[BACK]Return to kanExport0.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport0.c, Revision 1.25

1.25    ! takayama    1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport0.c,v 1.24 2004/08/22 02:00:24 takayama Exp $  */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: #define universalToPoly(un,rp) (isZero(un)?ZERO:coeffToPoly(un,rp))
                     13:
                     14: static void checkDuplicateName(char *xvars[],char *dvars[],int n);
                     15:
                     16: static void yet() { fprintf(stderr,"Not implemented."); }
                     17:
                     18: int SerialCurrent = -1;  /* Current Serial number of the recieved packet as server. */
                     19:
                     20: int ReverseOutputOrder = 1;
                     21: int WarningNoVectorVariable = 1;
1.19      takayama   22: extern int QuoteMode;
1.1       maekawa    23:
                     24: /** :arithmetic **/
                     25: struct object KooAdd(ob1,ob2)
1.7       takayama   26:      struct object ob1,ob2;
1.1       maekawa    27: {
                     28:   extern struct ring *CurrentRingp;
                     29:   struct object rob = NullObject;
                     30:   POLY r;
                     31:   int s,i;
                     32:   objectp f1,f2,g1,g2;
                     33:   struct object nn,dd;
                     34:
                     35:   switch (Lookup[ob1.tag][ob2.tag]) {
                     36:   case SintegerSinteger:
                     37:     return(KpoInteger(ob1.lc.ival + ob2.lc.ival));
                     38:     break;
                     39:   case SpolySpoly:
                     40:     r = ppAdd(ob1.lc.poly,ob2.lc.poly);
                     41:     rob.tag = Spoly; rob.lc.poly = r;
                     42:     return(rob);
                     43:     break;
                     44:   case SarraySarray:
                     45:     s = getoaSize(ob1);
                     46:     if (s != getoaSize(ob2)) {
                     47:       errorKan1("%s\n","Two arrays must have a same size.");
                     48:     }
                     49:     rob = newObjectArray(s);
                     50:     for (i=0; i<s; i++) {
                     51:       putoa(rob,i,KooAdd(getoa(ob1,i),getoa(ob2,i)));
                     52:     }
                     53:     return(rob);
                     54:     break;
                     55:   case SuniversalNumberSuniversalNumber:
                     56:     rob.tag = SuniversalNumber;
                     57:     rob.lc.universalNumber = newUniversalNumber(0);
                     58:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                     59:     return(rob);
                     60:     break;
                     61:   case SuniversalNumberSpoly:
                     62:     rob.tag = Spoly;
                     63:     r = ob2.lc.poly;
                     64:     if (r ISZERO) {
                     65:       /*warningKan("KooAdd(universalNumber,0 polynomial) cannot determine the ring for the result. Assume the current ring.");
                     66:         rob.lc.poly = universalToPoly(ob1.lc.universalNumber,CurrentRingp);*/
                     67:       rob = ob1;
                     68:       return(rob); /* returns universal number. */
                     69:     }
                     70:     rob.lc.poly = ppAdd(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                     71:     return(rob);
                     72:     break;
                     73:   case SpolySuniversalNumber:
                     74:     return(KooAdd(ob2,ob1));
                     75:     break;
                     76:   case SuniversalNumberSinteger:
                     77:     rob.tag = SuniversalNumber;
                     78:     rob.lc.universalNumber = newUniversalNumber(0);
                     79:     nn.tag = SuniversalNumber;
                     80:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                     81:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                     82:     return(rob);
                     83:     break;
                     84:   case SintegerSuniversalNumber:
                     85:     rob.tag = SuniversalNumber;
                     86:     rob.lc.universalNumber = newUniversalNumber(0);
                     87:     nn.tag = SuniversalNumber;
                     88:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                     89:     Cadd(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                     90:     return(rob);
                     91:     break;
                     92:
                     93:   case SrationalFunctionSrationalFunction:
                     94:     f1 = Knumerator(ob1);
                     95:     f2 = Kdenominator(ob1);
                     96:     g1 = Knumerator(ob2);
                     97:     g2 = Kdenominator(ob2);
                     98:     nn = KooAdd(KooMult(*g2,*f1),KooMult(*f2,*g1));
                     99:     dd = KooMult(*f2,*g2);
                    100:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    101:     KisInvalidRational(&rob);
                    102:     return(rob);
                    103:     break;
                    104:   case SpolySrationalFunction:  /* f1 + g1/g2 = (g2 f1 + g1)/g2 */
                    105:   case SuniversalNumberSrationalFunction:
                    106:     g1 = Knumerator(ob2);
                    107:     g2 = Kdenominator(ob2);
                    108:     nn = KooAdd(KooMult(*g2,ob1),*g1);
                    109:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    110:     KisInvalidRational(&rob);
                    111:     return(rob);
                    112:     break;
                    113:   case SrationalFunctionSpoly:
                    114:   case SrationalFunctionSuniversalNumber:
                    115:     return(KooAdd(ob2,ob1));
                    116:     break;
                    117:   case SdoubleSdouble:
                    118:     return(KpoDouble( KopDouble(ob1) + KopDouble(ob2) ));
                    119:     break;
                    120:   case SdoubleSinteger:
                    121:   case SdoubleSuniversalNumber:
                    122:   case SdoubleSrationalFunction:
                    123:     return(KpoDouble( KopDouble(ob1) + toDouble0(ob2) ) );
                    124:     break;
                    125:   case SintegerSdouble:
                    126:   case SuniversalNumberSdouble:
                    127:   case SrationalFunctionSdouble:
                    128:     return(KpoDouble( toDouble0(ob1) + KopDouble(ob2) ) );
                    129:     break;
                    130:   case SclassSclass:
                    131:   case SclassSinteger:
                    132:   case SclassSpoly:
                    133:   case SclassSuniversalNumber:
                    134:   case SclassSrationalFunction:
                    135:   case SclassSdouble:
                    136:   case SpolySclass:
                    137:   case SintegerSclass:
                    138:   case SuniversalNumberSclass:
                    139:   case SrationalFunctionSclass:
                    140:   case SdoubleSclass:
                    141:     return(Kclass_ooAdd(ob1,ob2));
                    142:     break;
                    143:
                    144:
                    145:   default:
1.19      takayama  146:     if (QuoteMode) {
1.22      takayama  147:       rob = addTree(ob1,ob2);
1.19      takayama  148:     }else{
                    149:       warningKan("KooAdd() has not supported yet these objects.\n");
                    150:     }
1.1       maekawa   151:     break;
                    152:   }
                    153:   return(rob);
                    154: }
                    155:
                    156: struct object KooSub(ob1,ob2)
1.7       takayama  157:      struct object ob1,ob2;
1.1       maekawa   158: {
                    159:   struct object rob = NullObject;
                    160:   POLY r;
                    161:   int s,i;
                    162:   objectp f1,f2,g1,g2;
                    163:   extern struct coeff *UniversalZero;
                    164:   struct object nn,dd;
                    165:
                    166:   switch (Lookup[ob1.tag][ob2.tag]) {
                    167:   case SintegerSinteger:
                    168:     return(KpoInteger(ob1.lc.ival - ob2.lc.ival));
                    169:     break;
                    170:   case SpolySpoly:
                    171:     r = ppSub(ob1.lc.poly,ob2.lc.poly);
                    172:     rob.tag = Spoly; rob.lc.poly = r;
                    173:     return(rob);
                    174:     break;
                    175:   case SarraySarray:
                    176:     s = getoaSize(ob1);
                    177:     if (s != getoaSize(ob2)) {
                    178:       errorKan1("%s\n","Two arrays must have a same size.");
                    179:     }
                    180:     rob = newObjectArray(s);
                    181:     for (i=0; i<s; i++) {
                    182:       putoa(rob,i,KooSub(getoa(ob1,i),getoa(ob2,i)));
                    183:     }
                    184:     return(rob);
                    185:     break;
                    186:   case SuniversalNumberSuniversalNumber:
                    187:     rob.tag = SuniversalNumber;
                    188:     rob.lc.universalNumber = newUniversalNumber(0);
                    189:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    190:     return(rob);
                    191:     break;
                    192:
                    193:   case SuniversalNumberSpoly:
                    194:     rob.tag = Spoly;
                    195:     r = ob2.lc.poly;
                    196:     if (r ISZERO) {
                    197:       rob = ob1;
                    198:       return(rob); /* returns universal number. */
                    199:     }
                    200:     rob.lc.poly = ppSub(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    201:     return(rob);
                    202:     break;
                    203:   case SpolySuniversalNumber:
                    204:     rob.tag = Spoly;
                    205:     r = ob1.lc.poly;
                    206:     if (r ISZERO) {
                    207:       rob.tag = SuniversalNumber;
                    208:       rob.lc.universalNumber = newUniversalNumber(0);
                    209:       Csub(rob.lc.universalNumber,UniversalZero,ob2.lc.universalNumber);
                    210:       return(rob); /* returns universal number. */
                    211:     }
                    212:     rob.lc.poly = ppSub(r,universalToPoly(ob2.lc.universalNumber,r->m->ringp));
                    213:     return(rob);
                    214:     break;
                    215:
                    216:   case SuniversalNumberSinteger:
                    217:     rob.tag = SuniversalNumber;
                    218:     rob.lc.universalNumber = newUniversalNumber(0);
                    219:     nn.tag = SuniversalNumber;
                    220:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    221:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    222:     return(rob);
                    223:     break;
                    224:   case SintegerSuniversalNumber:
                    225:     rob.tag = SuniversalNumber;
                    226:     rob.lc.universalNumber = newUniversalNumber(0);
                    227:     nn.tag = SuniversalNumber;
                    228:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    229:     Csub(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    230:     return(rob);
                    231:     break;
                    232:
                    233:   case SrationalFunctionSrationalFunction:
                    234:     f1 = Knumerator(ob1);
                    235:     f2 = Kdenominator(ob1);
                    236:     g1 = Knumerator(ob2);
                    237:     g2 = Kdenominator(ob2);
                    238:     nn = KooSub(KooMult(*g2,*f1),KooMult(*f2,*g1));
                    239:     dd = KooMult(*f2,*g2);
                    240:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    241:     KisInvalidRational(&rob);
                    242:     return(rob);
                    243:     break;
                    244:   case SpolySrationalFunction:  /* f1 - g1/g2 = (g2 f1 - g1)/g2 */
                    245:   case SuniversalNumberSrationalFunction:
                    246:     g1 = Knumerator(ob2);
                    247:     g2 = Kdenominator(ob2);
                    248:     nn = KooSub(KooMult(*g2,ob1),*g1);
                    249:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    250:     KisInvalidRational(&rob);
                    251:     return(rob);
                    252:     break;
                    253:   case SrationalFunctionSpoly:
                    254:   case SrationalFunctionSuniversalNumber: /* f1/f2 - ob2= (f1 - f2*ob2)/f2 */
                    255:     f1 = Knumerator(ob1);
                    256:     f2 = Kdenominator(ob1);
                    257:     nn = KooSub(*f1,KooMult(*f2,ob2));
                    258:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    259:     KisInvalidRational(&rob);
                    260:     return(rob);
                    261:     break;
                    262:
                    263:   case SdoubleSdouble:
                    264:     return(KpoDouble( KopDouble(ob1) - KopDouble(ob2) ));
                    265:     break;
                    266:   case SdoubleSinteger:
                    267:   case SdoubleSuniversalNumber:
                    268:   case SdoubleSrationalFunction:
                    269:     return(KpoDouble( KopDouble(ob1) - toDouble0(ob2) ) );
                    270:     break;
                    271:   case SintegerSdouble:
                    272:   case SuniversalNumberSdouble:
                    273:   case SrationalFunctionSdouble:
                    274:     return(KpoDouble( toDouble0(ob1) - KopDouble(ob2) ) );
                    275:     break;
                    276:
                    277:   default:
1.20      takayama  278:     if (QuoteMode) {
                    279:       rob = minusTree(ob1,ob2);
                    280:     }else{
                    281:       warningKan("KooSub() has not supported yet these objects.\n");
                    282:     }
1.1       maekawa   283:     break;
                    284:   }
                    285:   return(rob);
                    286: }
                    287:
                    288: struct object KooMult(ob1,ob2)
1.7       takayama  289:      struct object ob1,ob2;
1.1       maekawa   290: {
                    291:   struct object rob = NullObject;
                    292:   POLY r;
                    293:   int i,s;
                    294:   objectp f1,f2,g1,g2;
                    295:   struct object dd,nn;
                    296:
                    297:
                    298:   switch (Lookup[ob1.tag][ob2.tag]) {
                    299:   case SintegerSinteger:
                    300:     return(KpoInteger(ob1.lc.ival * ob2.lc.ival));
                    301:     break;
                    302:   case SpolySpoly:
                    303:     r = ppMult(ob1.lc.poly,ob2.lc.poly);
                    304:     rob.tag = Spoly; rob.lc.poly = r;
                    305:     return(rob);
                    306:     break;
                    307:   case SarraySarray:
                    308:     return(KaoMult(ob1,ob2));
                    309:     break;
                    310:   case SpolySarray:
                    311:   case SuniversalNumberSarray:
                    312:   case SrationalFunctionSarray:
                    313:   case SintegerSarray:
                    314:     s = getoaSize(ob2);
                    315:     rob = newObjectArray(s);
                    316:     for (i=0; i<s; i++) {
                    317:       putoa(rob,i,KooMult(ob1,getoa(ob2,i)));
                    318:     }
                    319:     return(rob);
                    320:     break;
                    321:
                    322:   case SarraySpoly:
                    323:   case SarraySuniversalNumber:
                    324:   case SarraySrationalFunction:
                    325:   case SarraySinteger:
                    326:     s = getoaSize(ob1);
                    327:     rob = newObjectArray(s);
                    328:     for (i=0; i<s; i++) {
                    329:       putoa(rob,i,KooMult(getoa(ob1,i),ob2));
                    330:     }
                    331:     return(rob);
                    332:     break;
                    333:
                    334:
                    335:   case SuniversalNumberSuniversalNumber:
                    336:     rob.tag = SuniversalNumber;
                    337:     rob.lc.universalNumber = newUniversalNumber(0);
                    338:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    339:     return(rob);
                    340:     break;
                    341:
                    342:   case SuniversalNumberSpoly:
                    343:     r = ob2.lc.poly;
                    344:     if (r ISZERO) {
                    345:       rob.tag = SuniversalNumber;
                    346:       rob.lc.universalNumber = newUniversalNumber(0);
                    347:       return(rob); /* returns universal number. */
                    348:     }
                    349:     if (isZero(ob1.lc.universalNumber)) {
                    350:       rob.tag = Spoly;
                    351:       rob.lc.poly = ZERO;
                    352:       return(rob);
                    353:     }
                    354:     rob.tag = Spoly;
                    355:     rob.lc.poly = ppMult(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    356:     return(rob);
                    357:     break;
                    358:   case SpolySuniversalNumber:
                    359:     return(KooMult(ob2,ob1));
                    360:     break;
                    361:
                    362:   case SuniversalNumberSinteger:
                    363:     rob.tag = SuniversalNumber;
                    364:     rob.lc.universalNumber = newUniversalNumber(0);
                    365:     nn.tag = SuniversalNumber;
                    366:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    367:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    368:     return(rob);
                    369:     break;
                    370:   case SintegerSuniversalNumber:
                    371:     rob.tag = SuniversalNumber;
                    372:     rob.lc.universalNumber = newUniversalNumber(0);
                    373:     nn.tag = SuniversalNumber;
                    374:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    375:     Cmult(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    376:     return(rob);
                    377:     break;
                    378:
                    379:   case SrationalFunctionSrationalFunction:
                    380:     f1 = Knumerator(ob1);
                    381:     f2 = Kdenominator(ob1);
                    382:     g1 = Knumerator(ob2);
                    383:     g2 = Kdenominator(ob2);
                    384:     nn = KooMult(*f1,*g1);
                    385:     dd = KooMult(*f2,*g2);
                    386:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    387:     KisInvalidRational(&rob);
                    388:     return(rob);
                    389:     break;
                    390:   case SpolySrationalFunction:  /* ob1 g1/g2 */
                    391:   case SuniversalNumberSrationalFunction:
                    392:     g1 = Knumerator(ob2);
                    393:     g2 = Kdenominator(ob2);
                    394:     nn = KooMult(ob1,*g1);
                    395:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    396:     KisInvalidRational(&rob);
                    397:     return(rob);
                    398:     break;
                    399:   case SrationalFunctionSpoly:
                    400:   case SrationalFunctionSuniversalNumber: /* f1*ob2/f2 */
                    401:     f1 = Knumerator(ob1);
                    402:     f2 = Kdenominator(ob1);
                    403:     nn = KooMult(*f1,ob2);
