  nn = getoa(ob3,8).lc.ival;
                   1468:   if (checkRelations(c,l,m,n,cc,ll,mm,nn,n)) {
                   1469:     errorKan1("%s\n","1<=c<=l<=m<=n and cc<=c<=ll<=l<=mm<=m<=nn<=n \nand (cc<c or ll < l or mm < m or nn < n)  must be satisfied.");
                   1470:   }
                   1471:   if (getoaSize(ob2) != n || getoaSize(ob1) != n) {
                   1472:     errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1473:   }
                   1474:   for (i=0; i<n; i++) {
                   1475:     if (getoa(ob1,i).tag != Sdollar || getoa(ob2,i).tag != Sdollar) {
                   1476:       errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1477:     }
                   1478:   }
                   1479:   xvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1480:   dvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1481:   if (xvars == (char **)NULL || dvars == (char **)NULL) {
                   1482:     fprintf(stderr,"No more memory.\n");
                   1483:     exit(15);
                   1484:   }
                   1485:   for (i=0; i<n; i++) {
                   1486:     xvars[i] = getoa(ob1,i).lc.str;
                   1487:     dvars[i] = getoa(ob2,i).lc.str;
                   1488:   }
                   1489:   checkDuplicateName(xvars,dvars,n);
                   1490:
                   1491:   outputVars = (int *)sGC_malloc(sizeof(int)*n*2);
                   1492:   if (outputVars == NULL) {
                   1493:     fprintf(stderr,"No more memory.\n");
                   1494:     exit(15);
                   1495:   }
                   1496:   if (ReverseOutputOrder) {
                   1497:     for (i=0; i<n; i++) outputVars[i] = n-i-1;
                   1498:     for (i=0; i<n; i++) outputVars[n+i] = 2*n-i-1;
                   1499:   }else{
                   1500:     for (i=0; i<2*n; i++) {
                   1501:       outputVars[i] = i;
                   1502:     }
                   1503:   }
                   1504:
                   1505:   oasize = getoaSize(ob4);
                   1506:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1507:   if (order == (int *)NULL) errorKan1("%s\n","No memory.");
                   1508:   if (objArrayToOrderMatrix(ob4,order,n,oasize) == -1) {
                   1509:     errorKan1("%s\n","Errors in the 4th matrix (order matrix).");
                   1510:   }
                   1511:   /* It's better to check the consistency of the order matrix here. */
                   1512:   savedCurrentRingp = CurrentRingp;
                   1513:
                   1514:   newRingp = (struct ring *)sGC_malloc(sizeof(struct ring));
                   1515:   if (newRingp == NULL) errorKan1("%s\n","No more memory.");
                   1516:   /* Generate the new ring before calling setOrder...(). */
                   1517:   *newRingp = *CurrentRingp;
                   1518:   CurrentRingp = newRingp;  /* Push the current ring. */
                   1519:   setOrderByMatrix(order,n,c,l,oasize); /* set order to the CurrentRing. */
                   1520:   CurrentRingp = savedCurrentRingp; /* recover it. */
                   1521:
                   1522:
                   1523:   /* Set the default name of the ring */
                   1524:   ringName = (char *)sGC_malloc(16);
                   1525:   sprintf(ringName,"ring%05d",ringSerial);
                   1526:   ringSerial++;
                   1527:
                   1528:   /* Set the current ring */
                   1529:   newRingp->n = n; newRingp->m = m; newRingp->l = l; newRingp->c = c;
                   1530:   newRingp->nn = nn; newRingp->mm = mm; newRingp->ll = ll;
                   1531:   newRingp->cc = cc;
                   1532:   newRingp->x = xvars;
                   1533:   newRingp->D = dvars;
                   1534:   /* You don't need to set order and orderMatrixSize here.
                   1535:      It was set by setOrder(). */
                   1536:   setFromTo(newRingp);
                   1537:
                   1538:   newRingp->p = p;
                   1539:   newRingp->next = nextRing;
                   1540:   newRingp->multiplication = mpMult;
                   1541:   /* These values  should will be reset if the optional value is given. */
                   1542:   newRingp->schreyer = 0;
                   1543:   newRingp->gbListTower = NULL;
                   1544:   newRingp->outputOrder = outputVars;
1.9       takayama 1545:   newRingp->weightedHomogenization = 0;
1.11      takayama 1546:   newRingp->degreeShiftSize = 0;
1.12      takayama 1547:   newRingp->degreeShiftN = 0;
                   1548:   newRingp->degreeShift = NULL;
1.1       maekawa  1549:
                   1550:   if (ob5.tag != Sarray || (getoaSize(ob5) % 2) != 0) {
                   1551:     errorKan1("%s\n","[(keyword) value (keyword) value ....] should be given.");
                   1552:   }
                   1553:   for (i=0; i < getoaSize(ob5); i += 2) {
                   1554:     if (getoa(ob5,i).tag == Sdollar) {
                   1555:       if (strcmp(KopString(getoa(ob5,i)),"mpMult") == 0) {
1.7       takayama 1556:         if (getoa(ob5,i+1).tag != Sdollar) {
                   1557:           errorKan1("%s\n","A keyword should be given. (mpMult)");
                   1558:         }
                   1559:         fmp_mult_saved = F_mpMult;
                   1560:         mpMultName = KopString(getoa(ob5,i+1));
                   1561:         switch_function("mpMult",mpMultName);
                   1562:         /* Note that this cause a global effect. It will be done again. */
                   1563:         newRingp->multiplication = mpMult;
                   1564:         switch_function("mpMult",fmp_mult_saved);
1.1       maekawa  1565:       } else if (strcmp(KopString(getoa(ob5,i)),"coefficient ring") == 0) {
1.7       takayama 1566:         if (getoa(ob5,i+1).tag != Sring) {
                   1567:           errorKan1("%s\n","The pointer to a ring should be given. (coefficient ring)");
                   1568:         }
                   1569:         nextRing = KopRingp(getoa(ob5,i+1));
                   1570:         newRingp->next = nextRing;
1.1       maekawa  1571:       } else if (strcmp(KopString(getoa(ob5,i)),"valuation") == 0) {
1.7       takayama 1572:         errorKan1("%s\n","Not implemented. (valuation)");
1.1       maekawa  1573:       } else if (strcmp(KopString(getoa(ob5,i)),"characteristic") == 0) {
1.7       takayama 1574:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1575:           errorKan1("%s\n","A integer should be given. (characteristic)");
                   1576:         }
                   1577:         p = KopInteger(getoa(ob5,i+1));
                   1578:         newRingp->p = p;
1.1       maekawa  1579:       } else if (strcmp(KopString(getoa(ob5,i)),"schreyer") == 0) {
1.7       takayama 1580:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1581:           errorKan1("%s\n","A integer should be given. (schreyer)");
                   1582:         }
                   1583:         newRingp->schreyer = KopInteger(getoa(ob5,i+1));
1.1       maekawa  1584:       } else if (strcmp(KopString(getoa(ob5,i)),"gbListTower") == 0) {
1.7       takayama 1585:         if (getoa(ob5,i+1).tag != Slist) {
                   1586:           errorKan1("%s\n","A list should be given (gbListTower).");
                   1587:         }
                   1588:         newRingp->gbListTower = newObject();
                   1589:         *((struct object *)(newRingp->gbListTower)) = getoa(ob5,i+1);
1.1       maekawa  1590:       } else if (strcmp(KopString(getoa(ob5,i)),"ringName") == 0) {
1.7       takayama 1591:         if (getoa(ob5,i+1).tag != Sdollar) {
                   1592:           errorKan1("%s\n","A name should be given. (ringName)");
                   1593:         }
                   1594:         ringName = KopString(getoa(ob5,i+1));
1.9       takayama 1595:       } else if (strcmp(KopString(getoa(ob5,i)),"weightedHomogenization") == 0) {
                   1596:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1597:           errorKan1("%s\n","A integer should be given. (weightedHomogenization)");
                   1598:         }
1.11      takayama 1599:         newRingp->weightedHomogenization = KopInteger(getoa(ob5,i+1));
                   1600:       } else if (strcmp(KopString(getoa(ob5,i)),"degreeShift") == 0) {
                   1601:         if (getoa(ob5,i+1).tag != Sarray) {
1.12      takayama 1602:           errorKan1("%s\n","An array of array should be given. (degreeShift)");
1.11      takayama 1603:         }
                   1604:         {
                   1605:           struct object ods;
1.12      takayama 1606:           struct object ods2;
                   1607:           int dssize,k,j,nn;
1.11      takayama 1608:           ods=getoa(ob5,i+1);
1.12      takayama 1609:           if ((getoaSize(ods) < 1) || (getoa(ods,0).tag != Sarray)) {
                   1610:             errorKan1("%s\n", "An array of array should be given. (degreeShift)");
                   1611:           }
                   1612:           nn = getoaSize(ods);
                   1613:           dssize = getoaSize(getoa(ods,0));
1.11      takayama 1614:           newRingp->degreeShiftSize = dssize;
1.12      takayama 1615:           newRingp->degreeShiftN = nn;
                   1616:           newRingp->degreeShift = (int *) sGC_malloc(sizeof(int)*(dssize*nn+1));