                    404:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    405:     KisInvalidRational(&rob);
                    406:     return(rob);
                    407:     break;
                    408:
                    409:   case SdoubleSdouble:
                    410:     return(KpoDouble( KopDouble(ob1) * KopDouble(ob2) ));
                    411:     break;
                    412:   case SdoubleSinteger:
                    413:   case SdoubleSuniversalNumber:
                    414:   case SdoubleSrationalFunction:
                    415:     return(KpoDouble( KopDouble(ob1) * toDouble0(ob2) ) );
                    416:     break;
                    417:   case SintegerSdouble:
                    418:   case SuniversalNumberSdouble:
                    419:   case SrationalFunctionSdouble:
                    420:     return(KpoDouble( toDouble0(ob1) * KopDouble(ob2) ) );
                    421:     break;
                    422:
                    423:   default:
1.20      takayama  424:     if (QuoteMode) {
1.22      takayama  425:       rob = timesTree(ob1,ob2);
1.20      takayama  426:     }else{
                    427:       warningKan("KooMult() has not supported yet these objects.\n");
                    428:     }
1.1       maekawa   429:     break;
                    430:   }
                    431:   return(rob);
                    432: }
                    433:
                    434:
                    435:
                    436: struct object KoNegate(obj)
1.7       takayama  437:      struct object obj;
1.1       maekawa   438: {
                    439:   struct object rob = NullObject;
                    440:   extern struct ring SmallRing;
                    441:   struct object tob;
                    442:   switch(obj.tag) {
                    443:   case Sinteger:
                    444:     rob = obj;
                    445:     rob.lc.ival = -rob.lc.ival;
                    446:     break;
                    447:   case Spoly:
                    448:     rob.tag = Spoly;
                    449:     rob.lc.poly = ppSub(ZERO,obj.lc.poly);
                    450:     break;
                    451:   case SuniversalNumber:
                    452:     rob.tag = SuniversalNumber;
                    453:     rob.lc.universalNumber = coeffNeg(obj.lc.universalNumber,&SmallRing);
                    454:     break;
                    455:   case SrationalFunction:
                    456:     rob.tag = SrationalFunction;
                    457:     tob = KoNegate(*(Knumerator(obj)));
                    458:     Knumerator(rob) = copyObjectp( &tob);
                    459:     Kdenominator(rob) = Kdenominator(obj);
                    460:     break;
                    461:
                    462:   case Sdouble:
                    463:     rob = KpoDouble( - toDouble0(obj) );
                    464:     break;
                    465:
                    466:   default:
1.20      takayama  467:     if (QuoteMode) {
                    468:       rob = unaryminusTree(obj);
                    469:     }else{
                    470:       warningKan("KoNegate() has not supported yet these objects.\n");
                    471:     }
1.1       maekawa   472:     break;
                    473:   }
                    474:   return(rob);
                    475: }
                    476:
                    477: struct object KoInverse(obj)
1.7       takayama  478:      struct object obj;
1.1       maekawa   479: {
                    480:   struct object rob = NullObject;
                    481:   extern struct coeff *UniversalOne;
                    482:   objectp onep;
                    483:   struct object tob;
                    484:   switch(obj.tag) {
                    485:   case Spoly:
                    486:     tob.tag = SuniversalNumber;
                    487:     tob.lc.universalNumber = UniversalOne;
                    488:     onep = copyObjectp(& tob);
                    489:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    490:     KisInvalidRational(&rob);
                    491:     break;
                    492:   case SuniversalNumber:
                    493:     tob.tag = SuniversalNumber;
                    494:     tob.lc.universalNumber = UniversalOne;
                    495:     onep = copyObjectp(& tob);
                    496:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    497:     KisInvalidRational(&rob);
                    498:     break;
                    499:   case SrationalFunction:
                    500:     rob = obj;
                    501:     Knumerator(rob) = Kdenominator(obj);
                    502:     Kdenominator(rob) = Knumerator(obj);
                    503:     KisInvalidRational(&rob);
                    504:     break;
                    505:   default:
                    506:     warningKan("KoInverse() has not supported yet these objects.\n");
                    507:     break;
                    508:   }
                    509:   return(rob);
                    510: }
                    511:
                    512:
                    513: static int isVector(ob)
1.7       takayama  514:      struct object ob;
1.1       maekawa   515: {
                    516:   int i,n;
                    517:   n = getoaSize(ob);
                    518:   for (i=0; i<n; i++) {
                    519:     if (getoa(ob,i).tag == Sarray) return(0);
                    520:   }
                    521:   return(1);
                    522: }
                    523:
                    524: static int isMatrix(ob,m,n)
1.7       takayama  525:      struct object ob;
                    526:      int m,n;
1.1       maekawa   527: {
                    528:   int i,j;
                    529:   for (i=0; i<m; i++) {
                    530:     if (getoa(ob,i).tag != Sarray) return(0);
                    531:     if (getoaSize(getoa(ob,i)) != n) return(0);
                    532:     for (j=0; j<n; j++) {
                    533:       if (getoa(getoa(ob,i),j).tag != Spoly) return(-1);
                    534:     }
                    535:   }
                    536:   return(1);
                    537: }
                    538:
                    539:
                    540: struct object KaoMult(aa,bb)
1.7       takayama  541:      struct object aa,bb;
                    542:      /* aa and bb is assumed to be array. */
1.1       maekawa   543: {
                    544:   int m,n,m2,n2;
                    545:   int i,j,k;
                    546:   POLY tmp;
                    547:   POLY fik;
                    548:   POLY gkj;
                    549:   struct object rob;
                    550:   int r1,r2;
                    551:   int rsize;
                    552:   struct object tob;
                    553:   struct object ob1;
                    554:   extern struct ring SmallRing;
                    555:
                    556:   m = getoaSize(aa); m2 = getoaSize(bb);
                    557:   if (m == 0 || m2 == 0) errorKan1("%s\n","KaoMult(). Invalid matrix size.");
                    558:
                    559:   /*  new code for vector x vector,... etc */
                    560:   r1 = isVector(aa); r2 = isVector(bb);
                    561:   if (r1 && r2 ) { /* vector X vector ---> scalar.*/
                    562:     rsize = getoaSize(aa);
                    563:     if (rsize != getoaSize(bb)) {
                    564:       errorKan1("%s\n","KaoMult(vector,vector). The size of the vectors must be the same.");
                    565:     }
                    566:     if (r1 != 0) {
                    567:       ob1 = getoa(aa,0);
                    568:       if (ob1.tag == Spoly) {
1.7       takayama  569:         rob.tag = Spoly; rob.lc.poly = ZERO;
1.1       maekawa   570:       }else if (ob1.tag == Sinteger) {
1.7       takayama  571:         rob.tag = Sinteger; rob.lc.ival = 0;
1.1       maekawa   572:       }else {
1.7       takayama  573:         rob.tag = SuniversalNumber;
                    574:         rob.lc.universalNumber = intToCoeff(0,&SmallRing);
1.1       maekawa   575:       }
                    576:     }else{
                    577:       rob.tag = Spoly; rob.lc.poly = ZERO;
                    578:     }
                    579:     for (i=0; i<rsize; i++) {
                    580:       rob = KooAdd(rob,KooMult(getoa(aa,i),getoa(bb,i)));
                    581:     }
                    582:     return(rob);
                    583:   } else if (r1 == 0 && r2 ) { /* matrix X vector ---> vector */
1.7       takayama  584:     /* (m n) (m2=n) */
1.1       maekawa   585:     n = getoaSize(getoa(aa,0));
                    586:     if (isMatrix(aa,m,n) == 0) {
                    587:       errorKan1("%s\n","KaoMult(matrix,vector). The left object is not matrix.");
                    588:     }else if (n != m2) {
                    589:       errorKan1("%s\n","KaoMult(). Invalid matrix and vector sizes for mult.");
                    590:     } else ;
                    591:     rob = newObjectArray(m);
                    592:     for (i=0; i<m; i++) {
                    593:       getoa(rob,i) = KooMult(getoa(aa,i),bb);
                    594:     }
                    595:     return(rob);
                    596:   }else if (r1 && r2 == 0) { /* vector X matrix ---> vector */
                    597:     tob = newObjectArray(1);
                    598:     getoa(tob,0) = aa;  /* [aa] * bb and strip [ ] */
                    599:     tob = KooMult(tob,bb);
                    600:     return(getoa(tob,0));
                    601:   } else ; /* continue: matrix X matrix case. */
                    602:   /* end of new code */
                    603:
                    604:   if (getoa(aa,0).tag != Sarray || getoa(bb,0).tag != Sarray) {
                    605:     errorKan1("%s\n","KaoMult(). Matrix must be given.");
                    606:   }
                    607:   n = getoaSize(getoa(aa,0));
                    608:   n2 = getoaSize(getoa(bb,0));
                    609:   if (n != m2) errorKan1("%s\n","KaoMult(). Invalid matrix size for mult. ((p,q)X(q,r)");
                    610:   r1 = isMatrix(aa,m,n); r2 = isMatrix(bb,m2,n2);
                    611:   if (r1 == -1 || r2 == -1) {
                    612:     /* Object multiplication. Elements are not polynomials. */
                    613:     struct object ofik,ogkj,otmp;
                    614:     rob = newObjectArray(m);
                    615:     for (i=0; i<m; i++) {
                    616:       getoa(rob,i) = newObjectArray(n2);
                    617:     }
                    618:     for (i=0; i<m; i++) {
                    619:       for (j=0; j<n2; j++) {
1.7       takayama  620:         ofik = getoa(getoa(aa,i),0);
                    621:         ogkj = getoa(getoa(bb,0),j);
                    622:         otmp = KooMult( ofik, ogkj);
                    623:         for (k=1; k<n; k++) {
                    624:           ofik = getoa(getoa(aa,i),k);
                    625:           ogkj = getoa(getoa(bb,k),j);
                    626:           otmp = KooAdd(otmp, KooMult( ofik, ogkj));
                    627:         }
                    628:         getoa(getoa(rob,i),j) = otmp;
1.1       maekawa   629:       }
                    630:     }
                    631:     return(rob);
                    632:     /*errorKan1("%s\n","KaoMult().Elements of the matrix must be polynomials.");*/
                    633:   }
                    634:   if (r1 == 0 || r2 == 0)
                    635:     errorKan1("%s\n","KaoMult(). Invalid matrix form for mult.");
                    636:
                    637:   rob = newObjectArray(m);
                    638:   for (i=0; i<m; i++) {
                    639:     getoa(rob,i) = newObjectArray(n2);
                    640:   }
                    641:   for (i=0; i<m; i++) {
                    642:     for (j=0; j<n2; j++) {
                    643:       tmp = ZERO;
                    644:       for (k=0; k<n; k++) {
1.7       takayama  645:         fik = KopPOLY(getoa(getoa(aa,i),k));
                    646:         gkj = KopPOLY(getoa(getoa(bb,k),j));
                    647:         tmp = ppAdd(tmp, ppMult( fik, gkj));
1.1       maekawa   648:       }
                    649:       getoa(getoa(rob,i),j) = KpoPOLY(tmp);
                    650:     }
                    651:   }
                    652:   return(rob);
                    653: }
                    654:
                    655: struct object KooDiv(ob1,ob2)
1.7       takayama  656:      struct object ob1,ob2;
1.1       maekawa   657: {
                    658:   struct object rob = NullObject;
                    659:   switch (Lookup[ob1.tag][ob2.tag]) {
                    660:   case SintegerSinteger:
                    661:     return(KpoInteger((ob1.lc.ival) / (ob2.lc.ival)));
                    662:     break;
                    663:   case SuniversalNumberSuniversalNumber:
                    664:     rob.tag = SuniversalNumber;
                    665:     rob.lc.universalNumber = newUniversalNumber(0);
                    666:     universalNumberDiv(rob.lc.universalNumber,ob1.lc.universalNumber,
1.7       takayama  667:                        ob2.lc.universalNumber);
1.1       maekawa   668:     return(rob);
                    669:     break;
                    670:
                    671:
                    672:   default:
1.20      takayama  673:     if (QuoteMode) {
                    674:       rob = divideTree(ob1,ob2);
                    675:     }else{
                    676:       warningKan("KooDiv() has not supported yet these objects.\n");
                    677:     }
1.1       maekawa   678:     break;
                    679:   }
                    680:   return(rob);
                    681: }
                    682:
                    683: /* :relation */
                    684: KooEqualQ(obj1,obj2)
1.7       takayama  685:      struct object obj1;
                    686:      struct object obj2;
1.1       maekawa   687: {
                    688:   struct object ob;
                    689:   int i;
                    690:   if (obj1.tag != obj2.tag) {
                    691:     warningKan("KooEqualQ(ob1,ob2): the datatypes of ob1 and ob2  are not same. Returns false (0).\n");
                    692:     return(0);
                    693:   }
                    694:   switch(obj1.tag) {
1.7       takayama  695:   case 0:
                    696:     return(1); /* case of NullObject */
                    697:     break;
                    698:   case Sinteger:
                    699:     if (obj1.lc.ival == obj2.lc.ival) return(1);
                    700:     else return(0);
                    701:     break;
                    702:   case Sstring:
                    703:   case Sdollar:
                    704:     if (strcmp(obj1.lc.str, obj2.lc.str)==0) return(1);
                    705:     else return(0);
                    706:     break;
                    707:   case Spoly:
                    708:     ob = KooSub(obj1,obj2);
                    709:     if (KopPOLY(ob) == ZERO) return(1);
                    710:     else return(0);
                    711:   case Sarray:
                    712:     if (getoaSize(obj1) != getoaSize(obj2)) return(0);
                    713:     for (i=0; i< getoaSize(obj1); i++) {
                    714:       if (KooEqualQ(getoa(obj1,i),getoa(obj2,i))) { ; }
                    715:       else { return(0); }
                    716:     }
                    717:     return(1);
                    718:   case Slist:
                    719:     if (KooEqualQ(*(obj1.lc.op),*(obj2.lc.op))) {
                    720:       if (isNullList(obj1.rc.op)) {
                    721:         if (isNullList(obj2.rc.op)) return(1);
                    722:         else return(0);
1.1       maekawa   723:       }else{
1.7       takayama  724:         if (isNullList(obj2.rc.op)) return(0);
                    725:         return(KooEqualQ(*(obj1.rc.op),*(obj2.rc.op)));
1.1       maekawa   726:       }
1.7       takayama  727:     }else{
                    728:       return(0);
1.1       maekawa   729:     }
1.7       takayama  730:     break;
                    731:   case SuniversalNumber:
                    732:     return(coeffEqual(obj1.lc.universalNumber,obj2.lc.universalNumber));
                    733:     break;
                    734:   case Sring:
                    735:     return(KopRingp(obj1) == KopRingp(obj2));
                    736:     break;
                    737:   case Sclass:
                    738:     return(KclassEqualQ(obj1,obj2));
                    739:     break;
                    740:   case Sdouble:
                    741:     return(KopDouble(obj1) == KopDouble(obj2));
                    742:     break;
                    743:   default:
                    744:     errorKan1("%s\n","KooEqualQ() has not supported these objects yet.");
                    745:     break;
                    746:   }
1.1       maekawa   747: }
                    748:
                    749:
                    750: struct object KoIsPositive(ob1)
1.7       takayama  751:      struct object ob1;
1.1       maekawa   752: {
                    753:   struct object rob = NullObject;
                    754:   switch (ob1.tag) {
                    755:   case Sinteger:
                    756:     return(KpoInteger(ob1.lc.ival > 0));
                    757:     break;
                    758:   default:
                    759:     warningKan("KoIsPositive() has not supported yet these objects.\n");
                    760:     break;
                    761:   }
                    762:   return(rob);
                    763: }
                    764:
                    765: struct object KooGreater(obj1,obj2)
1.7       takayama  766:      struct object obj1;
                    767:      struct object obj2;
1.1       maekawa   768: {
                    769:   struct object ob;
                    770:   int tt;
                    771:   if (obj1.tag != obj2.tag) {
                    772:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    773:   }
                    774:   switch(obj1.tag) {
1.7       takayama  775:   case 0:
                    776:     return(KpoInteger(1)); /* case of NullObject */
                    777:     break;
                    778:   case Sinteger:
                    779:     if (obj1.lc.ival > obj2.lc.ival) return(KpoInteger(1));
                    780:     else return(KpoInteger(0));
                    781:     break;
                    782:   case Sstring:
                    783:   case Sdollar:
                    784:     if (strcmp(obj1.lc.str, obj2.lc.str)>0) return(KpoInteger(1));
                    785:     else return(KpoInteger(0));
                    786:     break;
                    787:   case Spoly:
                    788:     if ((*mmLarger)(obj1.lc.poly,obj2.lc.poly) == 1) return(KpoInteger(1));
                    789:     else return(KpoInteger(0));
                    790:     break;
                    791:   case SuniversalNumber:
                    792:     tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    793:     if (tt > 0) return(KpoInteger(1));
                    794:     else return(KpoInteger(0));
                    795:     break;
                    796:   case Sdouble:
                    797:     if ( KopDouble(obj1) > KopDouble(obj2) ) return(KpoInteger(1));
                    798:     else return(KpoInteger(0));
                    799:     break;
                    800:   default:
                    801:     errorKan1("%s\n","KooGreater() has not supported these objects yet.");
                    802:     break;
                    803:   }
1.1       maekawa   804: }
                    805:
                    806: struct object KooLess(obj1,obj2)
1.7       takayama  807:      struct object obj1;
                    808:      struct object obj2;
1.1       maekawa   809: {
                    810:   struct object ob;
                    811:   int tt;
                    812:   if (obj1.tag != obj2.tag) {
                    813:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    814:   }
                    815:   switch(obj1.tag) {
1.7       takayama  816:   case 0:
                    817:     return(KpoInteger(1)); /* case of NullObject */