1.11      takayama 1617:           if (newRingp->degreeShift == NULL) errorKan1("%s\n","No more memory.");
1.12      takayama 1618:           for (j=0; j<nn; j++) {
                   1619:             ods2 = getoa(ods,j);
                   1620:             for (k=0; k<dssize; k++) {
                   1621:               if (getoa(ods2,k).tag == SuniversalNumber) {
                   1622:                 (newRingp->degreeShift)[j*dssize+k] = coeffToInt(getoa(ods2,k).lc.universalNumber);
                   1623:               }else{
                   1624:                 (newRingp->degreeShift)[j*dssize+k] = KopInteger(getoa(ods2,k));
                   1625:               }
1.11      takayama 1626:             }
                   1627:           }
                   1628:         }
1.13      takayama 1629:                switch_function("grade","module1v");
                   1630:                /* Warning: grading is changed to module1v!! */
1.1       maekawa  1631:       } else {
1.7       takayama 1632:         errorKan1("%s\n","Unknown keyword to set_up_ring@");
1.1       maekawa  1633:       }
                   1634:     }else{
                   1635:       errorKan1("%s\n","A keyword enclosed by braces have to be given.");
                   1636:     }
                   1637:   }
                   1638:
                   1639:   newRingp->name = ringName;
                   1640:
                   1641:
                   1642:   if (AvoidTheSameRing) {
                   1643:     aa = isTheSameRing(rstack,rp,newRingp);
                   1644:     if (aa < 0) {
                   1645:       /* This ring has never been defined. */
                   1646:       CurrentRingp = newRingp;
                   1647:       /* Install it to the RingStack */
                   1648:       if (rp <RP_LIMIT) {
1.7       takayama 1649:         rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
1.1       maekawa  1650:       }else{
1.7       takayama 1651:         rp = 0;
                   1652:         errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
1.1       maekawa  1653:       }
                   1654:     }else{
                   1655:       /* This ring has been defined. */
                   1656:       /* Discard the newRingp */
                   1657:       CurrentRingp = rstack[aa];
                   1658:       ringSerial--;
                   1659:     }
                   1660:   }else{
                   1661:     CurrentRingp = newRingp;
                   1662:     /* Install it to the RingStack */
                   1663:     if (rp <RP_LIMIT) {
                   1664:       rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
                   1665:     }else{
                   1666:       rp = 0;
                   1667:       errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
                   1668:     }
                   1669:   }
                   1670:   if (mpMultName != NULL) {
                   1671:     switch_function("mpMult",mpMultName);
                   1672:   }
                   1673:
                   1674:   initSyzRingp();
                   1675:
                   1676:   return(0);
                   1677: }
                   1678:
                   1679:
                   1680: struct object KsetVariableNames(struct object ob,struct ring *rp)
                   1681: {
                   1682:   int n,i;
                   1683:   struct object ox;
                   1684:   struct object otmp;
                   1685:   char **xvars;
                   1686:   char **dvars;
                   1687:   if (ob.tag  != Sarray) {
                   1688:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...]");
                   1689:   }
                   1690:   n = rp->n;
                   1691:   ox = ob;
                   1692:   if (getoaSize(ox) != 2*n) {
                   1693:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...] and the length of [(x) (y) (z) ...] must be equal to the number of x and D variables.");
                   1694:   }
                   1695:   xvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1696:   dvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1697:   if (xvars == NULL || dvars == NULL) {
                   1698:     errorKan1("%s\n","KsetVariableNames(): no more memory.");
                   1699:   }
                   1700:   for (i=0; i<2*n; i++) {
                   1701:     otmp = getoa(ox,i);
                   1702:     if(otmp.tag != Sdollar) {
                   1703:       errorKan1("%s\n","KsetVariableNames(): elements must be strings.");
                   1704:     }
                   1705:     if (i < n) {
                   1706:       xvars[i] = KopString(otmp);
                   1707:     }else{
                   1708:       dvars[i-n] = KopString(otmp);
                   1709:     }
                   1710:   }
                   1711:   checkDuplicateName(xvars,dvars,n);
                   1712:   rp->x = xvars;
                   1713:   rp->D = dvars;
                   1714:   return(ob);
                   1715: }
                   1716:
                   1717:
                   1718:
                   1719: void KshowRing(ringp)
1.7       takayama 1720:      struct ring *ringp;
1.1       maekawa  1721: {
                   1722:   showRing(1,ringp);
                   1723: }
                   1724:
                   1725: struct object KswitchFunction(ob1,ob2)
1.7       takayama 1726:      struct object ob1,ob2;
1.1       maekawa  1727: {
                   1728:   char *ans ;
                   1729:   struct object rob;
                   1730:   int needWarningForAvoidTheSameRing = 0;
                   1731:   extern int AvoidTheSameRing;
                   1732:   if ((ob1.tag != Sdollar) || (ob2.tag != Sdollar)) {
                   1733:     errorKan1("%s\n","$function$ $name$ switch_function\n");
                   1734:   }
                   1735:   if (AvoidTheSameRing && needWarningForAvoidTheSameRing) {
                   1736:     if (strcmp(KopString(ob1),"mmLarger") == 0 ||
                   1737:         strcmp(KopString(ob1),"mpMult") == 0 ||
                   1738:         strcmp(KopString(ob1),"monomialAdd") == 0 ||
                   1739:         strcmp(KopString(ob1),"isSameComponent") == 0) {
                   1740:       fprintf(stderr,",switch_function ==> %s ",KopString(ob1));
                   1741:       warningKan("switch_function might cause a trouble under AvoidTheSameRing == 1.\n");
                   1742:     }
                   1743:   }
                   1744:   if (AvoidTheSameRing) {
                   1745:     if (strcmp(KopString(ob1),"mmLarger") == 0 &&
1.7       takayama 1746:         strcmp(KopString(ob2),"matrix") != 0) {
1.1       maekawa  1747:       fprintf(stderr,"mmLarger = %s",KopString(ob2));
                   1748:       errorKan1("%s\n","mmLarger can set only to matrix under AvoidTheSameRing == 1.");
                   1749:     }
                   1750:   }
                   1751:
                   1752:   ans = switch_function(ob1.lc.str,ob2.lc.str);
                   1753:   if (ans == NULL) {
                   1754:     rob = NullObject;
                   1755:   }else{
                   1756:     rob = KpoString(ans);
                   1757:   }
                   1758:   return(rob);
                   1759:
                   1760: }
                   1761:
                   1762: void KprintSwitchStatus(void)
                   1763: {
                   1764:   print_switch_status();
                   1765: }
                   1766:
                   1767: struct object KoReplace(of,rule)
1.7       takayama 1768:      struct object of;
                   1769:      struct object rule;
1.1       maekawa  1770: {
                   1771:   struct object rob;
                   1772:   POLY f;
                   1773:   POLY lRule[N0*2];
                   1774:   POLY rRule[N0*2];
                   1775:   POLY r;
                   1776:   int i;
                   1777:   int n;
                   1778:   struct object trule;
                   1779:
                   1780:
                   1781:   if (rule.tag != Sarray) {
                   1782:     errorKan1("%s\n"," KoReplace(): The second argument must be array.");
                   1783:   }
                   1784:   n = getoaSize(rule);
                   1785:
1.6       takayama 1786:   if (of.tag == Spoly) {
                   1787:   }else if (of.tag ==Sclass && ectag(of) == CLASSNAME_recursivePolynomial) {
1.7       takayama 1788:     return(KreplaceRecursivePolynomial(of,rule));
1.6       takayama 1789:   }else{
1.1       maekawa  1790:     errorKan1("%s\n"," KoReplace(): The first argument must be a polynomial.");
                   1791:   }
                   1792:   f = KopPOLY(of);
                   1793:
                   1794:   if (f ISZERO) {
                   1795:   }else{
                   1796:     if (n >= 2*(f->m->ringp->n)) {
                   1797:       errorKan1("%s\n"," KoReplace(): too many rules for replacement. ");
                   1798:     }
                   1799:   }
                   1800:
                   1801:   for (i=0; i<n; i++) {
                   1802:     trule = getoa(rule,i);
                   1803:     if (trule.tag != Sarray) {
                   1804:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1805:     }
                   1806:     if (getoaSize(trule) != 2) {
                   1807:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1808:     }