                    818:     break;
                    819:   case Sinteger:
                    820:     if (obj1.lc.ival < obj2.lc.ival) return(KpoInteger(1));
                    821:     else return(KpoInteger(0));
                    822:     break;
                    823:   case Sstring:
                    824:   case Sdollar:
                    825:     if (strcmp(obj1.lc.str, obj2.lc.str)<0) return(KpoInteger(1));
                    826:     else return(KpoInteger(0));
                    827:     break;
                    828:   case Spoly:
                    829:     if ((*mmLarger)(obj2.lc.poly,obj1.lc.poly) == 1) return(KpoInteger(1));
                    830:     else return(KpoInteger(0));
                    831:     break;
                    832:   case SuniversalNumber:
                    833:     tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    834:     if (tt < 0) return(KpoInteger(1));
                    835:     else return(KpoInteger(0));
                    836:     break;
                    837:   case Sdouble:
                    838:     if ( KopDouble(obj1) < KopDouble(obj2) ) return(KpoInteger(1));
                    839:     else return(KpoInteger(0));
                    840:     break;
                    841:   default:
                    842:     errorKan1("%s\n","KooLess() has not supported these objects yet.");
                    843:     break;
                    844:   }
1.1       maekawa   845: }
                    846:
                    847: /* :conversion */
                    848:
                    849: struct object KdataConversion(obj,key)
1.7       takayama  850:      struct object obj;
                    851:      char *key;
1.1       maekawa   852: {
                    853:   char tmps[128]; /* Assume that double is not more than 128 digits */
                    854:   char intstr[100]; /* Assume that int is not more than 100 digits */
                    855:   struct object rob;
                    856:   extern struct ring *CurrentRingp;
                    857:   extern struct ring SmallRing;
                    858:   int flag;
                    859:   struct object rob1,rob2;
                    860:   char *s;
                    861:   int i;
1.2       takayama  862:   double f;
                    863:   double f2;
1.1       maekawa   864:   /* reports the data type */
                    865:   if (key[0] == 't' || key[0] =='e') {
                    866:     if (strcmp(key,"type?")==0) {
                    867:       rob = KpoInteger(obj.tag);
                    868:       return(rob);
                    869:     }else if (strcmp(key,"type??")==0) {
                    870:       if (obj.tag != Sclass) {
1.7       takayama  871:         rob = KpoInteger(obj.tag);
1.1       maekawa   872:       }else {
1.7       takayama  873:         rob = KpoInteger(ectag(obj));
1.1       maekawa   874:       }
                    875:       return(rob);
                    876:     }else if (strcmp(key,"error")==0) {
                    877:       rob = KnewErrorPacketObj(obj);
                    878:       return(rob);
                    879:     }
                    880:   }
                    881:   switch(obj.tag) {
                    882:   case Snull:
                    883:     if (strcmp(key,"integer") == 0) {
                    884:       rob = KpoInteger(0);
                    885:       return(rob);
                    886:     }else if (strcmp(key,"universalNumber") == 0) {
                    887:       rob.tag = SuniversalNumber;
                    888:       rob.lc.universalNumber = intToCoeff(obj.lc.ival,&SmallRing);
                    889:       return(rob);
                    890:     }else if (strcmp(key,"poly") == 0) {
                    891:       rob = KpoPOLY(ZERO);
                    892:     }else{
                    893:       warningKan("Sorry. The data conversion from null to this data type has not supported yet.\n");
                    894:     }
                    895:     break;
                    896:   case Sinteger:
                    897:     if (strcmp(key,"string") == 0) { /* ascii code */
                    898:       rob.tag = Sdollar;
                    899:       rob.lc.str = (char *)sGC_malloc(2);
                    900:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    901:       (rob.lc.str)[0] = obj.lc.ival; (rob.lc.str)[1] = '\0';
                    902:       return(rob);
                    903:     }else if (strcmp(key,"integer")==0) {
                    904:       return(obj);
                    905:     }else if (strcmp(key,"poly") == 0) {
                    906:       rob.tag = Spoly;
                    907:       rob.lc.poly = cxx(obj.lc.ival,0,0,CurrentRingp);
                    908:       return(rob);
                    909:     }else if (strcmp(key,"dollar") == 0) {
                    910:       rob.tag = Sdollar;
                    911:       sprintf(intstr,"%d",obj.lc.ival);
                    912:       rob.lc.str = (char *)sGC_malloc(strlen(intstr)+2);
                    913:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    914:       strcpy(rob.lc.str,intstr);
                    915:       return(rob);
                    916:     }else if (strcmp(key,"universalNumber")==0) {
1.25    ! takayama  917:       rob = KintToUniversalNumber(obj.lc.ival);
1.1       maekawa   918:       return(rob);
                    919:     }else if (strcmp(key,"double") == 0) {
                    920:       rob = KpoDouble((double) (obj.lc.ival));
                    921:       return(rob);
                    922:     }else if (strcmp(key,"null") == 0) {
                    923:       rob = NullObject;
                    924:       return(rob);
                    925:     }else{
                    926:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    927:     }
                    928:     break;
                    929:   case Sdollar:
                    930:     if (strcmp(key,"dollar") == 0 || strcmp(key,"string")==0) {
                    931:       rob = obj;
                    932:       return(rob);
                    933:     }else if (strcmp(key,"literal") == 0) {
                    934:       rob.tag = Sstring;
                    935:       s = (char *) sGC_malloc(sizeof(char)*(strlen(obj.lc.str)+3));
                    936:       if (s == (char *) NULL)   {
1.7       takayama  937:         errorKan1("%s\n","No memory.");
1.1       maekawa   938:       }
                    939:       s[0] = '/';
                    940:       strcpy(&(s[1]),obj.lc.str);
                    941:       rob.lc.str = &(s[1]);
                    942:       /* set the hashing value. */
                    943:       rob2 = lookupLiteralString(s);
                    944:       rob.rc.op = rob2.lc.op;
                    945:       return(rob);
                    946:     }else if (strcmp(key,"poly")==0) {
                    947:       rob.tag = Spoly;
                    948:       rob.lc.poly = stringToPOLY(obj.lc.str,CurrentRingp);
                    949:       return(rob);
                    950:     }else if (strcmp(key,"array")==0) {
                    951:       rob = newObjectArray(strlen(obj.lc.str));
                    952:       for (i=0; i<strlen(obj.lc.str); i++) {
1.7       takayama  953:         putoa(rob,i,KpoInteger((obj.lc.str)[i]));
1.1       maekawa   954:       }
                    955:       return(rob);
                    956:     }else if (strcmp(key,"universalNumber") == 0) {
                    957:       rob.tag = SuniversalNumber;
                    958:       rob.lc.universalNumber = stringToUniversalNumber(obj.lc.str,&flag);
                    959:       if (flag == -1) errorKan1("KdataConversion(): %s",
1.7       takayama  960:                                 "It's not number.\n");
1.2       takayama  961:       return(rob);
                    962:     }else if (strcmp(key,"double") == 0) {
                    963:       /* Check the format.  2.3432 e2 is not allowed. It should be 2.3232e2.*/
                    964:       flag = 0;
                    965:       for (i=0; (obj.lc.str)[i] != '\0'; i++) {
1.7       takayama  966:         if ((obj.lc.str)[i] > ' ' && flag == 0) flag=1;
                    967:         else if ((obj.lc.str)[i] <= ' ' && flag == 1) flag = 2;
                    968:         else if ((obj.lc.str)[i] > ' ' && flag == 2) flag=3;
1.2       takayama  969:       }
                    970:       if (flag == 3) errorKan1("KdataConversion(): %s","The data for the double contains blanck(s)");
                    971:       /* Read the double. */
                    972:       if (sscanf(obj.lc.str,"%lf",&f) <= 0) {
1.7       takayama  973:         errorKan1("KdataConversion(): %s","It cannot be translated to double.");
1.2       takayama  974:       }
                    975:       rob = KpoDouble(f);
1.1       maekawa   976:       return(rob);
                    977:     }else if (strcmp(key,"null") == 0) {
                    978:       rob = NullObject;
                    979:       return(rob);
                    980:     }else{
                    981:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    982:     }
                    983:     break;
                    984:   case Sarray:
                    985:     if (strcmp(key,"array") == 0) {
                    986:       return(rob);
                    987:     }else if (strcmp(key,"list") == 0) {
                    988:       rob = *( arrayToList(obj) );
                    989:       return(rob);
                    990:     }else if (strcmp(key,"arrayOfPOLY")==0) {
                    991:       rob = KpoArrayOfPOLY(arrayToArrayOfPOLY(obj));
                    992:       return(rob);
                    993:     }else if (strcmp(key,"matrixOfPOLY")==0) {
                    994:       rob = KpoMatrixOfPOLY(arrayToMatrixOfPOLY(obj));
                    995:       return(rob);
                    996:     }else if (strcmp(key,"gradedPolySet")==0) {
                    997:       rob = KpoGradedPolySet(arrayToGradedPolySet(obj));
                    998:       return(rob);
                    999:     }else if (strcmp(key,"null") == 0) {
                   1000:       rob = NullObject;
                   1001:       return(rob);
                   1002:     }else {
1.23      takayama 1003:          { /* Automatically maps the elements. */
                   1004:                int n,i;
                   1005:                n = getoaSize(obj);
                   1006:                rob = newObjectArray(n);
                   1007:                for (i=0; i<n; i++) {
                   1008:                  putoa(rob,i,KdataConversion(getoa(obj,i),key));
                   1009:                }
                   1010:                return(rob);
                   1011:          }
1.1       maekawa  1012:     }
                   1013:     break;
                   1014:   case Spoly:
1.15      takayama 1015:     if ((strcmp(key,"poly")==0) || (strcmp(key,"numerator")==0)) {
1.5       takayama 1016:       rob = obj;
1.1       maekawa  1017:       return(rob);
                   1018:     }else if (strcmp(key,"integer")==0) {
                   1019:       if (obj.lc.poly == ZERO) return(KpoInteger(0));
                   1020:       else {
1.7       takayama 1021:         return(KpoInteger(coeffToInt(obj.lc.poly->coeffp)));
1.1       maekawa  1022:       }
                   1023:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1024:       rob.tag = Sdollar;
                   1025:       rob.lc.str = KPOLYToString(KopPOLY(obj));
                   1026:       return(rob);
                   1027:     }else if (strcmp(key,"array") == 0) {
                   1028:       return( POLYToArray(KopPOLY(obj)));
                   1029:     }else if (strcmp(key,"map")==0) {
                   1030:       return(KringMap(obj));
                   1031:     }else if (strcmp(key,"universalNumber")==0) {
                   1032:       if (obj.lc.poly == ZERO) {
1.7       takayama 1033:         rob.tag = SuniversalNumber;
                   1034:         rob.lc.universalNumber = newUniversalNumber(0);
1.1       maekawa  1035:       } else {
1.7       takayama 1036:         if (obj.lc.poly->coeffp->tag == MP_INTEGER) {
                   1037:           rob.tag = SuniversalNumber;
                   1038:           rob.lc.universalNumber = newUniversalNumber2(obj.lc.poly->coeffp->val.bigp);
                   1039:         }else {
                   1040:           rob = NullObject;
                   1041:           warningKan("Coefficient is not MP_INT.");
                   1042:         }
1.1       maekawa  1043:       }
                   1044:       return(rob);
                   1045:     }else if (strcmp(key,"ring")==0) {
                   1046:       if (obj.lc.poly ISZERO) {
1.7       takayama 1047:         warningKan("Zero polynomial does not have the ring structure field.\n");
1.1       maekawa  1048:       }else{
1.7       takayama 1049:         rob.tag = Sring;
                   1050:         rob.lc.ringp = (obj.lc.poly)->m->ringp;
                   1051:         return(rob);
1.1       maekawa  1052:       }
                   1053:     }else if (strcmp(key,"null") == 0) {
                   1054:       rob = NullObject;
                   1055:       return(rob);
                   1056:     }else{
                   1057:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1058:     }
                   1059:     break;
                   1060:   case SarrayOfPOLY:
                   1061:     if (strcmp(key,"array")==0) {
                   1062:       rob = arrayOfPOLYToArray(KopArrayOfPOLYp(obj));
                   1063:       return(rob);
                   1064:     }else{
                   1065:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1066:     }
                   1067:     break;
                   1068:   case SmatrixOfPOLY:
                   1069:     if (strcmp(key,"array")==0) {
                   1070:       rob = matrixOfPOLYToArray(KopMatrixOfPOLYp(obj));
                   1071:       return(rob);
                   1072:     }else if (strcmp(key,"null") == 0) {
                   1073:       rob = NullObject;
                   1074:       return(rob);
                   1075:     }else{
                   1076:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1077:     }
                   1078:     break;
                   1079:   case Slist:
                   1080:     if (strcmp(key,"array") == 0) {
                   1081:       rob = listToArray(&obj);
                   1082:       return(rob);
                   1083:     }
                   1084:     break;
                   1085:   case SuniversalNumber:
1.15      takayama 1086:     if ((strcmp(key,"universalNumber")==0) || (strcmp(key,"numerator")==0)) {
1.1       maekawa  1087:       return(rob);
                   1088:     }else if (strcmp(key,"integer")==0) {
                   1089:       rob = KpoInteger(coeffToInt(obj.lc.universalNumber));
                   1090:       return(rob);
                   1091:     }else if (strcmp(key,"poly")==0) {
                   1092:       rob = KpoPOLY(universalToPoly(obj.lc.universalNumber,CurrentRingp));
                   1093:       return(rob);
                   1094:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1095:       rob.tag = Sdollar;
                   1096:       rob.lc.str = coeffToString(obj.lc.universalNumber);
                   1097:       return(rob);
                   1098:     }else if (strcmp(key,"null") == 0) {
                   1099:       rob = NullObject;
                   1100:       return(rob);
                   1101:     }else if (strcmp(key,"double") == 0) {
                   1102:       rob = KpoDouble( toDouble0(obj) );
                   1103:       return(rob);
1.25    ! takayama 1104:     }else if (strcmp(key,"denominator") == 0) {
        !          1105:       rob = KintToUniversalNumber(1);
        !          1106:       return(rob);
1.1       maekawa  1107:     }else{
                   1108:       warningKan("Sorry. This type of data conversion of universalNumber has not supported yet.\n");
                   1109:     }
                   1110:     break;
                   1111:   case SrationalFunction:
                   1112:     if (strcmp(key,"rationalFunction")==0) {
                   1113:       return(rob);
                   1114:     } if (strcmp(key,"numerator")==0) {
                   1115:       rob = *(Knumerator(obj));
                   1116:       return(rob);
                   1117:     }else if  (strcmp(key,"denominator")==0) {
                   1118:       rob = *(Kdenominator(obj));
                   1119:       return(rob);
                   1120:     }else if  (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1121:       rob1 = KdataConversion(*(Knumerator(obj)),"string");
                   1122:       rob2 = KdataConversion(*(Kdenominator(obj)),"string");
                   1123:       s = sGC_malloc(sizeof(char)*( strlen(rob1.lc.str) + strlen(rob2.lc.str) + 10));
                   1124:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1125:       sprintf(s,"(%s)/(%s)",rob1.lc.str,rob2.lc.str);
                   1126:       rob.tag = Sdollar;
                   1127:       rob.lc.str = s;
                   1128:       return(rob);
                   1129:     }else if  (strcmp(key,"cancel")==0) {
                   1130:       warningKan("Sorry. Data conversion <<cancel>> of rationalFunction has not supported yet.\n");
                   1131:       return(obj);
                   1132:     }else if (strcmp(key,"null") == 0) {
                   1133:       rob = NullObject;
                   1134:       return(rob);
                   1135:     }else if (strcmp(key,"double") == 0) {
                   1136:       rob = KpoDouble( toDouble0(obj) );
                   1137:       return(rob);
                   1138:     }else{
                   1139:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1140:     }
                   1141:     break;
                   1142:   case Sdouble:
                   1143:     if (strcmp(key,"integer") == 0) {
                   1144:       rob = KpoInteger( (int) KopDouble(obj));
                   1145:       return(rob);
                   1146:     } else if (strcmp(key,"universalNumber") == 0) {
                   1147:       rob.tag = SuniversalNumber;
                   1148:       rob.lc.universalNumber = intToCoeff((int) KopDouble(obj),&SmallRing);
                   1149:       return(rob);
                   1150:     }else if ((strcmp(key,"string") == 0) || (strcmp(key,"dollar") == 0)) {
                   1151:       sprintf(tmps,"%f",KopDouble(obj));
                   1152:       s = sGC_malloc(strlen(tmps)+2);
                   1153:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1154:       strcpy(s,tmps);
                   1155:       rob.tag = Sdollar;
                   1156:       rob.lc.str = s;
                   1157:       return(rob);
                   1158:     }else if (strcmp(key,"double")==0) {
                   1159:       return(obj);
                   1160:     }else if (strcmp(key,"null") == 0) {
                   1161:       rob = NullObject;
                   1162:       return(rob);
                   1163:     }else {
                   1164:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1165:     }
                   1166:     break;
                   1167:   case Sring:
                   1168:     if (strcmp(key,"orderMatrix")==0) {
                   1169:       rob = oGetOrderMatrix(KopRingp(obj));
                   1170:       return(rob);
1.22      takayama 1171:     }else if (strcmp(key,"oxRingStructure")==0) {
                   1172:       rob = oRingToOXringStructure(KopRingp(obj));
                   1173:       return(rob);
1.1       maekawa  1174:     }else{
                   1175:       warningKan("Sorryl This type of data conversion of ringp has not supported yet.\n");
                   1176:     }
                   1177:     break;
                   1178:   default:
                   1179:     warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1180:   }
                   1181:   return(NullObject);
                   1182: }
                   1183:
                   1184: /* conversion functions between primitive data and objects.