                   1809:
                   1810:     if (getoa(trule,0).tag != Spoly) {
                   1811:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1812:     }
                   1813:     if (getoa(trule,1).tag != Spoly) {
                   1814:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1815:     }
                   1816:
                   1817:     lRule[i] = KopPOLY(getoa(trule,0));
                   1818:     rRule[i] = KopPOLY(getoa(trule,1));
                   1819:   }
                   1820:
                   1821:   r = replace(f,lRule,rRule,n);
                   1822:   rob.tag = Spoly; rob.lc.poly = r;
                   1823:
                   1824:   return(rob);
                   1825: }
                   1826:
                   1827:
                   1828: struct object Kparts(f,v)
1.7       takayama 1829:      struct object f;
                   1830:      struct object v;
1.1       maekawa  1831: {
                   1832:   POLY ff;
                   1833:   POLY vv;
                   1834:   struct object obj;
                   1835:   struct matrixOfPOLY *co;
                   1836:   /* check the data type */
                   1837:   if (f.tag != Spoly || v.tag != Spoly)
                   1838:     errorKan1("%s\n","arguments of Kparts() must have polynomial as arguments.");
                   1839:
                   1840:   co = parts(KopPOLY(f),KopPOLY(v));
                   1841:   obj = matrixOfPOLYToArray(co);
                   1842:   return(obj);
                   1843: }
                   1844:
                   1845: struct object Kparts2(f,v)
1.7       takayama 1846:      struct object f;
                   1847:      struct object v;
1.1       maekawa  1848: {
                   1849:   POLY ff;
                   1850:   POLY vv;
                   1851:   struct object obj;
                   1852:   struct matrixOfPOLY *co;
                   1853:   /* check the data type */
                   1854:   if (f.tag != Spoly || v.tag != Spoly)
                   1855:     errorKan1("%s\n","arguments of Kparts2() must have polynomial as arguments.");
                   1856:
                   1857:   obj = parts2(KopPOLY(f),KopPOLY(v));
                   1858:   return(obj);
                   1859: }
                   1860:
                   1861:
                   1862: struct object Kdegree(ob1,ob2)
1.7       takayama 1863:      struct object ob1,ob2;
1.1       maekawa  1864: {
                   1865:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   1866:     errorKan1("%s\n","The arguments must be polynomials.");
                   1867:
                   1868:   return(KpoInteger(pDegreeWrtV(KopPOLY(ob1),KopPOLY(ob2))));
                   1869: }
                   1870:
                   1871: struct object KringMap(obj)
1.7       takayama 1872:      struct object obj;
1.1       maekawa  1873: {
                   1874:   extern struct ring *CurrentRingp;
                   1875:   extern struct ring *SyzRingp;
                   1876:   POLY f;
                   1877:   POLY r;
                   1878:   if (obj.tag != Spoly)
                   1879:     errorKan1("%s\n","The argments must be polynomial.");
                   1880:   f = KopPOLY(obj);
                   1881:   if (f ISZERO) return(obj);
                   1882:   if (f->m->ringp == CurrentRingp) return(obj);
                   1883:   if (f->m->ringp == CurrentRingp->next) {
                   1884:     r = newCell(newCoeff(),newMonomial(CurrentRingp));
                   1885:     r->coeffp->tag = POLY_COEFF;
                   1886:     r->coeffp->val.f = f;
                   1887:     return(KpoPOLY(r));
                   1888:   }else if (f->m->ringp == SyzRingp) {
                   1889:     return(KpoPOLY(f->coeffp->val.f));
                   1890:   }
                   1891:   errorKan1("%s\n","The ring map is not defined in this case.");
                   1892: }
                   1893:
                   1894:
                   1895: struct object Ksp(ob1,ob2)
1.7       takayama 1896:      struct object ob1,ob2;
1.1       maekawa  1897: {
                   1898:   struct spValue sv;
                   1899:   struct object rob,cob;
                   1900:   POLY f;
                   1901:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   1902:     errorKan1("%s\n","Ksp(): The arguments must be polynomials.");
                   1903:   sv = (*sp)(ob1.lc.poly,ob2.lc.poly);
                   1904:   f = ppAddv(ppMult(sv.a,KopPOLY(ob1)),
1.7       takayama 1905:              ppMult(sv.b,KopPOLY(ob2)));
1.1       maekawa  1906:   rob = newObjectArray(2);
                   1907:   cob = newObjectArray(2);
                   1908:   putoa(rob,1,KpoPOLY(f));
                   1909:   putoa(cob,0,KpoPOLY(sv.a));
                   1910:   putoa(cob,1,KpoPOLY(sv.b));
                   1911:   putoa(rob,0,cob);
                   1912:   return(rob);
                   1913: }
                   1914:
                   1915: struct object Khead(ob)
1.7       takayama 1916:      struct object ob;
1.1       maekawa  1917: {
                   1918:   if (ob.tag != Spoly) errorKan1("%s\n","Khead(): The argument should be a polynomial.");
                   1919:   return(KpoPOLY(head( KopPOLY(ob))));
                   1920: }
                   1921:
                   1922:
                   1923: /* :eval */
                   1924: struct object Keval(obj)
1.7       takayama 1925:      struct object obj;
1.1       maekawa  1926: {
                   1927:   char *key;
                   1928:   int size;
                   1929:   struct object rob;
                   1930:   rob = NullObject;
                   1931:
                   1932:   if (obj.tag != Sarray)
                   1933:     errorKan1("%s\n","[$key$ arguments] eval");
                   1934:   if (getoaSize(obj) < 1)
                   1935:     errorKan1("%s\n","[$key$ arguments] eval");
                   1936:   if (getoa(obj,0).tag != Sdollar)
                   1937:     errorKan1("%s\n","[$key$ arguments] eval");
                   1938:   key = getoa(obj,0).lc.str;
                   1939:   size = getoaSize(obj);
                   1940:
                   1941:
                   1942:   return(rob);
                   1943: }
                   1944:
                   1945: /* :Utilities */
                   1946: char *KremoveSpace(str)
1.7       takayama 1947:      char str[];
1.1       maekawa  1948: {
                   1949:   int size;
                   1950:   int start;
                   1951:   int end;
                   1952:   char *s;
                   1953:   int i;
                   1954:
                   1955:   size = strlen(str);
                   1956:   for (start = 0; start <= size; start++) {
                   1957:     if (str[start] > ' ') break;
                   1958:   }
                   1959:   for (end = size-1; end >= 0; end--) {
                   1960:     if (str[end] > ' ') break;
                   1961:   }
                   1962:   if (start > end) return((char *) NULL);
                   1963:   s = (char *) sGC_malloc(sizeof(char)*(end-start+2));
                   1964:   if (s == (char *)NULL) errorKan1("%s\n","removeSpace(): No more memory.");
                   1965:   for (i=0; i< end-start+1; i++)
                   1966:     s[i] = str[i+start];
                   1967:   s[end-start+1] = '\0';
                   1968:   return(s);
                   1969: }
                   1970:
                   1971: struct object KtoRecords(ob)
1.7       takayama 1972:      struct object ob;
1.1       maekawa  1973: {
                   1974:   struct object obj;
                   1975:   struct object tmp;
                   1976:   int i;
                   1977:   int size;
                   1978:   char **argv;
                   1979:
                   1980:   obj = NullObject;
                   1981:   switch(ob.tag) {
                   1982:   case Sdollar: break;
                   1983:   default:
                   1984:     errorKan1("%s","Argument of KtoRecords() must be a string enclosed by dollars.\n");
                   1985:     break;
                   1986:   }
                   1987:   size = strlen(ob.lc.str)+3;
                   1988:   argv = (char **) sGC_malloc((size+1)*sizeof(char *));
                   1989:   if (argv == (char **)NULL)
                   1990:     errorKan1("%s","No more memory.\n");
                   1991:   size = KtoArgvbyCurryBrace(ob.lc.str,argv,size);
                   1992:   if (size < 0)
                   1993:     errorKan1("%s"," KtoRecords(): You have an error in the argument.\n");
                   1994:
                   1995:   obj = newObjectArray(size);
                   1996:   for (i=0; i<size; i++) {
                   1997:     tmp.tag = Sdollar;
                   1998:     tmp.lc.str = argv[i];
                   1999:     (obj.rc.op)[i] = tmp;
                   2000:   }
                   2001:   return(obj);
                   2002: }
                   2003:
                   2004: int KtoArgvbyCurryBrace(str,argv,limit)
1.7       takayama 2005:      char *str;
                   2006:      char *argv[];
                   2007:      int limit;
                   2008:      /* This function returns argc */
                   2009:      /* decompose into tokens by the separators
1.1       maekawa  2010:    { }, [ ], and characters of which code is less than SPACE.