                   1185:    If it's not time critical, it is recommended to use these functions */
                   1186: struct object KpoInteger(k)
1.7       takayama 1187:      int k;
1.1       maekawa  1188: {
                   1189:   struct object obj;
                   1190:   obj.tag = Sinteger;
                   1191:   obj.lc.ival = k; obj.rc.ival = 0;
                   1192:   return(obj);
                   1193: }
                   1194: struct object KpoString(s)
1.7       takayama 1195:      char *s;
1.1       maekawa  1196: {
                   1197:   struct object obj;
                   1198:   obj.tag = Sdollar;
                   1199:   obj.lc.str = s; obj.rc.ival = 0;
                   1200:   return(obj);
                   1201: }
                   1202: struct object KpoPOLY(f)
1.7       takayama 1203:      POLY f;
1.1       maekawa  1204: {
                   1205:   struct object obj;
                   1206:   obj.tag = Spoly;
                   1207:   obj.lc.poly = f; obj.rc.ival = 0;
                   1208:   return(obj);
                   1209: }
                   1210: struct object KpoArrayOfPOLY(ap)
1.7       takayama 1211:      struct arrayOfPOLY *ap ;
1.1       maekawa  1212: {
                   1213:   struct object obj;
                   1214:   obj.tag = SarrayOfPOLY;
                   1215:   obj.lc.arrayp = ap; obj.rc.ival = 0;
                   1216:   return(obj);
                   1217: }
                   1218:
                   1219: struct object KpoMatrixOfPOLY(mp)
1.7       takayama 1220:      struct matrixOfPOLY *mp ;
1.1       maekawa  1221: {
                   1222:   struct object obj;
                   1223:   obj.tag = SmatrixOfPOLY;
                   1224:   obj.lc.matrixp = mp; obj.rc.ival = 0;
                   1225:   return(obj);
                   1226: }
                   1227:
                   1228: struct object KpoRingp(ringp)
1.7       takayama 1229:      struct ring *ringp;
1.1       maekawa  1230: {
                   1231:   struct object obj;
                   1232:   obj.tag = Sring;
                   1233:   obj.lc.ringp = ringp;
                   1234:   return(obj);
                   1235: }
                   1236:
1.22      takayama 1237: struct object KpoUniversalNumber(u)
                   1238:      struct coeff *u;
                   1239: {
                   1240:   struct object obj;
                   1241:   obj.tag = SuniversalNumber;
                   1242:   obj.lc.universalNumber = u;
                   1243:   return(obj);
                   1244: }
1.25    ! takayama 1245: struct object KintToUniversalNumber(n)
        !          1246:         int n;
        !          1247: {
        !          1248:   struct object rob;
        !          1249:   extern struct ring SmallRing;
        !          1250:   rob.tag = SuniversalNumber;
        !          1251:   rob.lc.universalNumber = intToCoeff(n,&SmallRing);
        !          1252:   return(rob);
        !          1253: }
        !          1254:
1.1       maekawa  1255: /*** conversion 2. Data conversions on arrays and matrices. ****/
                   1256: struct object arrayOfPOLYToArray(aa)
1.7       takayama 1257:      struct arrayOfPOLY *aa;
1.1       maekawa  1258: {
                   1259:   POLY *a;
                   1260:   int size;
                   1261:   struct object r;
                   1262:   int j;
                   1263:   struct object tmp;
                   1264:
                   1265:   size = aa->n; a = aa->array;
                   1266:   r = newObjectArray(size);
                   1267:   for (j=0; j<size; j++) {
                   1268:     tmp.tag = Spoly;
                   1269:     tmp.lc.poly= a[j];
                   1270:     putoa(r,j,tmp);
                   1271:   }
                   1272:   return( r );
                   1273: }
                   1274:
                   1275: struct object matrixOfPOLYToArray(pmat)
1.7       takayama 1276:      struct matrixOfPOLY *pmat;
1.1       maekawa  1277: {
                   1278:   struct object r;
                   1279:   struct object tmp;
                   1280:   int i,j;
                   1281:   int m,n;
                   1282:   POLY *mat;
                   1283:   struct arrayOfPOLY ap;
                   1284:
                   1285:   m = pmat->m; n = pmat->n; mat = pmat->mat;
                   1286:   r = newObjectArray(m);
                   1287:   for (i=0; i<m; i++) {
                   1288:     ap.n = n; ap.array = &(mat[ind(i,0)]);
                   1289:     tmp = arrayOfPOLYToArray(&ap);
                   1290:     /* ind() is the macro defined in matrix.h. */
                   1291:     putoa(r,i,tmp);
                   1292:   }
                   1293:   return(r);
                   1294: }
                   1295:
                   1296: struct arrayOfPOLY *arrayToArrayOfPOLY(oa)
1.7       takayama 1297:      struct object oa;
1.1       maekawa  1298: {
                   1299:   POLY *a;
                   1300:   int size;
                   1301:   int i;
                   1302:   struct object tmp;
                   1303:   struct arrayOfPOLY *ap;
                   1304:
                   1305:   if (oa.tag != Sarray) errorKan1("KarrayToArrayOfPOLY(): %s",
1.7       takayama 1306:                                   "Argument is not array\n");
1.1       maekawa  1307:   size = getoaSize(oa);
                   1308:   a = (POLY *)sGC_malloc(sizeof(POLY)*size);
                   1309:   for (i=0; i<size; i++) {
                   1310:     tmp = getoa(oa,i);
                   1311:     if (tmp.tag != Spoly) errorKan1("KarrayToArrayOfPOLY():%s ",
1.7       takayama 1312:                                     "element must be polynomial.\n");
1.1       maekawa  1313:     a[i] = tmp.lc.poly;
                   1314:   }
                   1315:   ap = (struct arrayOfPOLY *)sGC_malloc(sizeof(struct arrayOfPOLY));
                   1316:   ap->n = size;
                   1317:   ap->array = a;
                   1318:   return(ap);
                   1319: }
                   1320:
                   1321: struct matrixOfPOLY *arrayToMatrixOfPOLY(oa)
1.7       takayama 1322:      struct object oa;
1.1       maekawa  1323: {
                   1324:   POLY *a;
                   1325:   int m;
                   1326:   int n;
                   1327:   int i,j;
                   1328:   struct matrixOfPOLY *ma;
                   1329:
                   1330:   struct object tmp,tmp2;
                   1331:   if (oa.tag != Sarray) errorKan1("KarrayToMatrixOfPOLY(): %s",
1.7       takayama 1332:                                   "Argument is not array\n");
1.1       maekawa  1333:   m = getoaSize(oa);
                   1334:   tmp = getoa(oa,0);
                   1335:   if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY():%s ",
1.7       takayama 1336:                                    "Argument is not array\n");
1.1       maekawa  1337:   n = getoaSize(tmp);
                   1338:   a = (POLY *)sGC_malloc(sizeof(POLY)*(m*n));
                   1339:   for (i=0; i<m; i++) {
                   1340:     tmp = getoa(oa,i);
                   1341:     if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY(): %s",
1.7       takayama 1342:                                      "element must be array.\n");
1.1       maekawa  1343:     for (j=0; j<n; j++) {
                   1344:       tmp2 = getoa(tmp,j);
                   1345:       if (tmp2.tag != Spoly) errorKan1("arrayToMatrixOfPOLY(): %s",
1.7       takayama 1346:                                        "element must be a polynomial.\n");
1.1       maekawa  1347:       a[ind(i,j)] = tmp2.lc.poly;
                   1348:       /* we use the macro ind here.  Be careful of using m and n. */
                   1349:     }
                   1350:   }
                   1351:   ma = (struct matrixOfPOLY *)sGC_malloc(sizeof(struct matrixOfPOLY));
                   1352:   ma->m = m; ma->n = n;
                   1353:   ma->mat = a;
                   1354:   return(ma);
                   1355: }
                   1356:
                   1357: /* :misc */
                   1358:
                   1359: /* :ring    :kan */
                   1360: int objArrayToOrderMatrix(oA,order,n,oasize)
1.7       takayama 1361:      struct object oA;
                   1362:      int order[];
                   1363:      int n;
                   1364:      int oasize;
1.1       maekawa  1365: {
                   1366:   int size;
                   1367:   int k,j;
                   1368:   struct object tmpOa;
                   1369:   struct object obj;
                   1370:   if (oA.tag != Sarray) {
                   1371:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1372:     return(-1);
                   1373:   }
                   1374:   size = getoaSize(oA);
                   1375:   if (size != oasize) {
                   1376:     warningKan("The row size of the array is wrong.");
                   1377:     return(-1);
                   1378:   }
                   1379:   for (k=0; k<size; k++) {
                   1380:     tmpOa = getoa(oA,k);
                   1381:     if (tmpOa.tag != Sarray) {
                   1382:       warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1383:       return(-1);
                   1384:     }
                   1385:     if (getoaSize(tmpOa) != 2*n) {
                   1386:       warningKan("The column size of the array is wrong.");
                   1387:       return(-1);
                   1388:     }
                   1389:     for (j=0; j<2*n; j++) {
                   1390:       obj = getoa(tmpOa,j);
                   1391:       order[k*2*n+j] = obj.lc.ival;
                   1392:     }
                   1393:   }
                   1394:   return(0);
                   1395: }
                   1396:
                   1397: int KsetOrderByObjArray(oA)
1.7       takayama 1398:      struct object oA;
1.1       maekawa  1399: {
                   1400:   int *order;
                   1401:   int n,c,l, oasize;
                   1402:   extern struct ring *CurrentRingp;
                   1403:   extern int AvoidTheSameRing;
                   1404:   /* n,c,l must be set in the CurrentRing */
                   1405:   if (AvoidTheSameRing) {
                   1406:     errorKan1("%s\n","KsetOrderByObjArray(): You cannot change the order matrix when AvoidTheSameRing == 1.");
                   1407:   }
                   1408:   n = CurrentRingp->n;
                   1409:   c = CurrentRingp->c;
                   1410:   l = CurrentRingp->l;
                   1411:   if (oA.tag != Sarray) {
                   1412:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1413:     return(-1);
                   1414:   }
                   1415:   oasize = getoaSize(oA);
                   1416:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1417:   if (order == (int *)NULL) errorKan1("%s\n","KsetOrderByObjArray(): No memory.");
                   1418:   if (objArrayToOrderMatrix(oA,order,n,oasize) == -1) {
                   1419:     return(-1);
                   1420:   }
                   1421:   setOrderByMatrix(order,n,c,l,oasize); /* Set order to the current ring. */
                   1422:   return(0);
                   1423: }
                   1424:
                   1425: static int checkRelations(c,l,m,n,cc,ll,mm,nn)
1.7       takayama 1426:      int c,l,m,n,cc,ll,mm,nn;
1.1       maekawa  1427: {
                   1428:   if (!(1<=c && c<=l && l<=m && m<=n)) return(1);
                   1429:   if (!(cc<=ll && ll<=mm && mm<=nn && nn <= n)) return(1);
                   1430:   if (!(cc<c || ll < l || mm < m || nn < n)) {
                   1431:     if (WarningNoVectorVariable) {
1.4       takayama 1432:       warningKanNoStrictMode("Ring definition: there is no variable to represent vectors.\n");
1.1       maekawa  1433:     }
                   1434:   }
                   1435:   if (!(cc<=c && ll <= l && mm <= m && nn <= n)) return(1);
                   1436:   return(0);
                   1437: }
                   1438:
                   1439: struct object KgetOrderMatrixOfCurrentRing()
                   1440: {
                   1441:   extern struct ring *CurrentRingp;
                   1442:   return(oGetOrderMatrix(CurrentRingp));
                   1443: }
                   1444:
                   1445:
                   1446: int KsetUpRing(ob1,ob2,ob3,ob4,ob5)
1.7       takayama 1447:      struct object ob1,ob2,ob3,ob4,ob5;
                   1448:      /* ob1 = [x(0), ..., x(n-1)];
                   1449:         ob2 = [D(0), ..., D(n-1)];
                   1450:         ob3 = [p,c,l,m,n,cc,ll,mm,nn,next];
                   1451:         ob4 = Order matrix
                   1452:         ob5 = [(keyword) value (keyword) value ....]
                   1453:      */
1.1       maekawa  1454: #define RP_LIMIT 500
                   1455: {
                   1456:   int i;
                   1457:   struct object ob;
                   1458:   int c,l,m,n;
                   1459:   int cc,ll,mm,nn;
                   1460:   int p;
                   1461:   char **xvars;
                   1462:   char **dvars;
                   1463:   int *outputVars;
                   1464:   int *order;
                   1465:   static int rp = 0;
                   1466:   static struct ring *rstack[RP_LIMIT];
                   1467:
                   1468:   extern struct ring *CurrentRingp;
                   1469:   struct ring *newRingp;
                   1470:   int ob3Size;
                   1471:   struct ring *nextRing;
                   1472:   int oasize;
                   1473:   static int ringSerial = 0;
                   1474:   char *ringName = NULL;
                   1475:   int aa;
                   1476:   extern int AvoidTheSameRing;
                   1477:   extern char *F_mpMult;
                   1478:   char *fmp_mult_saved;
                   1479:   char *mpMultName = NULL;
                   1480:   struct object rob;
                   1481:   struct ring *savedCurrentRingp;
                   1482:
                   1483:   /* To get the ring structure. */
                   1484:   if (ob1.tag == Snull) {
                   1485:     rob = newObjectArray(rp);
                   1486:     for (i=0; i<rp; i++) {
                   1487:       putoa(rob,i,KpoRingp(rstack[i]));
                   1488:     }
                   1489:     KSpush(rob);
                   1490:     return(0);
                   1491:   }
                   1492:
                   1493:   if (ob3.tag != Sarray) errorKan1("%s\n","Error in the 3rd argument. You need to give 4 arguments.");
                   1494:   ob3Size = getoaSize(ob3);
                   1495:   if (ob3Size != 9 && ob3Size != 10)
                   1496:     errorKan1("%s\n","Error in the 3rd argument.");
                   1497:   for (i=0; i<9; i++) {
                   1498:     ob = getoa(ob3,i);
                   1499:     if (ob.tag != Sinteger) errorKan1("%s\n","The 3rd argument should be a list of integers.");
                   1500:   }
                   1501:   if (ob3Size == 10) {
                   1502:     ob = getoa(ob3,9);
                   1503:     if (ob.tag != Sring)
                   1504:       errorKan1("%s\n","The last arguments of the 3rd argument must be a pointer to a ring.");
                   1505:     nextRing = KopRingp(ob);
                   1506:   } else {
                   1507:     nextRing = (struct ring *)NULL;
                   1508:   }
                   1509:
                   1510:   p = getoa(ob3,0).lc.ival;
                   1511:   c = getoa(ob3,1).lc.ival;  l = getoa(ob3,2).lc.ival;
                   1512:   m = getoa(ob3,3).lc.ival;  n = getoa(ob3,4).lc.ival;
                   1513:   cc = getoa(ob3,5).lc.ival;  ll = getoa(ob3,6).lc.ival;
                   1514:   mm = getoa(ob3,7).lc.ival;  nn = getoa(ob3,8).lc.ival;
                   1515:   if (checkRelations(c,l,m,n,cc,ll,mm,nn,n)) {
                   1516:     errorKan1("%s\n","1<=c<=l<=m<=n and cc<=c<=ll<=l<=mm<=m<=nn<=n \nand (cc<c or ll < l or mm < m or nn < n)  must be satisfied.");
                   1517:   }
                   1518:   if (getoaSize(ob2) != n || getoaSize(ob1) != n) {
                   1519:     errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1520:   }
                   1521:   for (i=0; i<n; i++) {
                   1522:     if (getoa(ob1,i).tag != Sdollar || getoa(ob2,i).tag != Sdollar) {
                   1523:       errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1524:     }
                   1525:   }
                   1526:   xvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1527:   dvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1528:   if (xvars == (char **)NULL || dvars == (char **)NULL) {
                   1529:     fprintf(stderr,"No more memory.\n");
                   1530:     exit(15);
                   1531:   }
                   1532:   for (i=0; i<n; i++) {
                   1533:     xvars[i] = getoa(ob1,i).lc.str;
                   1534:     dvars[i] = getoa(ob2,i).lc.str;
                   1535:   }
                   1536:   checkDuplicateName(xvars,dvars,n);
                   1537:
                   1538:   outputVars = (int *)sGC_malloc(sizeof(int)*n*2);
                   1539:   if (outputVars == NULL) {
                   1540:     fprintf(stderr,"No more memory.\n");
                   1541:     exit(15);
                   1542:   }
                   1543:   if (ReverseOutputOrder) {
                   1544:     for (i=0; i<n; i++) outputVars[i] = n-i-1;
                   1545:     for (i=0; i<n; i++) outputVars[n+i] = 2*n-i-1;
                   1546:   }else{
                   1547:     for (i=0; i<2*n; i++) {
                   1548:       outputVars[i] = i;
                   1549:     }
                   1550:   }
                   1551:
                   1552:   oasize = getoaSize(ob4);
                   1553:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1554:   if (order == (int *)NULL) errorKan1("%s\n","No memory.");
                   1555:   if (objArrayToOrderMatrix(ob4,order,n,oasize) == -1) {
                   1556:     errorKan1("%s\n","Errors in the 4th matrix (order matrix).");
                   1557:   }
                   1558:   /* It's better to check the consistency of the order matrix here. */
                   1559:   savedCurrentRingp = CurrentRingp;
                   1560:
                   1561:   newRingp = (struct ring *)sGC_malloc(sizeof(struct ring));
                   1562:   if (newRingp == NULL) errorKan1("%s\n","No more memory.");
                   1563:   /* Generate the new ring before calling setOrder...(). */
                   1564:   *newRingp = *CurrentRingp;
                   1565:   CurrentRingp = newRingp;  /* Push the current ring. */
                   1566:   setOrderByMatrix(order,n,c,l,oasize); /* set order to the CurrentRing. */
                   1567:   CurrentRingp = savedCurrentRingp; /* recover it. */
                   1568:
                   1569:
                   1570:   /* Set the default name of the ring */
                   1571:   ringName = (char *)sGC_malloc(16);
                   1572:   sprintf(ringName,"ring%05d",ringSerial);
                   1573:   ringSerial++;
                   1574:
                   1575:   /* Set the current ring */
                   1576:   newRingp->n = n; newRingp->m = m; newRingp->l = l; newRingp->c = c;
                   1577:   newRingp->nn = nn; newRingp->mm = mm; newRingp->ll = ll;
                   1578:   newRingp->cc = cc;
                   1579:   newRingp->x = xvars;
                   1580:   newRingp->D = dvars;
                   1581:   /* You don't need to set order and orderMatrixSize here.