                   2011:    Example.   { }  ---> nothing            (argc=0)
                   2012:               {x}----> x                   (argc=1)
                   2013:               {x,y} --> x   y              (argc=2)
1.7       takayama 2014:           {ab, y, z } --> ab   y   z   (argc=3)
1.1       maekawa  2015:               [[ab],c,d]  --> [ab] c   d
                   2016: */
                   2017: {
                   2018:   int argc;
                   2019:   int n;
                   2020:   int i;
                   2021:   int k;
                   2022:   char *a;
                   2023:   char *ident;
                   2024:   int level = 0;
                   2025:   int comma;
                   2026:
                   2027:   if (str == (char *)NULL) {
                   2028:     fprintf(stderr,"You use NULL string to toArgvbyCurryBrace()\n");
                   2029:     return(0);
                   2030:   }
                   2031:
                   2032:   n = strlen(str);
                   2033:   a = (char *) sGC_malloc(sizeof(char)*(n+3));
                   2034:   a[0]=' ';
                   2035:   strcpy(&(a[1]),str);
                   2036:   n = strlen(a); a[0] = '\0';
                   2037:   comma = -1;
                   2038:   for (i=1; i<n; i++) {
                   2039:     if (a[i] == '{' || a[i] == '[') level++;
                   2040:     if (level <= 1 && ( a[i] == ',')) {a[i] = '\0'; ++comma;}
                   2041:     if (level <= 1 && (a[i]=='{' || a[i]=='}' || a[i]=='[' || a[i]==']'))
                   2042:       a[i] = '\0';
                   2043:     if (a[i] == '}' || a[i] == ']') level--;
                   2044:     if ((level <= 1) && (comma == -1) && ( a[i] > ' ')) comma = 0;
                   2045:   }
                   2046:
                   2047:   if (comma == -1) return(0);
                   2048:
                   2049:   argc=0;
                   2050:   for (i=0; i<n; i++) {
                   2051:     if ((a[i] == '\0') && (a[i+1] != '\0')) ++argc;
                   2052:   }
                   2053:   if (argc > limit) return(-argc);
                   2054:
                   2055:   k = 0;
                   2056:   for (i=0; i<n; i++) {
                   2057:     if ((a[i] == '\0') && (a[i+1] != '\0')) {
                   2058:       ident = (char *) sGC_malloc(sizeof(char)*( strlen(&(a[i+1])) + 3));
                   2059:       strcpy(ident,&(a[i+1]));
                   2060:       argv[k] = KremoveSpace(ident);
                   2061:       if (argv[k] != (char *)NULL) k++;
                   2062:       if (k >= limit) errorKan1("%s\n","KtoArgvbyCurryBraces(): k>=limit.");
                   2063:     }
                   2064:   }
                   2065:   argc = k;
                   2066:   /*for (i=0; i<argc; i++) fprintf(stderr,"%d %s\n",i,argv[i]);*/
                   2067:   return(argc);
                   2068: }
                   2069:
1.14      takayama 2070: struct object KstringToArgv(struct object ob) {
                   2071:   struct object rob;
                   2072:   char *s;
                   2073:   int n,wc,i,inblank;
                   2074:   char **argv;
                   2075:   if (ob.tag != Sdollar)
                   2076:        errorKan1("%s\n","KstringToArgv(): the argument must be a string.");
                   2077:   n = strlen(KopString(ob));
                   2078:   s = (char *) sGC_malloc(sizeof(char)*(n+2));
                   2079:   if (s == NULL) errorKan1("%s\n","KstringToArgv(): No memory.");
                   2080:   strcpy(s,KopString(ob));
                   2081:   inblank = 1;  wc = 0;
                   2082:   for (i=0; i<n; i++) {
                   2083:        if (inblank && (s[i] > ' ')) {
                   2084:          wc++; inblank = 0;
                   2085:        }else if ((!inblank) && (s[i] <= ' ')) {
                   2086:          inblank = 1;
                   2087:        }
                   2088:   }
                   2089:   argv = (char **) sGC_malloc(sizeof(char *)*(wc+2));
                   2090:   argv[0] = NULL;
                   2091:   inblank = 1;  wc = 0;
                   2092:   for (i=0; i<n; i++) {
                   2093:        if (inblank && (s[i] > ' ')) {
                   2094:          argv[wc] = &(s[i]); argv[wc+1]=NULL;
                   2095:          wc++; inblank = 0;
                   2096:        }else if ((inblank == 0) && (s[i] <= ' ')) {
                   2097:          inblank = 1; s[i] = 0;
                   2098:        }else if (inblank && (s[i] <= ' ')) {
                   2099:          s[i] = 0;
                   2100:        }
                   2101:   }
                   2102:
                   2103:   rob = newObjectArray(wc);
                   2104:   for (i=0; i<wc; i++) {
                   2105:        putoa(rob,i,KpoString(argv[i]));
                   2106:        printf("%s\n",argv[i]);
                   2107:   }
                   2108:   return(rob);
                   2109: }
1.1       maekawa  2110:
                   2111: static void checkDuplicateName(xvars,dvars,n)
1.7       takayama 2112:      char *xvars[];
                   2113:      char *dvars[];
                   2114:      int n;
1.1       maekawa  2115: {
                   2116:   int i,j;
                   2117:   char *names[N0*2];
                   2118:   for (i=0; i<n; i++) {
                   2119:     names[i] = xvars[i]; names[i+n] = dvars[i];
                   2120:   }
                   2121:   n = 2*n;
                   2122:   for (i=0; i<n; i++) {
                   2123:     for (j=i+1; j<n; j++) {
                   2124:       if (strcmp(names[i],names[j]) == 0) {
1.7       takayama 2125:         fprintf(stderr,"\n%d=%s, %d=%s\n",i,names[i],j,names[j]);
                   2126:         errorKan1("%s\n","Duplicate definition of the name above in SetUpRing().");
1.1       maekawa  2127:       }
                   2128:     }
                   2129:   }
                   2130: }
                   2131:
                   2132:
                   2133:
                   2134:
                   2135: struct object KooDiv2(ob1,ob2)
1.7       takayama 2136:      struct object ob1,ob2;
1.1       maekawa  2137: {
                   2138:   struct object rob = NullObject;
                   2139:   POLY f;
                   2140:   extern struct ring *CurrentRingp;
                   2141:   int s,i;
                   2142:   double d;
                   2143:
                   2144:   switch (Lookup[ob1.tag][ob2.tag]) {
                   2145:   case SpolySpoly:
                   2146:   case SuniversalNumberSuniversalNumber:
                   2147:   case SuniversalNumberSpoly:
                   2148:   case SpolySuniversalNumber:
                   2149:     rob = KnewRationalFunction0(copyObjectp(&ob1),copyObjectp(&ob2));
                   2150:     KisInvalidRational(&rob);
                   2151:     return(rob);
                   2152:     break;
                   2153:   case SarraySpoly:
                   2154:   case SarraySuniversalNumber:
                   2155:   case SarraySrationalFunction:
                   2156:     s = getoaSize(ob1);
                   2157:     rob = newObjectArray(s);
                   2158:     for (i=0; i<s; i++) {
                   2159:       putoa(rob,i,KooDiv2(getoa(ob1,i),ob2));
                   2160:     }
                   2161:     return(rob);
                   2162:     break;
                   2163:   case SpolySrationalFunction:
                   2164:   case SrationalFunctionSpoly:
                   2165:   case SrationalFunctionSrationalFunction:
                   2166:   case SuniversalNumberSrationalFunction:
                   2167:   case SrationalFunctionSuniversalNumber:
                   2168:     rob = KoInverse(ob2);
                   2169:     rob = KooMult(ob1,rob);
                   2170:     return(rob);
                   2171:     break;
                   2172:
                   2173:   case SdoubleSdouble:
                   2174:     d = KopDouble(ob2);
                   2175:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2176:     return(KpoDouble( KopDouble(ob1) / d ));
                   2177:     break;
                   2178:   case SdoubleSinteger:
                   2179:   case SdoubleSuniversalNumber:
                   2180:   case SdoubleSrationalFunction:
                   2181:     d = toDouble0(ob2);
                   2182:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2183:     return(KpoDouble( KopDouble(ob1) / d) );
                   2184:     break;
                   2185:   case SintegerSdouble:
                   2186:   case SuniversalNumberSdouble:
                   2187:   case SrationalFunctionSdouble:
                   2188:     d = KopDouble(ob2);
                   2189:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2190:     return(KpoDouble( toDouble0(ob1) / d ) );
                   2191:     break;
                   2192:
                   2193:   default:
                   2194:     warningKan("KooDiv2() has not supported yet these objects.\n");
                   2195:     break;
                   2196:   }
                   2197:   return(rob);
                   2198: }
                   2199: /* Template
                   2200:   case SrationalFunctionSrationalFunction:
                   2201:     warningKan("Koo() has not supported yet these objects.\n");
                   2202:     return(rob);
                   2203:     break;
                   2204:   case SpolySrationalFunction:
                   2205:     warningKan("Koo() has not supported yet these objects.\n");
                   2206:     return(rob);
                   2207:     break;
                   2208:   case SrationalFunctionSpoly:
                   2209:     warningKan("Koo() has not supported yet these objects.\n");
                   2210:     return(rob);
                   2211:     break;
                   2212:   case SuniversalNumberSrationalFunction:
                   2213:     warningKan("Koo() has not supported yet these objects.\n");
                   2214:     return(rob);
                   2215:     break;
                   2216:   case SrationalFunctionSuniversalNumber:
                   2217:     warningKan("Koo() has not supported yet these objects.\n");
                   2218:     return(rob);
                   2219:     break;
                   2220: */
                   2221:
                   2222: int KisInvalidRational(op)
1.7       takayama 2223:      objectp op;
1.1       maekawa  2224: {
                   2225:   extern struct coeff *UniversalZero;
                   2226:   if (op->tag != SrationalFunction) return(0);
                   2227:   if (KisZeroObject(Kdenominator(*op))) {
                   2228:     errorKan1("%s\n","KisInvalidRational(): zero division. You have f/0.");
                   2229:   }
                   2230:   if (KisZeroObject(Knumerator(*op))) {
                   2231:     op->tag = SuniversalNumber;
                   2232:     op->lc.universalNumber = UniversalZero;
                   2233:   }
                   2234:   return(0);
                   2235: }
                   2236:
                   2237: struct object KgbExtension(struct object obj)
                   2238: {
                   2239:   char *key;
                   2240:   int size;
                   2241:   struct object keyo;
                   2242:   struct object rob = NullObject;
                   2243:   struct object obj1,obj2,obj3;
                   2244:   POLY f1;
                   2245:   POLY f2;
                   2246:   POLY f3;
                   2247:   POLY f;
                   2248:   int m,i;
                   2249:   struct pairOfPOLY pf;
1.16      takayama 2250:   struct coeff *cont;
1.1       maekawa  2251:
                   2252:   if (obj.tag != Sarray) errorKan1("%s\n","KgbExtension(): The argument must be an array.");
                   2253:   size = getoaSize(obj);
                   2254:   if (size < 1) errorKan1("%s\n","KgbExtension(): Empty array.");
                   2255:   keyo = getoa(obj,0);
                   2256:   if (keyo.tag != Sdollar) errorKan1("%s\n","KgbExtension(): No key word.");
                   2257:   key = KopString(keyo);
                   2258:
                   2259:   /* branch by the key word. */
                   2260:   if (strcmp(key,"isReducible")==0) {
                   2261:     if (size != 3) errorKan1("%s\n","[(isReducible)  poly1 poly2] gbext.");
                   2262:     obj1 = getoa(obj,1);
                   2263:     obj2 = getoa(obj,2);
                   2264:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2265:       errorKan1("%s\n","[(isReducible)  poly1 poly2] gb.");
                   2266:     f1 = KopPOLY(obj1);
                   2267:     f2 = KopPOLY(obj2);
                   2268:     rob = KpoInteger((*isReducible)(f1,f2));
                   2269:   }else if (strcmp(key,"lcm") == 0) {
                   2270:     if (size != 3) errorKan1("%s\n","[(lcm)  poly1 poly2] gb.");
                   2271:     obj1 = getoa(obj,1);
                   2272:     obj2 = getoa(obj,2);
                   2273:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2274:       errorKan1("%s\n","[(lcm)  poly1 poly2] gbext.");
                   2275:     f1 = KopPOLY(obj1);
                   2276:     f2 = KopPOLY(obj2);
                   2277:     rob = KpoPOLY((*lcm)(f1,f2));
                   2278:   }else if (strcmp(key,"grade")==0) {
                   2279:     if (size != 2) errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2280:     obj1 = getoa(obj,1);
                   2281:     if (obj1.tag != Spoly)
                   2282:       errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2283:     f1 = KopPOLY(obj1);
                   2284:     rob = KpoInteger((*grade)(f1));
                   2285:   }else if (strcmp(key,"mod")==0) {
                   2286:     if (size != 3) errorKan1("%s\n","[(mod) poly num] gbext");
                   2287:     obj1 = getoa(obj,1);
                   2288:     obj2 = getoa(obj,2);
                   2289:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2290:       errorKan1("%s\n","The datatype of the argument mismatch: [(mod) polynomial  universalNumber] gbext");
                   2291:     }
                   2292:     rob = KpoPOLY( modulopZ(KopPOLY(obj1),KopUniversalNumber(obj2)) );
                   2293:   }else if (strcmp(key,"tomodp")==0) {
                   2294:     /* The ring must be a ring of characteristic p. */
                   2295:     if (size != 3) errorKan1("%s\n","[(tomod) poly ring] gbext");
                   2296:     obj1 = getoa(obj,1);
                   2297:     obj2 = getoa(obj,2);
                   2298:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2299:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod) polynomial  ring] gbext");
                   2300:     }
                   2301:     rob = KpoPOLY( modulop(KopPOLY(obj1),KopRingp(obj2)) );
                   2302:   }else if (strcmp(key,"tomod0")==0) {
                   2303:     /* Ring must be a ring of characteristic 0. */
                   2304:     if (size != 3) errorKan1("%s\n","[(tomod0) poly ring] gbext");
                   2305:     obj1 = getoa(obj,1);
                   2306:     obj2 = getoa(obj,2);
                   2307:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2308:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod0) polynomial  ring] gbext");
                   2309:     }
                   2310:     errorKan1("%s\n","It has not been implemented.");
                   2311:     rob = KpoPOLY( POLYNULL );
                   2312:   }else if (strcmp(key,"divByN")==0) {
                   2313:     if (size != 3) errorKan1("%s\n","[(divByN) poly num] gbext");
                   2314:     obj1 = getoa(obj,1);
                   2315:     obj2 = getoa(obj,2);
                   2316:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2317:       errorKan1("%s\n","The datatype of the argument mismatch: [(divByN) polynomial  universalNumber] gbext");
                   2318:     }
                   2319:     pf =  quotientByNumber(KopPOLY(obj1),KopUniversalNumber(obj2));
                   2320:     rob  = newObjectArray(2);
                   2321:     putoa(rob,0,KpoPOLY(pf.first));
                   2322:     putoa(rob,1,KpoPOLY(pf.second));
                   2323:   }else if (strcmp(key,"isConstant")==0) {
                   2324:     if (size != 2) errorKan1("%s\n","[(isConstant) poly ] gbext bool");
                   2325:     obj1 = getoa(obj,1);
                   2326:     if (obj1.tag != Spoly) {
                   2327:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstant) polynomial] gbext");
                   2328:     }
                   2329:     return(KpoInteger(isConstant(KopPOLY(obj1))));
1.18      takayama 2330:   }else if (strcmp(key,"isConstantAll")==0) {
                   2331:     if (size != 2) errorKan1("%s\n","[(isConstantAll) poly ] gbext bool");
                   2332:     obj1 = getoa(obj,1);
                   2333:     if (obj1.tag != Spoly) {
                   2334:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstantAll) polynomial] gbext");
                   2335:     }
                   2336:     return(KpoInteger(isConstantAll(KopPOLY(obj1))));
1.1       maekawa  2337:   }else if (strcmp(key,"schreyerSkelton") == 0) {
                   2338:     if (size != 2) errorKan1("%s\n","[(schreyerSkelton) array_of_poly ] gbext array");
                   2339:     obj1 = getoa(obj,1);
                   2340:     return(KschreyerSkelton(obj1));
                   2341:   }else if (strcmp(key,"lcoeff") == 0) {