                   1582:      It was set by setOrder(). */
                   1583:   setFromTo(newRingp);
                   1584:
                   1585:   newRingp->p = p;
                   1586:   newRingp->next = nextRing;
                   1587:   newRingp->multiplication = mpMult;
                   1588:   /* These values  should will be reset if the optional value is given. */
                   1589:   newRingp->schreyer = 0;
                   1590:   newRingp->gbListTower = NULL;
                   1591:   newRingp->outputOrder = outputVars;
1.9       takayama 1592:   newRingp->weightedHomogenization = 0;
1.11      takayama 1593:   newRingp->degreeShiftSize = 0;
1.12      takayama 1594:   newRingp->degreeShiftN = 0;
                   1595:   newRingp->degreeShift = NULL;
1.1       maekawa  1596:
                   1597:   if (ob5.tag != Sarray || (getoaSize(ob5) % 2) != 0) {
                   1598:     errorKan1("%s\n","[(keyword) value (keyword) value ....] should be given.");
                   1599:   }
                   1600:   for (i=0; i < getoaSize(ob5); i += 2) {
                   1601:     if (getoa(ob5,i).tag == Sdollar) {
                   1602:       if (strcmp(KopString(getoa(ob5,i)),"mpMult") == 0) {
1.7       takayama 1603:         if (getoa(ob5,i+1).tag != Sdollar) {
                   1604:           errorKan1("%s\n","A keyword should be given. (mpMult)");
                   1605:         }
                   1606:         fmp_mult_saved = F_mpMult;
                   1607:         mpMultName = KopString(getoa(ob5,i+1));
                   1608:         switch_function("mpMult",mpMultName);
                   1609:         /* Note that this cause a global effect. It will be done again. */
                   1610:         newRingp->multiplication = mpMult;
                   1611:         switch_function("mpMult",fmp_mult_saved);
1.1       maekawa  1612:       } else if (strcmp(KopString(getoa(ob5,i)),"coefficient ring") == 0) {
1.7       takayama 1613:         if (getoa(ob5,i+1).tag != Sring) {
                   1614:           errorKan1("%s\n","The pointer to a ring should be given. (coefficient ring)");
                   1615:         }
                   1616:         nextRing = KopRingp(getoa(ob5,i+1));
                   1617:         newRingp->next = nextRing;
1.1       maekawa  1618:       } else if (strcmp(KopString(getoa(ob5,i)),"valuation") == 0) {
1.7       takayama 1619:         errorKan1("%s\n","Not implemented. (valuation)");
1.1       maekawa  1620:       } else if (strcmp(KopString(getoa(ob5,i)),"characteristic") == 0) {
1.7       takayama 1621:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1622:           errorKan1("%s\n","A integer should be given. (characteristic)");
                   1623:         }
                   1624:         p = KopInteger(getoa(ob5,i+1));
                   1625:         newRingp->p = p;
1.1       maekawa  1626:       } else if (strcmp(KopString(getoa(ob5,i)),"schreyer") == 0) {
1.7       takayama 1627:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1628:           errorKan1("%s\n","A integer should be given. (schreyer)");
                   1629:         }
                   1630:         newRingp->schreyer = KopInteger(getoa(ob5,i+1));
1.1       maekawa  1631:       } else if (strcmp(KopString(getoa(ob5,i)),"gbListTower") == 0) {
1.7       takayama 1632:         if (getoa(ob5,i+1).tag != Slist) {
                   1633:           errorKan1("%s\n","A list should be given (gbListTower).");
                   1634:         }
                   1635:         newRingp->gbListTower = newObject();
                   1636:         *((struct object *)(newRingp->gbListTower)) = getoa(ob5,i+1);
1.1       maekawa  1637:       } else if (strcmp(KopString(getoa(ob5,i)),"ringName") == 0) {
1.7       takayama 1638:         if (getoa(ob5,i+1).tag != Sdollar) {
                   1639:           errorKan1("%s\n","A name should be given. (ringName)");
                   1640:         }
                   1641:         ringName = KopString(getoa(ob5,i+1));
1.9       takayama 1642:       } else if (strcmp(KopString(getoa(ob5,i)),"weightedHomogenization") == 0) {
                   1643:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1644:           errorKan1("%s\n","A integer should be given. (weightedHomogenization)");
                   1645:         }
1.11      takayama 1646:         newRingp->weightedHomogenization = KopInteger(getoa(ob5,i+1));
                   1647:       } else if (strcmp(KopString(getoa(ob5,i)),"degreeShift") == 0) {
                   1648:         if (getoa(ob5,i+1).tag != Sarray) {
1.12      takayama 1649:           errorKan1("%s\n","An array of array should be given. (degreeShift)");
1.11      takayama 1650:         }
                   1651:         {
                   1652:           struct object ods;
1.12      takayama 1653:           struct object ods2;
                   1654:           int dssize,k,j,nn;
1.11      takayama 1655:           ods=getoa(ob5,i+1);
1.12      takayama 1656:           if ((getoaSize(ods) < 1) || (getoa(ods,0).tag != Sarray)) {
                   1657:             errorKan1("%s\n", "An array of array should be given. (degreeShift)");
                   1658:           }
                   1659:           nn = getoaSize(ods);
                   1660:           dssize = getoaSize(getoa(ods,0));
1.11      takayama 1661:           newRingp->degreeShiftSize = dssize;
1.12      takayama 1662:           newRingp->degreeShiftN = nn;
                   1663:           newRingp->degreeShift = (int *) sGC_malloc(sizeof(int)*(dssize*nn+1));
1.11      takayama 1664:           if (newRingp->degreeShift == NULL) errorKan1("%s\n","No more memory.");
1.12      takayama 1665:           for (j=0; j<nn; j++) {
                   1666:             ods2 = getoa(ods,j);
                   1667:             for (k=0; k<dssize; k++) {
                   1668:               if (getoa(ods2,k).tag == SuniversalNumber) {
                   1669:                 (newRingp->degreeShift)[j*dssize+k] = coeffToInt(getoa(ods2,k).lc.universalNumber);
                   1670:               }else{
                   1671:                 (newRingp->degreeShift)[j*dssize+k] = KopInteger(getoa(ods2,k));
                   1672:               }
1.11      takayama 1673:             }
                   1674:           }
                   1675:         }
1.22      takayama 1676:         switch_function("grade","module1v");
                   1677:         /* Warning: grading is changed to module1v!! */
1.1       maekawa  1678:       } else {
1.7       takayama 1679:         errorKan1("%s\n","Unknown keyword to set_up_ring@");
1.1       maekawa  1680:       }
                   1681:     }else{
                   1682:       errorKan1("%s\n","A keyword enclosed by braces have to be given.");
                   1683:     }
                   1684:   }
                   1685:
                   1686:   newRingp->name = ringName;
                   1687:
                   1688:
                   1689:   if (AvoidTheSameRing) {
                   1690:     aa = isTheSameRing(rstack,rp,newRingp);
                   1691:     if (aa < 0) {
                   1692:       /* This ring has never been defined. */
                   1693:       CurrentRingp = newRingp;
                   1694:       /* Install it to the RingStack */
                   1695:       if (rp <RP_LIMIT) {
1.7       takayama 1696:         rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
1.1       maekawa  1697:       }else{
1.7       takayama 1698:         rp = 0;
                   1699:         errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
1.1       maekawa  1700:       }
                   1701:     }else{
                   1702:       /* This ring has been defined. */
                   1703:       /* Discard the newRingp */
                   1704:       CurrentRingp = rstack[aa];
                   1705:       ringSerial--;
                   1706:     }
                   1707:   }else{
                   1708:     CurrentRingp = newRingp;
                   1709:     /* Install it to the RingStack */
                   1710:     if (rp <RP_LIMIT) {
                   1711:       rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
                   1712:     }else{
                   1713:       rp = 0;
                   1714:       errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
                   1715:     }
                   1716:   }
                   1717:   if (mpMultName != NULL) {
                   1718:     switch_function("mpMult",mpMultName);
                   1719:   }
                   1720:
                   1721:   initSyzRingp();
                   1722:
                   1723:   return(0);
                   1724: }
                   1725:
                   1726:
                   1727: struct object KsetVariableNames(struct object ob,struct ring *rp)
                   1728: {
                   1729:   int n,i;
                   1730:   struct object ox;
                   1731:   struct object otmp;
                   1732:   char **xvars;
                   1733:   char **dvars;
                   1734:   if (ob.tag  != Sarray) {
                   1735:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...]");
                   1736:   }
                   1737:   n = rp->n;
                   1738:   ox = ob;
                   1739:   if (getoaSize(ox) != 2*n) {
                   1740:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...] and the length of [(x) (y) (z) ...] must be equal to the number of x and D variables.");
                   1741:   }
                   1742:   xvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1743:   dvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1744:   if (xvars == NULL || dvars == NULL) {
                   1745:     errorKan1("%s\n","KsetVariableNames(): no more memory.");
                   1746:   }
                   1747:   for (i=0; i<2*n; i++) {
                   1748:     otmp = getoa(ox,i);
                   1749:     if(otmp.tag != Sdollar) {
                   1750:       errorKan1("%s\n","KsetVariableNames(): elements must be strings.");
                   1751:     }
                   1752:     if (i < n) {
                   1753:       xvars[i] = KopString(otmp);
                   1754:     }else{
                   1755:       dvars[i-n] = KopString(otmp);
                   1756:     }
                   1757:   }
                   1758:   checkDuplicateName(xvars,dvars,n);
                   1759:   rp->x = xvars;
                   1760:   rp->D = dvars;
                   1761:   return(ob);
                   1762: }
                   1763:
                   1764:
                   1765:
                   1766: void KshowRing(ringp)
1.7       takayama 1767:      struct ring *ringp;
1.1       maekawa  1768: {
                   1769:   showRing(1,ringp);
                   1770: }
                   1771:
                   1772: struct object KswitchFunction(ob1,ob2)
1.7       takayama 1773:      struct object ob1,ob2;
1.1       maekawa  1774: {
                   1775:   char *ans ;
                   1776:   struct object rob;
                   1777:   int needWarningForAvoidTheSameRing = 0;
                   1778:   extern int AvoidTheSameRing;
                   1779:   if ((ob1.tag != Sdollar) || (ob2.tag != Sdollar)) {
                   1780:     errorKan1("%s\n","$function$ $name$ switch_function\n");
                   1781:   }
                   1782:   if (AvoidTheSameRing && needWarningForAvoidTheSameRing) {
                   1783:     if (strcmp(KopString(ob1),"mmLarger") == 0 ||
                   1784:         strcmp(KopString(ob1),"mpMult") == 0 ||
                   1785:         strcmp(KopString(ob1),"monomialAdd") == 0 ||
                   1786:         strcmp(KopString(ob1),"isSameComponent") == 0) {
                   1787:       fprintf(stderr,",switch_function ==> %s ",KopString(ob1));
                   1788:       warningKan("switch_function might cause a trouble under AvoidTheSameRing == 1.\n");
                   1789:     }
                   1790:   }
                   1791:   if (AvoidTheSameRing) {
                   1792:     if (strcmp(KopString(ob1),"mmLarger") == 0 &&
1.7       takayama 1793:         strcmp(KopString(ob2),"matrix") != 0) {
1.1       maekawa  1794:       fprintf(stderr,"mmLarger = %s",KopString(ob2));
                   1795:       errorKan1("%s\n","mmLarger can set only to matrix under AvoidTheSameRing == 1.");
                   1796:     }
                   1797:   }
                   1798:
                   1799:   ans = switch_function(ob1.lc.str,ob2.lc.str);
                   1800:   if (ans == NULL) {
                   1801:     rob = NullObject;
                   1802:   }else{
                   1803:     rob = KpoString(ans);
                   1804:   }
                   1805:   return(rob);
                   1806:
                   1807: }
                   1808:
                   1809: void KprintSwitchStatus(void)
                   1810: {
                   1811:   print_switch_status();
                   1812: }
                   1813:
                   1814: struct object KoReplace(of,rule)
1.7       takayama 1815:      struct object of;
                   1816:      struct object rule;
1.1       maekawa  1817: {
                   1818:   struct object rob;
                   1819:   POLY f;
                   1820:   POLY lRule[N0*2];
                   1821:   POLY rRule[N0*2];
                   1822:   POLY r;
                   1823:   int i;
                   1824:   int n;
                   1825:   struct object trule;
                   1826:
                   1827:
                   1828:   if (rule.tag != Sarray) {
                   1829:     errorKan1("%s\n"," KoReplace(): The second argument must be array.");
                   1830:   }
                   1831:   n = getoaSize(rule);
                   1832:
1.6       takayama 1833:   if (of.tag == Spoly) {
                   1834:   }else if (of.tag ==Sclass && ectag(of) == CLASSNAME_recursivePolynomial) {
1.7       takayama 1835:     return(KreplaceRecursivePolynomial(of,rule));
1.6       takayama 1836:   }else{
1.1       maekawa  1837:     errorKan1("%s\n"," KoReplace(): The first argument must be a polynomial.");
                   1838:   }
                   1839:   f = KopPOLY(of);
                   1840:
                   1841:   if (f ISZERO) {
                   1842:   }else{
                   1843:     if (n >= 2*(f->m->ringp->n)) {
                   1844:       errorKan1("%s\n"," KoReplace(): too many rules for replacement. ");
                   1845:     }
                   1846:   }
                   1847:
                   1848:   for (i=0; i<n; i++) {
                   1849:     trule = getoa(rule,i);
                   1850:     if (trule.tag != Sarray) {
                   1851:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1852:     }
                   1853:     if (getoaSize(trule) != 2) {
                   1854:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1855:     }
                   1856:
                   1857:     if (getoa(trule,0).tag != Spoly) {
                   1858:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1859:     }
                   1860:     if (getoa(trule,1).tag != Spoly) {
                   1861:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1862:     }
                   1863:
                   1864:     lRule[i] = KopPOLY(getoa(trule,0));
                   1865:     rRule[i] = KopPOLY(getoa(trule,1));
                   1866:   }
                   1867:
                   1868:   r = replace(f,lRule,rRule,n);
                   1869:   rob.tag = Spoly; rob.lc.poly = r;
                   1870:
                   1871:   return(rob);
                   1872: }
                   1873:
                   1874:
                   1875: struct object Kparts(f,v)
1.7       takayama 1876:      struct object f;
                   1877:      struct object v;
1.1       maekawa  1878: {
                   1879:   POLY ff;
                   1880:   POLY vv;
                   1881:   struct object obj;
                   1882:   struct matrixOfPOLY *co;
                   1883:   /* check the data type */
                   1884:   if (f.tag != Spoly || v.tag != Spoly)
                   1885:     errorKan1("%s\n","arguments of Kparts() must have polynomial as arguments.");
                   1886:
                   1887:   co = parts(KopPOLY(f),KopPOLY(v));
                   1888:   obj = matrixOfPOLYToArray(co);
                   1889:   return(obj);
                   1890: }
                   1891:
                   1892: struct object Kparts2(f,v)
1.7       takayama 1893:      struct object f;
                   1894:      struct object v;
1.1       maekawa  1895: {
                   1896:   POLY ff;
                   1897:   POLY vv;
                   1898:   struct object obj;
                   1899:   struct matrixOfPOLY *co;
                   1900:   /* check the data type */
                   1901:   if (f.tag != Spoly || v.tag != Spoly)
                   1902:     errorKan1("%s\n","arguments of Kparts2() must have polynomial as arguments.");
                   1903:
                   1904:   obj = parts2(KopPOLY(f),KopPOLY(v));
                   1905:   return(obj);
                   1906: }
                   1907:
                   1908:
                   1909: struct object Kdegree(ob1,ob2)
1.7       takayama 1910:      struct object ob1,ob2;
1.1       maekawa  1911: {
                   1912:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   1913:     errorKan1("%s\n","The arguments must be polynomials.");
                   1914:
                   1915:   return(KpoInteger(pDegreeWrtV(KopPOLY(ob1),KopPOLY(ob2))));
                   1916: }
                   1917:
                   1918: struct object KringMap(obj)
1.7       takayama 1919:      struct object obj;
1.1       maekawa  1920: {
                   1921:   extern struct ring *CurrentRingp;
                   1922:   extern struct ring *SyzRingp;
                   1923:   POLY f;
                   1924:   POLY r;
                   1925:   if (obj.tag != Spoly)
                   1926:     errorKan1("%s\n","The argments must be polynomial.");
                   1927:   f = KopPOLY(obj);
                   1928:   if (f ISZERO) return(obj);
                   1929:   if (f->m->ringp == CurrentRingp) return(obj);
                   1930:   if (f->m->ringp == CurrentRingp->next) {
                   1931:     r = newCell(newCoeff(),newMonomial(CurrentRingp));
                   1932:     r->coeffp->tag = POLY_COEFF;
                   1933:     r->coeffp->val.f = f;
                   1934:     return(KpoPOLY(r));
                   1935:   }else if (f->m->ringp == SyzRingp) {
                   1936:     return(KpoPOLY(f->coeffp->val.f));
                   1937:   }
                   1938:   errorKan1("%s\n","The ring map is not defined in this case.");
                   1939: }
                   1940:
                   1941:
                   1942: struct object Ksp(ob1,ob2)
1.7       takayama 1943:      struct object ob1,ob2;
1.1       maekawa  1944: {
                   1945:   struct spValue sv;
                   1946:   struct object rob,cob;
                   1947:   POLY f;
                   1948:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   1949:     errorKan1("%s\n","Ksp(): The arguments must be polynomials.");
                   1950:   sv = (*sp)(ob1.lc.poly,ob2.lc.poly);
                   1951:   f = ppAddv(ppMult(sv.a,KopPOLY(ob1)),
1.7       takayama 1952:              ppMult(sv.b,KopPOLY(ob2)));
1.1       maekawa  1953:   rob = newObjectArray(2);
                   1954:   cob = newObjectArray(2);
                   1955:   putoa(rob,1,KpoPOLY(f));
                   1956:   putoa(cob,0,KpoPOLY(sv.a));
                   1957:   putoa(cob,1,KpoPOLY(sv.b));
                   1958:   putoa(rob,0,cob);
                   1959:   return(rob);
                   1960: }
                   1961:
                   1962: struct object Khead(ob)
1.7       takayama 1963:      struct object ob;
1.1       maekawa  1964: {
                   1965:   if (ob.tag != Spoly) errorKan1("%s\n","Khead(): The argument should be a polynomial.");
                   1966:   return(KpoPOLY(head( KopPOLY(ob))));
                   1967: }
                   1968:
                   1969:
                   1970: /* :eval */
                   1971: struct object Keval(obj)
1.7       takayama 1972:      struct object obj;
1.1       maekawa  1973: {
                   1974:   char *key;
                   1975:   int size;
                   1976:   struct object rob;
                   1977:   rob = NullObject;
                   1978:
                   1979:   if (obj.tag != Sarray)
                   1980:     errorKan1("%s\n","[$key$ arguments] eval");
                   1981:   if (getoaSize(obj) < 1)
                   1982:     errorKan1("%s\n","[$key$ arguments] eval");
                   1983:   if (getoa(obj,0).tag != Sdollar)
                   1984:     errorKan1("%s\n","[$key$ arguments] eval");
                   1985:   key = getoa(obj,0).lc.str;
                   1986:   size = getoaSize(obj);
                   1987:
                   1988:
                   1989:   return(rob);
                   1990: }
                   1991:
                   1992: /* :Utilities */
                   1993: char *KremoveSpace(str)
1.7       takayama 1994:      char str[];
1.1       maekawa  1995: {
                   1996:   int size;
                   1997:   int start;
                   1998:   int end;
                   1999:   char *s;
                   2000:   int i;
                   2001:
                   2002:   size = strlen(str);
                   2003:   for (start = 0; start <= size; start++) {
                   2004:     if (str[start] > ' ') break;
                   2005:   }
                   2006:   for (end = size-1; end >= 0; end--) {
                   2007:     if (str[end] > ' ') break;
                   2008:   }
                   2009:   if (start > end) return((char *) NULL);
                   2010:   s = (char *) sGC_malloc(sizeof(char)*(end-start+2));
                   2011:   if (s == (char *)NULL) errorKan1("%s\n","removeSpace(): No more memory.");
                   2012:   for (i=0; i< end-start+1; i++)
                   2013:     s[i] = str[i+start];
                   2014:   s[end-start+1] = '\0';
                   2015:   return(s);
                   2016: }
                   2017:
                   2018: struct object KtoRecords(ob)
1.7       takayama 2019:      struct object ob;
1.1       maekawa  2020: {
                   2021:   struct object obj;
                   2022:   struct object tmp;
                   2023:   int i;
                   2024:   int size;
                   2025:   char **argv;
                   2026:
                   2027:   obj = NullObject;
                   2028:   switch(ob.tag) {
                   2029:   case Sdollar: break;
                   2030:   default:
                   2031:     errorKan1("%s","Argument of KtoRecords() must be a string enclosed by dollars.\n");
                   2032:     break;
                   2033:   }
                   2034:   size = strlen(ob.lc.str)+3;
                   2035:   argv = (char **) sGC_malloc((size+1)*sizeof(char *));
                   2036:   if (argv == (char **)NULL)
                   2037:     errorKan1("%s","No more memory.\n");
                   2038:   size = KtoArgvbyCurryBrace(ob.lc.str,argv,size);
                   2039:   if (size < 0)
                   2040:     errorKan1("%s"," KtoRecords(): You have an error in the argument.\n");
                   2041:
                   2042:   obj = newObjectArray(size);
                   2043:   for (i=0; i<size; i++) {
                   2044:     tmp.tag = Sdollar;
                   2045:     tmp.lc.str = argv[i];
                   2046:     (obj.rc.op)[i] = tmp;
                   2047:   }
                   2048:   return(obj);
                   2049: }
                   2050:
                   2051: int KtoArgvbyCurryBrace(str,argv,limit)
1.7       takayama 2052:      char *str;
                   2053:      char *argv[];
                   2054:      int limit;
                   2055:      /* This function returns argc */
                   2056:      /* decompose into tokens by the separators
1.1       maekawa  2057:    { }, [ ], and characters of which code is less than SPACE.
                   2058:    Example.   { }  ---> nothing            (argc=0)
                   2059:               {x}----> x                   (argc=1)
                   2060:               {x,y} --> x   y              (argc=2)
1.7       takayama 2061:           {ab, y, z } --> ab   y   z   (argc=3)
1.1       maekawa  2062:               [[ab],c,d]  --> [ab] c   d
                   2063: */
                   2064: {
                   2065:   int argc;
                   2066:   int n;
                   2067:   int i;
                   2068:   int k;
                   2069:   char *a;
                   2070:   char *ident;
                   2071:   int level = 0;
                   2072:   int comma;
                   2073:
                   2074:   if (str == (char *)NULL) {
                   2075:     fprintf(stderr,"You use NULL string to toArgvbyCurryBrace()\n");
                   2076:     return(0);
                   2077:   }
                   2078:
                   2079:   n = strlen(str);
                   2080:   a = (char *) sGC_malloc(sizeof(char)*(n+3));
                   2081:   a[0]=' ';
                   2082:   strcpy(&(a[1]),str);
                   2083:   n = strlen(a); a[0] = '\0';
                   2084:   comma = -1;
                   2085:   for (i=1; i<n; i++) {
                   2086:     if (a[i] == '{' || a[i] == '[') level++;
                   2087:     if (level <= 1 && ( a[i] == ',')) {a[i] = '\0'; ++comma;}
                   2088:     if (level <= 1 && (a[i]=='{' || a[i]=='}' || a[i]=='[' || a[i]==']'))
                   2089:       a[i] = '\0';
                   2090:     if (a[i] == '}' || a[i] == ']') level--;
                   2091:     if ((level <= 1) && (comma == -1) && ( a[i] > ' ')) comma = 0;
                   2092:   }
                   2093:
                   2094:   if (comma == -1) return(0);
                   2095:
                   2096:   argc=0;
                   2097:   for (i=0; i<n; i++) {
                   2098:     if ((a[i] == '\0') && (a[i+1] != '\0')) ++argc;
                   2099:   }
                   2100:   if (argc > limit) return(-argc);
                   2101:
                   2102:   k = 0;
                   2103:   for (i=0; i<n; i++) {
                   2104:     if ((a[i] == '\0') && (a[i+1] != '\0')) {
                   2105:       ident = (char *) sGC_malloc(sizeof(char)*( strlen(&(a[i+1])) + 3));
                   2106:       strcpy(ident,&(a[i+1]));
                   2107:       argv[k] = KremoveSpace(ident);
                   2108:       if (argv[k] != (char *)NULL) k++;
                   2109:       if (k >= limit) errorKan1("%s\n","KtoArgvbyCurryBraces(): k>=limit.");
                   2110:     }
                   2111:   }
                   2112:   argc = k;
                   2113:   /*for (i=0; i<argc; i++) fprintf(stderr,"%d %s\n",i,argv[i]);*/
                   2114:   return(argc);
                   2115: }
                   2116:
1.14      takayama 2117: struct object KstringToArgv(struct object ob) {
                   2118:   struct object rob;
                   2119:   char *s;
                   2120:   int n,wc,i,inblank;
                   2121:   char **argv;
                   2122:   if (ob.tag != Sdollar)
1.22      takayama 2123:     errorKan1("%s\n","KstringToArgv(): the argument must be a string.");
1.14      takayama 2124:   n = strlen(KopString(ob));
                   2125:   s = (char *) sGC_malloc(sizeof(char)*(n+2));
                   2126:   if (s == NULL) errorKan1("%s\n","KstringToArgv(): No memory.");
                   2127:   strcpy(s,KopString(ob));
                   2128:   inblank = 1;  wc = 0;
                   2129:   for (i=0; i<n; i++) {
1.22      takayama 2130:     if (inblank && (s[i] > ' ')) {
                   2131:       wc++; inblank = 0;
                   2132:     }else if ((!inblank) && (s[i] <= ' ')) {
                   2133:       inblank = 1;
                   2134:     }
1.14      takayama 2135:   }
                   2136:   argv = (char **) sGC_malloc(sizeof(char *)*(wc+2));
                   2137:   argv[0] = NULL;
                   2138:   inblank = 1;  wc = 0;
                   2139:   for (i=0; i<n; i++) {
1.22      takayama 2140:     if (inblank && (s[i] > ' ')) {
                   2141:       argv[wc] = &(s[i]); argv[wc+1]=NULL;
                   2142:       wc++; inblank = 0;
                   2143:     }else if ((inblank == 0) && (s[i] <= ' ')) {
                   2144:       inblank = 1; s[i] = 0;
                   2145:     }else if (inblank && (s[i] <= ' ')) {
                   2146:       s[i] = 0;
                   2147:     }
1.14      takayama 2148:   }
                   2149:
                   2150:   rob = newObjectArray(wc);
                   2151:   for (i=0; i<wc; i++) {
1.22      takayama 2152:     putoa(rob,i,KpoString(argv[i]));
                   2153:     /* printf("%s\n",argv[i]); */
1.14      takayama 2154:   }
                   2155:   return(rob);
                   2156: }
1.1       maekawa  2157:
                   2158: static void checkDuplicateName(xvars,dvars,n)
1.7       takayama 2159:      char *xvars[];
                   2160:      char *dvars[];
                   2161:      int n;
1.1       maekawa  2162: {
                   2163:   int i,j;
                   2164:   char *names[N0*2];
                   2165:   for (i=0; i<n; i++) {
                   2166:     names[i] = xvars[i]; names[i+n] = dvars[i];
                   2167:   }
                   2168:   n = 2*n;
                   2169:   for (i=0; i<n; i++) {
                   2170:     for (j=i+1; j<n; j++) {
                   2171:       if (strcmp(names[i],names[j]) == 0) {
1.7       takayama 2172:         fprintf(stderr,"\n%d=%s, %d=%s\n",i,names[i],j,names[j]);
                   2173:         errorKan1("%s\n","Duplicate definition of the name above in SetUpRing().");
1.1       maekawa  2174:       }
                   2175:     }
                   2176:   }
                   2177: }
                   2178:
1.20      takayama 2179: struct object KooPower(struct object ob1,struct object ob2) {
                   2180:   struct object rob;
                   2181:   /* Bug. It has not yet been implemented. */
                   2182:   if (QuoteMode) {
1.22      takayama 2183:     rob = powerTree(ob1,ob2);
1.20      takayama 2184:   }else{
1.22      takayama 2185:     warningKan("KooDiv2() has not supported yet these objects.\n");
1.20      takayama 2186:   }
                   2187:   return(rob);
                   2188: }
1.1       maekawa  2189:
                   2190:
                   2191:
                   2192: struct object KooDiv2(ob1,ob2)
1.7       takayama 2193:      struct object ob1,ob2;
1.1       maekawa  2194: {
                   2195:   struct object rob = NullObject;
                   2196:   POLY f;
                   2197:   extern struct ring *CurrentRingp;
                   2198:   int s,i;
                   2199:   double d;
                   2200:
                   2201:   switch (Lookup[ob1.tag][ob2.tag]) {
                   2202:   case SpolySpoly:
                   2203:   case SuniversalNumberSuniversalNumber:
                   2204:   case SuniversalNumberSpoly:
                   2205:   case SpolySuniversalNumber:
                   2206:     rob = KnewRationalFunction0(copyObjectp(&ob1),copyObjectp(&ob2));
                   2207:     KisInvalidRational(&rob);
                   2208:     return(rob);
                   2209:     break;
                   2210:   case SarraySpoly:
                   2211:   case SarraySuniversalNumber:
                   2212:   case SarraySrationalFunction:
                   2213:     s = getoaSize(ob1);
                   2214:     rob = newObjectArray(s);
                   2215:     for (i=0; i<s; i++) {
                   2216:       putoa(rob,i,KooDiv2(getoa(ob1,i),ob2));
                   2217:     }
                   2218:     return(rob);
                   2219:     break;
                   2220:   case SpolySrationalFunction:
                   2221:   case SrationalFunctionSpoly:
                   2222:   case SrationalFunctionSrationalFunction:
                   2223:   case SuniversalNumberSrationalFunction:
                   2224:   case SrationalFunctionSuniversalNumber:
                   2225:     rob = KoInverse(ob2);
                   2226:     rob = KooMult(ob1,rob);
                   2227:     return(rob);
                   2228:     break;
                   2229:
                   2230:   case SdoubleSdouble:
                   2231:     d = KopDouble(ob2);
                   2232:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2233:     return(KpoDouble( KopDouble(ob1) / d ));
                   2234:     break;
                   2235:   case SdoubleSinteger:
                   2236:   case SdoubleSuniversalNumber:
                   2237:   case SdoubleSrationalFunction:
                   2238:     d = toDouble0(ob2);
                   2239:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2240:     return(KpoDouble( KopDouble(ob1) / d) );
                   2241:     break;
                   2242:   case SintegerSdouble:
                   2243:   case SuniversalNumberSdouble:
                   2244:   case SrationalFunctionSdouble:
                   2245:     d = KopDouble(ob2);
                   2246:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2247:     return(KpoDouble( toDouble0(ob1) / d ) );
                   2248:     break;
                   2249:
                   2250:   default:
1.20      takayama 2251:     if (QuoteMode) {
                   2252:       rob = divideTree(ob1,ob2);
                   2253:     }else{
                   2254:       warningKan("KooDiv2() has not supported yet these objects.\n");
                   2255:     }
1.1       maekawa  2256:     break;
                   2257:   }
                   2258:   return(rob);
                   2259: }
                   2260: /* Template
                   2261:   case SrationalFunctionSrationalFunction:
                   2262:     warningKan("Koo() has not supported yet these objects.\n");
                   2263:     return(rob);
                   2264:     break;
                   2265:   case SpolySrationalFunction:
                   2266:     warningKan("Koo() has not supported yet these objects.\n");
                   2267:     return(rob);
                   2268:     break;
                   2269:   case SrationalFunctionSpoly:
                   2270:     warningKan("Koo() has not supported yet these objects.\n");
                   2271:     return(rob);
                   2272:     break;
                   2273:   case SuniversalNumberSrationalFunction:
                   2274:     warningKan("Koo() has not supported yet these objects.\n");
                   2275:     return(rob);
                   2276:     break;
                   2277:   case SrationalFunctionSuniversalNumber:
                   2278:     warningKan("Koo() has not supported yet these objects.\n");
                   2279:     return(rob);
                   2280:     break;
                   2281: */
                   2282:
                   2283: int KisInvalidRational(op)
1.7       takayama 2284:      objectp op;
1.1       maekawa  2285: {
                   2286:   extern struct coeff *UniversalZero;
                   2287:   if (op->tag != SrationalFunction) return(0);
                   2288:   if (KisZeroObject(Kdenominator(*op))) {
                   2289:     errorKan1("%s\n","KisInvalidRational(): zero division. You have f/0.");
                   2290:   }
                   2291:   if (KisZeroObject(Knumerator(*op))) {
                   2292:     op->tag = SuniversalNumber;
                   2293:     op->lc.universalNumber = UniversalZero;
                   2294:   }
                   2295:   return(0);
                   2296: }
                   2297:
                   2298: struct object KgbExtension(struct object obj)
                   2299: {
                   2300:   char *key;
                   2301:   int size;
                   2302:   struct object keyo;