                   2342:     if (size != 2) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2343:     obj1 = getoa(obj,1);
                   2344:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2345:     f = KopPOLY(obj1);
                   2346:     if (f == POLYNULL) return(KpoPOLY(f));
                   2347:     return(KpoPOLY( newCell(coeffCopy(f->coeffp),newMonomial(f->m->ringp))));
                   2348:   }else if (strcmp(key,"lmonom") == 0) {
                   2349:     if (size != 2) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2350:     obj1 = getoa(obj,1);
                   2351:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2352:     f = KopPOLY(obj1);
                   2353:     if (f == POLYNULL) return(KpoPOLY(f));
                   2354:     return(KpoPOLY( newCell(intToCoeff(1,f->m->ringp),monomialCopy(f->m))));
                   2355:   }else if (strcmp(key,"toes") == 0) {
                   2356:     if (size != 2) errorKan1("%s\n","[(toes) array] gbext poly");
                   2357:     obj1 = getoa(obj,1);
                   2358:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toes) array] gbext poly");
                   2359:     return(KvectorToSchreyer_es(obj1));
1.3       takayama 2360:   }else if (strcmp(key,"toe_") == 0) {
                   2361:     if (size != 2) errorKan1("%s\n","[(toe_) array] gbext poly");
                   2362:     obj1 = getoa(obj,1);
                   2363:     if (obj1.tag == Spoly) return(obj1);
                   2364:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toe_) array] gbext poly");
                   2365:     return(KpoPOLY(arrayToPOLY(obj1)));
1.1       maekawa  2366:   }else if (strcmp(key,"isOrdered") == 0) {
                   2367:     if (size != 2) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2368:     obj1 = getoa(obj,1);
                   2369:     if (obj1.tag != Spoly) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2370:     return(KisOrdered(obj1));
1.16      takayama 2371:   }else if (strcmp(key,"reduceContent")==0) {
                   2372:     if (size != 2) errorKan1("%s\n","[(reduceContent)  poly1 ] gbext.");
                   2373:     obj1 = getoa(obj,1);
                   2374:     if (obj1.tag != Spoly)
                   2375:       errorKan1("%s\n","[(reduceContent)  poly1 ] gbext.");
                   2376:     f1 = KopPOLY(obj1);
                   2377:        rob = newObjectArray(2);
                   2378:        f1 = reduceContentOfPoly(f1,&cont);
                   2379:        putoa(rob,0,KpoPOLY(f1));
                   2380:        if (f1 == POLYNULL) {
                   2381:          putoa(rob,1,KpoPOLY(f1));
                   2382:        }else{
                   2383:          putoa(rob,1,KpoPOLY(newCell(cont,newMonomial(f1->m->ringp))));
                   2384:        }
1.17      takayama 2385:   }else if (strcmp(key,"ord_ws_all")==0) {
                   2386:     if (size != 3) errorKan1("%s\n","[(ord_ws_all) fv wv] gbext");
                   2387:     obj1 = getoa(obj,1);
                   2388:     obj2 = getoa(obj,2);
                   2389:     rob  = KordWsAll(obj1,obj2);
1.1       maekawa  2390:   }else {
                   2391:     errorKan1("%s\n","gbext : unknown tag.");
                   2392:   }
                   2393:   return(rob);
                   2394: }
                   2395:
                   2396: struct object KmpzExtension(struct object obj)
                   2397: {
                   2398:   char *key;
                   2399:   int size;
                   2400:   struct object keyo;
                   2401:   struct object rob = NullObject;
                   2402:   struct object obj0,obj1,obj2,obj3;
                   2403:   MP_INT *f;
                   2404:   MP_INT *g;
                   2405:   MP_INT *h;
                   2406:   MP_INT *r0;
                   2407:   MP_INT *r1;
                   2408:   MP_INT *r2;
                   2409:   int gi;
                   2410:   extern struct ring *SmallRingp;
                   2411:
                   2412:
                   2413:   if (obj.tag != Sarray) errorKan1("%s\n","KmpzExtension(): The argument must be an array.");
                   2414:   size = getoaSize(obj);
                   2415:   if (size < 1) errorKan1("%s\n","KmpzExtension(): Empty array.");
                   2416:   keyo = getoa(obj,0);
                   2417:   if (keyo.tag != Sdollar) errorKan1("%s\n","KmpzExtension(): No key word.");
                   2418:   key = KopString(keyo);
                   2419:
                   2420:   /* branch by the key word. */
                   2421:   if (strcmp(key,"gcd")==0) {
                   2422:     if (size != 3) errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2423:     obj1 = getoa(obj,1);
                   2424:     obj2 = getoa(obj,2);
                   2425:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2426:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2427:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2428:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2429:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2430:     }
                   2431:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2432:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2433:     r1 = newMP_INT();
                   2434:     mpz_gcd(r1,f,g);
                   2435:     rob.tag = SuniversalNumber;
                   2436:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2437:   }else if (strcmp(key,"tdiv_qr")==0) {
                   2438:     if (size != 3) errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2439:     obj1 = getoa(obj,1);
                   2440:     obj2 = getoa(obj,2);
                   2441:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2442:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2443:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2444:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2445:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2446:     }
                   2447:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2448:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2449:     r1 = newMP_INT();
                   2450:     r2 = newMP_INT();
                   2451:     mpz_tdiv_qr(r1,r2,f,g);
                   2452:     obj1.tag = SuniversalNumber;
                   2453:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2454:     obj2.tag = SuniversalNumber;
                   2455:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2456:     rob = newObjectArray(2);
                   2457:     putoa(rob,0,obj1); putoa(rob,1,obj2);
                   2458:   } else if (strcmp(key,"cancel")==0) {
                   2459:     if (size != 2) {
                   2460:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2461:     }
                   2462:     obj0 = getoa(obj,1);
                   2463:     if (obj0.tag == SuniversalNumber) return(obj0);
                   2464:     if (obj0.tag != SrationalFunction) {
                   2465:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2466:       return(obj0);
                   2467:     }
                   2468:     obj1 = *(Knumerator(obj0));
                   2469:     obj2 = *(Kdenominator(obj0));
                   2470:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber) {
                   2471:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2472:       return(obj0);
                   2473:     }
                   2474:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2475:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2476:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2477:     }
                   2478:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2479:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2480:
                   2481:     r0 = newMP_INT();
                   2482:     r1 = newMP_INT();
                   2483:     r2 = newMP_INT();
                   2484:     mpz_gcd(r0,f,g);
                   2485:     mpz_divexact(r1,f,r0);
                   2486:     mpz_divexact(r2,g,r0);
                   2487:     obj1.tag = SuniversalNumber;
                   2488:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2489:     obj2.tag = SuniversalNumber;
                   2490:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2491:
                   2492:     rob = KnewRationalFunction0(copyObjectp(&obj1),copyObjectp(&obj2));
                   2493:     KisInvalidRational(&rob);
                   2494:   }else if (strcmp(key,"sqrt")==0 ||
1.7       takayama 2495:             strcmp(key,"com")==0) {
1.1       maekawa  2496:     /*  One arg functions  */
                   2497:     if (size != 2) errorKan1("%s\n","[key num] mpzext");
                   2498:     obj1 = getoa(obj,1);
                   2499:     if (obj1.tag != SuniversalNumber)