                   2303:   struct object rob = NullObject;
                   2304:   struct object obj1,obj2,obj3;
                   2305:   POLY f1;
                   2306:   POLY f2;
                   2307:   POLY f3;
                   2308:   POLY f;
                   2309:   int m,i;
                   2310:   struct pairOfPOLY pf;
1.16      takayama 2311:   struct coeff *cont;
1.1       maekawa  2312:
                   2313:   if (obj.tag != Sarray) errorKan1("%s\n","KgbExtension(): The argument must be an array.");
                   2314:   size = getoaSize(obj);
                   2315:   if (size < 1) errorKan1("%s\n","KgbExtension(): Empty array.");
                   2316:   keyo = getoa(obj,0);
                   2317:   if (keyo.tag != Sdollar) errorKan1("%s\n","KgbExtension(): No key word.");
                   2318:   key = KopString(keyo);
                   2319:
                   2320:   /* branch by the key word. */
                   2321:   if (strcmp(key,"isReducible")==0) {
                   2322:     if (size != 3) errorKan1("%s\n","[(isReducible)  poly1 poly2] gbext.");
                   2323:     obj1 = getoa(obj,1);
                   2324:     obj2 = getoa(obj,2);
                   2325:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2326:       errorKan1("%s\n","[(isReducible)  poly1 poly2] gb.");
                   2327:     f1 = KopPOLY(obj1);
                   2328:     f2 = KopPOLY(obj2);
                   2329:     rob = KpoInteger((*isReducible)(f1,f2));
                   2330:   }else if (strcmp(key,"lcm") == 0) {
                   2331:     if (size != 3) errorKan1("%s\n","[(lcm)  poly1 poly2] gb.");
                   2332:     obj1 = getoa(obj,1);
                   2333:     obj2 = getoa(obj,2);
                   2334:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2335:       errorKan1("%s\n","[(lcm)  poly1 poly2] gbext.");
                   2336:     f1 = KopPOLY(obj1);
                   2337:     f2 = KopPOLY(obj2);
                   2338:     rob = KpoPOLY((*lcm)(f1,f2));
                   2339:   }else if (strcmp(key,"grade")==0) {
                   2340:     if (size != 2) errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2341:     obj1 = getoa(obj,1);
                   2342:     if (obj1.tag != Spoly)
                   2343:       errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2344:     f1 = KopPOLY(obj1);
                   2345:     rob = KpoInteger((*grade)(f1));
                   2346:   }else if (strcmp(key,"mod")==0) {
                   2347:     if (size != 3) errorKan1("%s\n","[(mod) poly num] gbext");
                   2348:     obj1 = getoa(obj,1);
                   2349:     obj2 = getoa(obj,2);
                   2350:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2351:       errorKan1("%s\n","The datatype of the argument mismatch: [(mod) polynomial  universalNumber] gbext");
                   2352:     }
                   2353:     rob = KpoPOLY( modulopZ(KopPOLY(obj1),KopUniversalNumber(obj2)) );
                   2354:   }else if (strcmp(key,"tomodp")==0) {
                   2355:     /* The ring must be a ring of characteristic p. */
                   2356:     if (size != 3) errorKan1("%s\n","[(tomod) poly ring] gbext");
                   2357:     obj1 = getoa(obj,1);
                   2358:     obj2 = getoa(obj,2);
                   2359:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2360:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod) polynomial  ring] gbext");
                   2361:     }
                   2362:     rob = KpoPOLY( modulop(KopPOLY(obj1),KopRingp(obj2)) );
                   2363:   }else if (strcmp(key,"tomod0")==0) {
                   2364:     /* Ring must be a ring of characteristic 0. */
                   2365:     if (size != 3) errorKan1("%s\n","[(tomod0) poly ring] gbext");
                   2366:     obj1 = getoa(obj,1);
                   2367:     obj2 = getoa(obj,2);
                   2368:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2369:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod0) polynomial  ring] gbext");
                   2370:     }
                   2371:     errorKan1("%s\n","It has not been implemented.");
                   2372:     rob = KpoPOLY( POLYNULL );
                   2373:   }else if (strcmp(key,"divByN")==0) {
                   2374:     if (size != 3) errorKan1("%s\n","[(divByN) poly num] gbext");
                   2375:     obj1 = getoa(obj,1);
                   2376:     obj2 = getoa(obj,2);
                   2377:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2378:       errorKan1("%s\n","The datatype of the argument mismatch: [(divByN) polynomial  universalNumber] gbext");
                   2379:     }
                   2380:     pf =  quotientByNumber(KopPOLY(obj1),KopUniversalNumber(obj2));
                   2381:     rob  = newObjectArray(2);
                   2382:     putoa(rob,0,KpoPOLY(pf.first));
                   2383:     putoa(rob,1,KpoPOLY(pf.second));
                   2384:   }else if (strcmp(key,"isConstant")==0) {
                   2385:     if (size != 2) errorKan1("%s\n","[(isConstant) poly ] gbext bool");
                   2386:     obj1 = getoa(obj,1);
                   2387:     if (obj1.tag != Spoly) {
                   2388:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstant) polynomial] gbext");
                   2389:     }
                   2390:     return(KpoInteger(isConstant(KopPOLY(obj1))));
1.18      takayama 2391:   }else if (strcmp(key,"isConstantAll")==0) {
                   2392:     if (size != 2) errorKan1("%s\n","[(isConstantAll) poly ] gbext bool");
                   2393:     obj1 = getoa(obj,1);
                   2394:     if (obj1.tag != Spoly) {
                   2395:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstantAll) polynomial] gbext");
                   2396:     }
                   2397:     return(KpoInteger(isConstantAll(KopPOLY(obj1))));
1.1       maekawa  2398:   }else if (strcmp(key,"schreyerSkelton") == 0) {
                   2399:     if (size != 2) errorKan1("%s\n","[(schreyerSkelton) array_of_poly ] gbext array");
                   2400:     obj1 = getoa(obj,1);
                   2401:     return(KschreyerSkelton(obj1));
                   2402:   }else if (strcmp(key,"lcoeff") == 0) {
                   2403:     if (size != 2) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2404:     obj1 = getoa(obj,1);
                   2405:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2406:     f = KopPOLY(obj1);
                   2407:     if (f == POLYNULL) return(KpoPOLY(f));
                   2408:     return(KpoPOLY( newCell(coeffCopy(f->coeffp),newMonomial(f->m->ringp))));
                   2409:   }else if (strcmp(key,"lmonom") == 0) {
                   2410:     if (size != 2) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2411:     obj1 = getoa(obj,1);
                   2412:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2413:     f = KopPOLY(obj1);
                   2414:     if (f == POLYNULL) return(KpoPOLY(f));
                   2415:     return(KpoPOLY( newCell(intToCoeff(1,f->m->ringp),monomialCopy(f->m))));
                   2416:   }else if (strcmp(key,"toes") == 0) {
                   2417:     if (size != 2) errorKan1("%s\n","[(toes) array] gbext poly");
                   2418:     obj1 = getoa(obj,1);
                   2419:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toes) array] gbext poly");
                   2420:     return(KvectorToSchreyer_es(obj1));
1.3       takayama 2421:   }else if (strcmp(key,"toe_") == 0) {
                   2422:     if (size != 2) errorKan1("%s\n","[(toe_) array] gbext poly");
                   2423:     obj1 = getoa(obj,1);
                   2424:     if (obj1.tag == Spoly) return(obj1);
                   2425:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toe_) array] gbext poly");
                   2426:     return(KpoPOLY(arrayToPOLY(obj1)));
1.1       maekawa  2427:   }else if (strcmp(key,"isOrdered") == 0) {
                   2428:     if (size != 2) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2429:     obj1 = getoa(obj,1);
                   2430:     if (obj1.tag != Spoly) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2431:     return(KisOrdered(obj1));
1.16      takayama 2432:   }else if (strcmp(key,"reduceContent")==0) {
                   2433:     if (size != 2) errorKan1("%s\n","[(reduceContent)  poly1 ] gbext.");
                   2434:     obj1 = getoa(obj,1);
                   2435:     if (obj1.tag != Spoly)
                   2436:       errorKan1("%s\n","[(reduceContent)  poly1 ] gbext.");
                   2437:     f1 = KopPOLY(obj1);
1.22      takayama 2438:     rob = newObjectArray(2);
                   2439:     f1 = reduceContentOfPoly(f1,&cont);
                   2440:     putoa(rob,0,KpoPOLY(f1));
                   2441:     if (f1 == POLYNULL) {
                   2442:       putoa(rob,1,KpoPOLY(f1));
                   2443:     }else{
                   2444:       putoa(rob,1,KpoPOLY(newCell(cont,newMonomial(f1->m->ringp))));
                   2445:     }
1.17      takayama 2446:   }else if (strcmp(key,"ord_ws_all")==0) {
                   2447:     if (size != 3) errorKan1("%s\n","[(ord_ws_all) fv wv] gbext");
                   2448:     obj1 = getoa(obj,1);
                   2449:     obj2 = getoa(obj,2);
                   2450:     rob  = KordWsAll(obj1,obj2);
1.23      takayama 2451:   }else if (strcmp(key,"exponents")==0) {
                   2452:     if (size == 3) {
                   2453:       obj1 = getoa(obj,1);
                   2454:       obj2 = getoa(obj,2);
                   2455:       rob  = KgetExponents(obj1,obj2);
                   2456:     }else if (size == 2) {
                   2457:       obj1 = getoa(obj,1);
                   2458:       obj2 = KpoInteger(2);
                   2459:       rob  = KgetExponents(obj1,obj2);
                   2460:     }else{
                   2461:       errorKan1("%s\n","[(exponents) f type] gbext");
                   2462:     }
1.1       maekawa  2463:   }else {
                   2464:     errorKan1("%s\n","gbext : unknown tag.");
                   2465:   }
                   2466:   return(rob);
                   2467: }
                   2468:
                   2469: struct object KmpzExtension(struct object obj)
                   2470: {
                   2471:   char *key;
                   2472:   int size;
                   2473:   struct object keyo;
                   2474:   struct object rob = NullObject;
                   2475:   struct object obj0,obj1,obj2,obj3;
                   2476:   MP_INT *f;
                   2477:   MP_INT *g;
                   2478:   MP_INT *h;
                   2479:   MP_INT *r0;
                   2480:   MP_INT *r1;
                   2481:   MP_INT *r2;
                   2482:   int gi;
                   2483:   extern struct ring *SmallRingp;
                   2484:
                   2485:
                   2486:   if (obj.tag != Sarray) errorKan1("%s\n","KmpzExtension(): The argument must be an array.");
                   2487:   size = getoaSize(obj);
                   2488:   if (size < 1) errorKan1("%s\n","KmpzExtension(): Empty array.");
                   2489:   keyo = getoa(obj,0);
                   2490:   if (keyo.tag != Sdollar) errorKan1("%s\n","KmpzExtension(): No key word.");
                   2491:   key = KopString(keyo);
                   2492:
                   2493:   /* branch by the key word. */
                   2494:   if (strcmp(key,"gcd")==0) {
                   2495:     if (size != 3) errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2496:     obj1 = getoa(obj,1);
                   2497:     obj2 = getoa(obj,2);
1.24      takayama 2498:     if (obj1.tag != SuniversalNumber) {
                   2499:       obj1 = KdataConversion(obj1,"universalNumber");
                   2500:        }
                   2501:     if (obj2.tag != SuniversalNumber) {
                   2502:       obj2 = KdataConversion(obj2,"universalNumber");
                   2503:        }
1.1       maekawa  2504:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2505:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2506:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2507:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2508:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2509:     }
                   2510:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2511:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2512:     r1 = newMP_INT();
                   2513:     mpz_gcd(r1,f,g);
                   2514:     rob.tag = SuniversalNumber;
                   2515:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2516:   }else if (strcmp(key,"tdiv_qr")==0) {
                   2517:     if (size != 3) errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2518:     obj1 = getoa(obj,1);
                   2519:     obj2 = getoa(obj,2);
1.24      takayama 2520:     if (obj1.tag != SuniversalNumber) {
                   2521:       obj1 = KdataConversion(obj1,"universalNumber");
                   2522:        }
                   2523:     if (obj2.tag != SuniversalNumber) {
                   2524:       obj2 = KdataConversion(obj2,"universalNumber");
                   2525:        }
1.1       maekawa  2526:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2527:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2528:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2529:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2530:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2531:     }
                   2532:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2533:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2534:     r1 = newMP_INT();
                   2535:     r2 = newMP_INT();
                   2536:     mpz_tdiv_qr(r1,r2,f,g);
                   2537:     obj1.tag = SuniversalNumber;
                   2538:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2539:     obj2.tag = SuniversalNumber;
                   2540:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2541:     rob = newObjectArray(2);
                   2542:     putoa(rob,0,obj1); putoa(rob,1,obj2);
                   2543:   } else if (strcmp(key,"cancel")==0) {
                   2544:     if (size != 2) {
                   2545:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2546:     }
                   2547:     obj0 = getoa(obj,1);
                   2548:     if (obj0.tag == SuniversalNumber) return(obj0);
                   2549:     if (obj0.tag != SrationalFunction) {
                   2550:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2551:       return(obj0);
                   2552:     }
                   2553:     obj1 = *(Knumerator(obj0));
                   2554:     obj2 = *(Kdenominator(obj0));
                   2555:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber) {
                   2556:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2557:       return(obj0);
                   2558:     }
                   2559:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2560:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2561:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2562:     }
                   2563:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2564:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2565:
                   2566:     r0 = newMP_INT();
                   2567:     r1 = newMP_INT();
                   2568:     r2 = newMP_INT();
                   2569:     mpz_gcd(r0,f,g);
                   2570:     mpz_divexact(r1,f,r0);
                   2571:     mpz_divexact(r2,g,r0);
                   2572:     obj1.tag = SuniversalNumber;
                   2573:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2574:     obj2.tag = SuniversalNumber;
                   2575:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2576:
                   2577:     rob = KnewRationalFunction0(copyObjectp(&obj1),copyObjectp(&obj2));
                   2578:     KisInvalidRational(&rob);
                   2579:   }else if (strcmp(key,"sqrt")==0 ||
1.7       takayama 2580:             strcmp(key,"com")==0) {
1.1       maekawa  2581:     /*  One arg functions  */
                   2582:     if (size != 2) errorKan1("%s\n","[key num] mpzext");
                   2583:     obj1 = getoa(obj,1);
1.24      takayama 2584:     if (obj1.tag != SuniversalNumber) {
                   2585:       obj1 = KdataConversion(obj1,"universalNumber");
                   2586:        }
1.1       maekawa  2587:     if (obj1.tag != SuniversalNumber)
                   2588:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2589:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber))
                   2590:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2591:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2592:     if (strcmp(key,"sqrt")==0) {
                   2593:       r1 = newMP_INT();
                   2594:       mpz_sqrt(r1,f);
                   2595:     }else if (strcmp(key,"com")==0) {
                   2596:       r1 = newMP_INT();
                   2597:       mpz_com(r1,f);
                   2598:     }
                   2599:     rob.tag = SuniversalNumber;
                   2600:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2601:   }else if (strcmp(key,"probab_prime_p")==0 ||
1.7       takayama 2602:             strcmp(key,"and") == 0 ||
                   2603:             strcmp(key,"ior")==0) {
1.1       maekawa  2604:     /* Two args functions */
                   2605:     if (size != 3) errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2606:     obj1 = getoa(obj,1);
                   2607:     obj2 = getoa(obj,2);
1.24      takayama 2608:     if (obj1.tag != SuniversalNumber) {
                   2609:       obj1 = KdataConversion(obj1,"universalNumber");
                   2610:        }
                   2611:     if (obj2.tag != SuniversalNumber) {
                   2612:       obj2 = KdataConversion(obj2,"universalNumber");
                   2613:        }
1.1       maekawa  2614:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2615:       errorKan1("%s\n","[key num1 num2] mpzext.");