                   2500:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2501:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber))
                   2502:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2503:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2504:     if (strcmp(key,"sqrt")==0) {
                   2505:       r1 = newMP_INT();
                   2506:       mpz_sqrt(r1,f);
                   2507:     }else if (strcmp(key,"com")==0) {
                   2508:       r1 = newMP_INT();
                   2509:       mpz_com(r1,f);
                   2510:     }
                   2511:     rob.tag = SuniversalNumber;
                   2512:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2513:   }else if (strcmp(key,"probab_prime_p")==0 ||
1.7       takayama 2514:             strcmp(key,"and") == 0 ||
                   2515:             strcmp(key,"ior")==0) {
1.1       maekawa  2516:     /* Two args functions */
                   2517:     if (size != 3) errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2518:     obj1 = getoa(obj,1);
                   2519:     obj2 = getoa(obj,2);
                   2520:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2521:       errorKan1("%s\n","[key num1 num2] mpzext.");
                   2522:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2523:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2524:       errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2525:     }
                   2526:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2527:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2528:     if (strcmp(key,"probab_prime_p")==0) {
                   2529:       gi = (int) mpz_get_si(g);
                   2530:       if (mpz_probab_prime_p(f,gi)) {
1.7       takayama 2531:         rob = KpoInteger(1);
1.1       maekawa  2532:       }else {
1.7       takayama 2533:         rob = KpoInteger(0);
1.1       maekawa  2534:       }
                   2535:     }else if (strcmp(key,"and")==0) {
                   2536:       r1 = newMP_INT();
                   2537:       mpz_and(r1,f,g);
                   2538:       rob.tag = SuniversalNumber;
                   2539:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2540:     }else if (strcmp(key,"ior")==0) {
                   2541:       r1 = newMP_INT();
                   2542:       mpz_ior(r1,f,g);
                   2543:       rob.tag = SuniversalNumber;
                   2544:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2545:     }
                   2546:
                   2547:   }else if (strcmp(key,"powm")==0) {
                   2548:     /* three args */
                   2549:     if (size != 4) errorKan1("%s\n","[key num1 num2 num3] mpzext");
                   2550:     obj1 = getoa(obj,1); obj2 = getoa(obj,2); obj3 = getoa(obj,3);
                   2551:     if (obj1.tag != SuniversalNumber ||
                   2552:         obj2.tag != SuniversalNumber ||
                   2553:         obj3.tag != SuniversalNumber ) {
                   2554:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2555:     }
                   2556:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2557:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber) ||
                   2558:         ! is_this_coeff_MP_INT(obj3.lc.universalNumber)) {
1.1       maekawa  2559:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2560:     }
                   2561:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2562:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2563:     h = coeff_to_MP_INT(obj3.lc.universalNumber);
                   2564:     if (mpz_sgn(g) < 0) errorKan1("%s\n","[(powm) base exp mod] mpzext : exp must not be negative.");
                   2565:     r1 = newMP_INT();
                   2566:     mpz_powm(r1,f,g,h);
                   2567:     rob.tag = SuniversalNumber;
                   2568:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2569:   }else {
                   2570:     errorKan1("%s\n","mpzExtension(): Unknown tag.");
                   2571:   }
                   2572:   return(rob);
                   2573: }
                   2574:
                   2575:
                   2576: /** : context   */
                   2577: struct object KnewContext(struct object superObj,char *name) {
                   2578:   struct context *cp;
                   2579:   struct object ob;
                   2580:   if (superObj.tag != Sclass) {
                   2581:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2582:   }
                   2583:   if (superObj.lc.ival != CLASSNAME_CONTEXT) {
                   2584:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2585:   }
                   2586:   cp = newContext0((struct context *)(superObj.rc.voidp),name);
                   2587:   ob.tag = Sclass;
                   2588:   ob.lc.ival = CLASSNAME_CONTEXT;
                   2589:   ob.rc.voidp = cp;
                   2590:   return(ob);
                   2591: }
                   2592:
                   2593: struct object KcreateClassIncetance(struct object ob1,
1.7       takayama 2594:                                     struct object ob2,
                   2595:                                     struct object ob3)
1.1       maekawa  2596: {
                   2597:   /* [class-tag super-obj] size [class-tag]  cclass */
                   2598:   struct object ob4;
                   2599:   int size,size2,i;
                   2600:   struct object ob5;
                   2601:   struct object rob;
                   2602:
                   2603:   if (ob1.tag != Sarray)
                   2604:     errorKan1("%s\n","cclass: The first argument must be an array.");
                   2605:   if (getoaSize(ob1) < 1)
                   2606:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2607:   ob4 = getoa(ob1,0);
                   2608:   if (ectag(ob4) != CLASSNAME_CONTEXT)
                   2609:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2610:
                   2611:   if (ob2.tag != Sinteger)
                   2612:     errorKan1("%s\n","cclass: The second argument must be an integer.");
                   2613:   size = KopInteger(ob2);
                   2614:   if (size < 1)
                   2615:     errorKan1("%s\n","cclass: The size must be > 0.");
                   2616:
                   2617:   if (ob3.tag != Sarray)
                   2618:     errorKan1("%s\n","cclass: The third argument must be an array.");
                   2619:   if (getoaSize(ob3) < 1)
                   2620:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
                   2621:   ob5 = getoa(ob3,0);
                   2622:   if (ectag(ob5) != CLASSNAME_CONTEXT)
                   2623:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
1.7       takayama 2624:
1.1       maekawa  2625:   rob = newObjectArray(size);
                   2626:   putoa(rob,0,ob5);
                   2627:   if (getoaSize(ob1) < size) size2 = getoaSize(ob1);
                   2628:   else size2 = size;
                   2629:   for (i=1; i<size2; i++) {
                   2630:     putoa(rob,i,getoa(ob1,i));
                   2631:   }
                   2632:   for (i=size2; i<size; i++) {
                   2633:     putoa(rob,i,NullObject);
                   2634:   }
                   2635:   return(rob);
                   2636: }
                   2637:
                   2638:
                   2639: struct object KpoDouble(double a) {
                   2640:   struct object rob;
                   2641:   rob.tag = Sdouble;
                   2642:   /* rob.lc.dbl = (double *)sGC_malloc_atomic(sizeof(double)); */
                   2643:   rob.lc.dbl = (double *)sGC_malloc(sizeof(double));
                   2644:   if (rob.lc.dbl == (double *)NULL) {
                   2645:     fprintf(stderr,"No memory.\n"); exit(10);
                   2646:   }
                   2647:   *(rob.lc.dbl) = a;
                   2648:   return(rob);
                   2649: }
                   2650:
                   2651: double toDouble0(struct object ob) {
                   2652:   double r;
                   2653:   int r3;
                   2654:   struct object ob2;
                   2655:   struct object ob3;
                   2656:   switch(ob.tag) {
                   2657:   case Sinteger:
                   2658:     return( (double) (KopInteger(ob)) );
                   2659:   case SuniversalNumber:
                   2660:     return((double) coeffToInt(ob.lc.universalNumber));
                   2661:   case SrationalFunction:
                   2662:     /* The argument is assumed to be a rational number. */
                   2663:     ob2 = newObjectArray(2);  ob3 = KpoString("cancel");
                   2664:     putoa(ob2,0,ob3); putoa(ob2,1,ob);
                   2665:     ob = KmpzExtension(ob2);
                   2666:     ob2 = *Knumerator(ob);  ob3 = *Kdenominator(ob);
                   2667:     r3 =  coeffToInt(ob3.lc.universalNumber);
                   2668:     if (r3  == 0) {
                   2669:       errorKan1("%s\n","toDouble0(): Division by zero.");
                   2670:       break;
                   2671:     }
                   2672:     r = ((double) coeffToInt(ob2.lc.universalNumber)) / ((double)r3);
                   2673:     return(r);
                   2674:   case Sdouble:
                   2675:     return( KopDouble(ob) );
                   2676:   default:
                   2677:     errorKan1("%s\n","toDouble0(): This type of conversion is not supported.");
                   2678:     break;
                   2679:   }
                   2680:   return(0.0);
                   2681: }
                   2682:
                   2683: struct object KpoGradedPolySet(struct gradedPolySet *grD) {
                   2684:   struct object rob;
                   2685:   rob.tag = Sclass;
                   2686:   rob.lc.ival = CLASSNAME_GradedPolySet;
                   2687:   rob.rc.voidp = (void *) grD;
                   2688:   return(rob);
                   2689: }
                   2690:
                   2691: static char *getspace0(int a) {
                   2692:   char *s;
                   2693:   a = (a > 0? a:-a);
                   2694:   s = (char *) sGC_malloc(a+1);
                   2695:   if (s == (char *)NULL) {
                   2696:     errorKan1("%s\n","no more memory.");
                   2697:   }
                   2698:   return(s);
                   2699: }
                   2700: struct object KdefaultPolyRing(struct object ob) {
                   2701:   struct object rob;
                   2702:   int i,j,k,n;
                   2703:   struct object ob1,ob2,ob3,ob4,ob5;
                   2704:   struct object t1;
                   2705:   char *s1;
                   2706:   extern struct ring *CurrentRingp;
                   2707:   static struct ring *a[N0];
                   2708:
                   2709:   rob = NullObject;
                   2710:   if (ob.tag != Sinteger) {
                   2711:     errorKan1("%s\n","KdefaultPolyRing(): the argument must be integer.");
                   2712:   }
                   2713:   n = KopInteger(ob);
                   2714:   if (n <= 0) {
                   2715:     /* initializing */
                   2716:     for (i=0; i<N0; i++) {
                   2717:       a[i] = (struct ring*) NULL;
                   2718:     }
                   2719:     return(rob);
                   2720:   }
                   2721:
                   2722:   if ( a[n] != (struct ring*)NULL) return(KpoRingp(a[n]));
                   2723:
                   2724:   /* Let's construct ring of polynomials of 2n variables  */
                   2725:   /* x variables */
                   2726:   ob1 = newObjectArray(n);
                   2727:   for (i=0; i<n; i++) {
                   2728:     s1 = getspace0(1+ ((n-i)/10) + 1);
                   2729:     sprintf(s1,"x%d",n-i);
                   2730:     putoa(ob1,i,KpoString(s1));
                   2731:   }
                   2732:   ob2 = newObjectArray(n);
                   2733:   s1 = getspace0(1);
                   2734:   sprintf(s1,"h");
                   2735:   putoa(ob2,0,KpoString(s1));
                   2736:   for (i=1; i<n; i++) {
                   2737:     s1 = getspace0(1+((n+n-i)/10)+1);
                   2738:     sprintf(s1,"x%d",n+n-i);
                   2739:     putoa(ob2,i,KpoString(s1));
                   2740:   }
                   2741:
                   2742:   ob3 = newObjectArray(9);
                   2743:   putoa(ob3,0,KpoInteger(0));
                   2744:   for (i=1; i<9; i++) {
                   2745:     putoa(ob3,i,KpoInteger(n));
                   2746:   }
                   2747:
                   2748:   ob4 = newObjectArray(2*n);
                   2749:   t1 = newObjectArray(2*n);
                   2750:   for (i=0; i<2*n; i++) {
                   2751:     putoa(t1,i,KpoInteger(1));
                   2752:   }
                   2753:   putoa(ob4,0,t1);
                   2754:   for (i=1; i<2*n; i++) {
                   2755:     t1 = newObjectArray(2*n);
                   2756:     for (j=0; j<2*n; j++) {
                   2757:       putoa(t1,j,KpoInteger(0));
                   2758:       if (j == (2*n-i)) {
1.7       takayama 2759:         putoa(t1,j,KpoInteger(-1));
1.1       maekawa  2760:       }
                   2761:     }
                   2762:     putoa(ob4,i,t1);
                   2763:   }
                   2764:
                   2765:   ob5 = newObjectArray(2);
                   2766:   putoa(ob5,0,KpoString("mpMult"));
                   2767:   putoa(ob5,1,KpoString("poly"));
                   2768:
                   2769:   KsetUpRing(ob1,ob2,ob3,ob4,ob5);
                   2770:   a[n] = CurrentRingp;
                   2771:   return(KpoRingp(a[n]));
                   2772: }
                   2773:
                   2774:
                   2775:
                   2776:
                   2777:
                   2778: /******************************************************************
                   2779:      error handler
                   2780: ******************************************************************/
                   2781:
                   2782: errorKan1(str,message)
1.7       takayama 2783:      char *str;
                   2784:      char *message;
1.1       maekawa  2785: {
                   2786:   extern char *GotoLabel;
                   2787:   extern int GotoP;
                   2788:   extern int ErrorMessageMode;
                   2789:   char tmpc[1024];
1.10      takayama 2790:   cancelAlarm();
1.1       maekawa  2791:   if (ErrorMessageMode == 1 || ErrorMessageMode == 2) {
                   2792:     sprintf(tmpc,"\nERROR(kanExport[0|1].c): ");
                   2793:     if (strlen(message) < 900) {
                   2794:       strcat(tmpc,message);
                   2795:     }
                   2796:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   2797:   }
                   2798:   if (ErrorMessageMode != 1) {
                   2799:     fprintf(stderr,"\nERROR(kanExport[0|1].c): ");
                   2800:     fprintf(stderr,str,message);
                   2801:   }
                   2802:   /* fprintf(stderr,"Hello "); */
                   2803:   if (GotoP) {
                   2804:     /* fprintf(stderr,"Hello. GOTO "); */
                   2805:     fprintf(Fstack,"The interpreter was looking for the label <<%s>>. It is also aborted.\n",GotoLabel);
                   2806:     GotoP = 0;
                   2807:   }
                   2808:   stdOperandStack(); contextControl(CCRESTORE);
                   2809:   /* fprintf(stderr,"Now. Long jump!\n"); */
1.8       takayama 2810: #if defined(__CYGWIN__)
                   2811:   siglongjmp(EnvOfStackMachine,1);
                   2812: #else
1.1       maekawa  2813:   longjmp(EnvOfStackMachine,1);
1.8       takayama 2814: #endif
1.1       maekawa  2815: }
                   2816:
                   2817: warningKan(str)
1.7       takayama 2818:      char *str;
1.1       maekawa  2819: {
                   2820:   extern int WarningMessageMode;
                   2821:   extern int Strict;
                   2822:   char tmpc[1024];
                   2823:   if (WarningMessageMode == 1 || WarningMessageMode == 2) {
                   2824:     sprintf(tmpc,"\nWARNING(kanExport[0|1].c): ");
                   2825:     if (strlen(str) < 900) {
                   2826:       strcat(tmpc,str);
                   2827:     }
                   2828:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   2829:   }
                   2830:   if (WarningMessageMode != 1) {
                   2831:     fprintf(stderr,"\nWARNING(kanExport[0|1].c): ");
                   2832:     fprintf(stderr,str);
                   2833:     fprintf(stderr,"\n");
                   2834:   }
                   2835:   /* if (Strict) errorKan1("%s\n"," "); */
                   2836:   if (Strict) errorKan1("%s\n",str);
1.4       takayama 2837:   return(0);
                   2838: }
                   2839:
                   2840: warningKanNoStrictMode(str)
1.7       takayama 2841:      char *str;
1.4       takayama 2842: {
                   2843:   extern int Strict;
                   2844:   int t;
                   2845:   t = Strict;
                   2846:   Strict = 0;
                   2847:   warningKan(str);
                   2848:   Strict = t;
1.1       maekawa  2849:   return(0);
                   2850: }
                   2851:
                   2852:
                   2853:
                   2854:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>