                   2616:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2617:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2618:       errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2619:     }
                   2620:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2621:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2622:     if (strcmp(key,"probab_prime_p")==0) {
                   2623:       gi = (int) mpz_get_si(g);
                   2624:       if (mpz_probab_prime_p(f,gi)) {
1.7       takayama 2625:         rob = KpoInteger(1);
1.1       maekawa  2626:       }else {
1.7       takayama 2627:         rob = KpoInteger(0);
1.1       maekawa  2628:       }
                   2629:     }else if (strcmp(key,"and")==0) {
                   2630:       r1 = newMP_INT();
                   2631:       mpz_and(r1,f,g);
                   2632:       rob.tag = SuniversalNumber;
                   2633:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2634:     }else if (strcmp(key,"ior")==0) {
                   2635:       r1 = newMP_INT();
                   2636:       mpz_ior(r1,f,g);
                   2637:       rob.tag = SuniversalNumber;
                   2638:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2639:     }
                   2640:
                   2641:   }else if (strcmp(key,"powm")==0) {
                   2642:     /* three args */
                   2643:     if (size != 4) errorKan1("%s\n","[key num1 num2 num3] mpzext");
                   2644:     obj1 = getoa(obj,1); obj2 = getoa(obj,2); obj3 = getoa(obj,3);
1.24      takayama 2645:     if (obj1.tag != SuniversalNumber) {
                   2646:       obj1 = KdataConversion(obj1,"universalNumber");
                   2647:        }
                   2648:     if (obj2.tag != SuniversalNumber) {
                   2649:       obj2 = KdataConversion(obj2,"universalNumber");
                   2650:        }
                   2651:     if (obj3.tag != SuniversalNumber) {
                   2652:       obj3 = KdataConversion(obj3,"universalNumber");
                   2653:        }
1.1       maekawa  2654:     if (obj1.tag != SuniversalNumber ||
                   2655:         obj2.tag != SuniversalNumber ||
                   2656:         obj3.tag != SuniversalNumber ) {
                   2657:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2658:     }
                   2659:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2660:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber) ||
                   2661:         ! is_this_coeff_MP_INT(obj3.lc.universalNumber)) {
1.1       maekawa  2662:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2663:     }
                   2664:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2665:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2666:     h = coeff_to_MP_INT(obj3.lc.universalNumber);
                   2667:     if (mpz_sgn(g) < 0) errorKan1("%s\n","[(powm) base exp mod] mpzext : exp must not be negative.");
                   2668:     r1 = newMP_INT();
                   2669:     mpz_powm(r1,f,g,h);
                   2670:     rob.tag = SuniversalNumber;
                   2671:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
1.24      takayama 2672:   } else if (strcmp(key,"lcm")==0) {
                   2673:     if (size != 3) errorKan1("%s\n","[(lcm)  universalNumber universalNumber] mpzext.");
                   2674:     obj1 = getoa(obj,1);
                   2675:     obj2 = getoa(obj,2);
                   2676:     if (obj1.tag != SuniversalNumber) {
                   2677:       obj1 = KdataConversion(obj1,"universalNumber");
                   2678:        }
                   2679:     if (obj2.tag != SuniversalNumber) {
                   2680:       obj2 = KdataConversion(obj2,"universalNumber");
                   2681:        }
                   2682:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2683:       errorKan1("%s\n","[lcm num1 num2] mpzext.");
                   2684:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
                   2685:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
                   2686:       errorKan1("%s\n","[(lcm)  universalNumber universalNumber] mpzext.");
                   2687:     }
                   2688:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2689:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2690:     r1 = newMP_INT();
                   2691:     mpz_lcm(r1,f,g);
                   2692:     rob.tag = SuniversalNumber;
                   2693:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
1.1       maekawa  2694:   }else {
                   2695:     errorKan1("%s\n","mpzExtension(): Unknown tag.");
                   2696:   }
                   2697:   return(rob);
                   2698: }
                   2699:
                   2700:
                   2701: /** : context   */
                   2702: struct object KnewContext(struct object superObj,char *name) {
                   2703:   struct context *cp;
                   2704:   struct object ob;
                   2705:   if (superObj.tag != Sclass) {
                   2706:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2707:   }
                   2708:   if (superObj.lc.ival != CLASSNAME_CONTEXT) {
                   2709:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2710:   }
                   2711:   cp = newContext0((struct context *)(superObj.rc.voidp),name);
                   2712:   ob.tag = Sclass;
                   2713:   ob.lc.ival = CLASSNAME_CONTEXT;
                   2714:   ob.rc.voidp = cp;
                   2715:   return(ob);
                   2716: }
                   2717:
                   2718: struct object KcreateClassIncetance(struct object ob1,
1.7       takayama 2719:                                     struct object ob2,
                   2720:                                     struct object ob3)
1.1       maekawa  2721: {
                   2722:   /* [class-tag super-obj] size [class-tag]  cclass */
                   2723:   struct object ob4;
                   2724:   int size,size2,i;
                   2725:   struct object ob5;
                   2726:   struct object rob;
                   2727:
                   2728:   if (ob1.tag != Sarray)
                   2729:     errorKan1("%s\n","cclass: The first argument must be an array.");
                   2730:   if (getoaSize(ob1) < 1)
                   2731:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2732:   ob4 = getoa(ob1,0);
                   2733:   if (ectag(ob4) != CLASSNAME_CONTEXT)
                   2734:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2735:
                   2736:   if (ob2.tag != Sinteger)
                   2737:     errorKan1("%s\n","cclass: The second argument must be an integer.");
                   2738:   size = KopInteger(ob2);
                   2739:   if (size < 1)
                   2740:     errorKan1("%s\n","cclass: The size must be > 0.");
                   2741:
                   2742:   if (ob3.tag != Sarray)
                   2743:     errorKan1("%s\n","cclass: The third argument must be an array.");
                   2744:   if (getoaSize(ob3) < 1)
                   2745:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
                   2746:   ob5 = getoa(ob3,0);
                   2747:   if (ectag(ob5) != CLASSNAME_CONTEXT)
                   2748:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
1.7       takayama 2749:
1.1       maekawa  2750:   rob = newObjectArray(size);
                   2751:   putoa(rob,0,ob5);
                   2752:   if (getoaSize(ob1) < size) size2 = getoaSize(ob1);
                   2753:   else size2 = size;
                   2754:   for (i=1; i<size2; i++) {
                   2755:     putoa(rob,i,getoa(ob1,i));
                   2756:   }
                   2757:   for (i=size2; i<size; i++) {
                   2758:     putoa(rob,i,NullObject);
                   2759:   }
                   2760:   return(rob);
                   2761: }
                   2762:
                   2763:
                   2764: struct object KpoDouble(double a) {
                   2765:   struct object rob;
                   2766:   rob.tag = Sdouble;
                   2767:   /* rob.lc.dbl = (double *)sGC_malloc_atomic(sizeof(double)); */
                   2768:   rob.lc.dbl = (double *)sGC_malloc(sizeof(double));
                   2769:   if (rob.lc.dbl == (double *)NULL) {
                   2770:     fprintf(stderr,"No memory.\n"); exit(10);
                   2771:   }
                   2772:   *(rob.lc.dbl) = a;
                   2773:   return(rob);
                   2774: }
                   2775:
                   2776: double toDouble0(struct object ob) {
                   2777:   double r;
                   2778:   int r3;
                   2779:   struct object ob2;
                   2780:   struct object ob3;
                   2781:   switch(ob.tag) {
                   2782:   case Sinteger:
                   2783:     return( (double) (KopInteger(ob)) );
                   2784:   case SuniversalNumber:
                   2785:     return((double) coeffToInt(ob.lc.universalNumber));
                   2786:   case SrationalFunction:
                   2787:     /* The argument is assumed to be a rational number. */
                   2788:     ob2 = newObjectArray(2);  ob3 = KpoString("cancel");
                   2789:     putoa(ob2,0,ob3); putoa(ob2,1,ob);
                   2790:     ob = KmpzExtension(ob2);
                   2791:     ob2 = *Knumerator(ob);  ob3 = *Kdenominator(ob);
                   2792:     r3 =  coeffToInt(ob3.lc.universalNumber);
                   2793:     if (r3  == 0) {
                   2794:       errorKan1("%s\n","toDouble0(): Division by zero.");
                   2795:       break;
                   2796:     }
                   2797:     r = ((double) coeffToInt(ob2.lc.universalNumber)) / ((double)r3);
                   2798:     return(r);
                   2799:   case Sdouble:
                   2800:     return( KopDouble(ob) );
                   2801:   default:
                   2802:     errorKan1("%s\n","toDouble0(): This type of conversion is not supported.");
                   2803:     break;
                   2804:   }
                   2805:   return(0.0);
                   2806: }
                   2807:
                   2808: struct object KpoGradedPolySet(struct gradedPolySet *grD) {
                   2809:   struct object rob;
                   2810:   rob.tag = Sclass;
                   2811:   rob.lc.ival = CLASSNAME_GradedPolySet;
                   2812:   rob.rc.voidp = (void *) grD;
                   2813:   return(rob);
                   2814: }
                   2815:
                   2816: static char *getspace0(int a) {
                   2817:   char *s;
                   2818:   a = (a > 0? a:-a);
                   2819:   s = (char *) sGC_malloc(a+1);
                   2820:   if (s == (char *)NULL) {
                   2821:     errorKan1("%s\n","no more memory.");
                   2822:   }
                   2823:   return(s);
                   2824: }
                   2825: struct object KdefaultPolyRing(struct object ob) {
                   2826:   struct object rob;
                   2827:   int i,j,k,n;
                   2828:   struct object ob1,ob2,ob3,ob4,ob5;
                   2829:   struct object t1;
                   2830:   char *s1;
                   2831:   extern struct ring *CurrentRingp;
                   2832:   static struct ring *a[N0];
                   2833:
                   2834:   rob = NullObject;
                   2835:   if (ob.tag != Sinteger) {
                   2836:     errorKan1("%s\n","KdefaultPolyRing(): the argument must be integer.");
                   2837:   }
                   2838:   n = KopInteger(ob);
                   2839:   if (n <= 0) {
                   2840:     /* initializing */
                   2841:     for (i=0; i<N0; i++) {
                   2842:       a[i] = (struct ring*) NULL;
                   2843:     }
                   2844:     return(rob);
                   2845:   }
                   2846:
                   2847:   if ( a[n] != (struct ring*)NULL) return(KpoRingp(a[n]));
                   2848:
                   2849:   /* Let's construct ring of polynomials of 2n variables  */
                   2850:   /* x variables */
                   2851:   ob1 = newObjectArray(n);
                   2852:   for (i=0; i<n; i++) {
                   2853:     s1 = getspace0(1+ ((n-i)/10) + 1);
                   2854:     sprintf(s1,"x%d",n-i);
                   2855:     putoa(ob1,i,KpoString(s1));
                   2856:   }
                   2857:   ob2 = newObjectArray(n);
                   2858:   s1 = getspace0(1);
                   2859:   sprintf(s1,"h");
                   2860:   putoa(ob2,0,KpoString(s1));
                   2861:   for (i=1; i<n; i++) {
                   2862:     s1 = getspace0(1+((n+n-i)/10)+1);
                   2863:     sprintf(s1,"x%d",n+n-i);
                   2864:     putoa(ob2,i,KpoString(s1));
                   2865:   }
                   2866:
                   2867:   ob3 = newObjectArray(9);
                   2868:   putoa(ob3,0,KpoInteger(0));
                   2869:   for (i=1; i<9; i++) {
                   2870:     putoa(ob3,i,KpoInteger(n));
                   2871:   }
                   2872:
                   2873:   ob4 = newObjectArray(2*n);
                   2874:   t1 = newObjectArray(2*n);
                   2875:   for (i=0; i<2*n; i++) {
                   2876:     putoa(t1,i,KpoInteger(1));
                   2877:   }
                   2878:   putoa(ob4,0,t1);
                   2879:   for (i=1; i<2*n; i++) {
                   2880:     t1 = newObjectArray(2*n);
                   2881:     for (j=0; j<2*n; j++) {
                   2882:       putoa(t1,j,KpoInteger(0));
                   2883:       if (j == (2*n-i)) {
1.7       takayama 2884:         putoa(t1,j,KpoInteger(-1));
1.1       maekawa  2885:       }
                   2886:     }
                   2887:     putoa(ob4,i,t1);
                   2888:   }
                   2889:
                   2890:   ob5 = newObjectArray(2);
                   2891:   putoa(ob5,0,KpoString("mpMult"));
                   2892:   putoa(ob5,1,KpoString("poly"));
                   2893:
                   2894:   KsetUpRing(ob1,ob2,ob3,ob4,ob5);
                   2895:   a[n] = CurrentRingp;
                   2896:   return(KpoRingp(a[n]));
                   2897: }
                   2898:
                   2899:
                   2900:
                   2901:
                   2902:
                   2903: /******************************************************************
                   2904:      error handler
                   2905: ******************************************************************/
                   2906:
                   2907: errorKan1(str,message)
1.7       takayama 2908:      char *str;
                   2909:      char *message;
1.1       maekawa  2910: {
                   2911:   extern char *GotoLabel;
                   2912:   extern int GotoP;
                   2913:   extern int ErrorMessageMode;
                   2914:   char tmpc[1024];
1.10      takayama 2915:   cancelAlarm();
1.1       maekawa  2916:   if (ErrorMessageMode == 1 || ErrorMessageMode == 2) {
                   2917:     sprintf(tmpc,"\nERROR(kanExport[0|1].c): ");
                   2918:     if (strlen(message) < 900) {
                   2919:       strcat(tmpc,message);
                   2920:     }
                   2921:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   2922:   }
                   2923:   if (ErrorMessageMode != 1) {
                   2924:     fprintf(stderr,"\nERROR(kanExport[0|1].c): ");
                   2925:     fprintf(stderr,str,message);
                   2926:   }
                   2927:   /* fprintf(stderr,"Hello "); */
                   2928:   if (GotoP) {
                   2929:     /* fprintf(stderr,"Hello. GOTO "); */
                   2930:     fprintf(Fstack,"The interpreter was looking for the label <<%s>>. It is also aborted.\n",GotoLabel);
                   2931:     GotoP = 0;
                   2932:   }
                   2933:   stdOperandStack(); contextControl(CCRESTORE);
                   2934:   /* fprintf(stderr,"Now. Long jump!\n"); */
1.8       takayama 2935: #if defined(__CYGWIN__)
                   2936:   siglongjmp(EnvOfStackMachine,1);
                   2937: #else
1.1       maekawa  2938:   longjmp(EnvOfStackMachine,1);
1.8       takayama 2939: #endif
1.1       maekawa  2940: }
1.22      takayama 2941:
1.1       maekawa  2942:
                   2943: warningKan(str)
1.7       takayama 2944:      char *str;
1.1       maekawa  2945: {
                   2946:   extern int WarningMessageMode;
                   2947:   extern int Strict;
                   2948:   char tmpc[1024];
                   2949:   if (WarningMessageMode == 1 || WarningMessageMode == 2) {
                   2950:     sprintf(tmpc,"\nWARNING(kanExport[0|1].c): ");
                   2951:     if (strlen(str) < 900) {
                   2952:       strcat(tmpc,str);
                   2953:     }
                   2954:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   2955:   }
                   2956:   if (WarningMessageMode != 1) {
                   2957:     fprintf(stderr,"\nWARNING(kanExport[0|1].c): ");
                   2958:     fprintf(stderr,str);
                   2959:     fprintf(stderr,"\n");
                   2960:   }
                   2961:   /* if (Strict) errorKan1("%s\n"," "); */
                   2962:   if (Strict) errorKan1("%s\n",str);
1.4       takayama 2963:   return(0);
                   2964: }
                   2965:
                   2966: warningKanNoStrictMode(str)
1.7       takayama 2967:      char *str;
1.4       takayama 2968: {
                   2969:   extern int Strict;
                   2970:   int t;
                   2971:   t = Strict;
                   2972:   Strict = 0;
                   2973:   warningKan(str);
                   2974:   Strict = t;
1.1       maekawa  2975:   return(0);
                   2976: }
                   2977:
                   2978:
                   2979:
                   2980:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>