[BACK]Return to kanExport0.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport0.c, Revision 1.3

1.3     ! takayama    1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport0.c,v 1.2 1999/11/06 10:37:30 takayama Exp $  */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: #define universalToPoly(un,rp) (isZero(un)?ZERO:coeffToPoly(un,rp))
                     13:
                     14: static void checkDuplicateName(char *xvars[],char *dvars[],int n);
                     15:
                     16: static void yet() { fprintf(stderr,"Not implemented."); }
                     17:
                     18: int SerialCurrent = -1;  /* Current Serial number of the recieved packet as server. */
                     19:
                     20: int ReverseOutputOrder = 1;
                     21: int WarningNoVectorVariable = 1;
                     22:
                     23: /** :arithmetic **/
                     24: struct object KooAdd(ob1,ob2)
                     25: struct object ob1,ob2;
                     26: {
                     27:   extern struct ring *CurrentRingp;
                     28:   struct object rob = NullObject;
                     29:   POLY r;
                     30:   int s,i;
                     31:   objectp f1,f2,g1,g2;
                     32:   struct object nn,dd;
                     33:
                     34:   switch (Lookup[ob1.tag][ob2.tag]) {
                     35:   case SintegerSinteger:
                     36:     return(KpoInteger(ob1.lc.ival + ob2.lc.ival));
                     37:     break;
                     38:   case SpolySpoly:
                     39:     r = ppAdd(ob1.lc.poly,ob2.lc.poly);
                     40:     rob.tag = Spoly; rob.lc.poly = r;
                     41:     return(rob);
                     42:     break;
                     43:   case SarraySarray:
                     44:     s = getoaSize(ob1);
                     45:     if (s != getoaSize(ob2)) {
                     46:       errorKan1("%s\n","Two arrays must have a same size.");
                     47:     }
                     48:     rob = newObjectArray(s);
                     49:     for (i=0; i<s; i++) {
                     50:       putoa(rob,i,KooAdd(getoa(ob1,i),getoa(ob2,i)));
                     51:     }
                     52:     return(rob);
                     53:     break;
                     54:   case SuniversalNumberSuniversalNumber:
                     55:     rob.tag = SuniversalNumber;
                     56:     rob.lc.universalNumber = newUniversalNumber(0);
                     57:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                     58:     return(rob);
                     59:     break;
                     60:   case SuniversalNumberSpoly:
                     61:     rob.tag = Spoly;
                     62:     r = ob2.lc.poly;
                     63:     if (r ISZERO) {
                     64:       /*warningKan("KooAdd(universalNumber,0 polynomial) cannot determine the ring for the result. Assume the current ring.");
                     65:         rob.lc.poly = universalToPoly(ob1.lc.universalNumber,CurrentRingp);*/
                     66:       rob = ob1;
                     67:       return(rob); /* returns universal number. */
                     68:     }
                     69:     rob.lc.poly = ppAdd(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                     70:     return(rob);
                     71:     break;
                     72:   case SpolySuniversalNumber:
                     73:     return(KooAdd(ob2,ob1));
                     74:     break;
                     75:   case SuniversalNumberSinteger:
                     76:     rob.tag = SuniversalNumber;
                     77:     rob.lc.universalNumber = newUniversalNumber(0);
                     78:     nn.tag = SuniversalNumber;
                     79:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                     80:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                     81:     return(rob);
                     82:     break;
                     83:   case SintegerSuniversalNumber:
                     84:     rob.tag = SuniversalNumber;
                     85:     rob.lc.universalNumber = newUniversalNumber(0);
                     86:     nn.tag = SuniversalNumber;
                     87:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                     88:     Cadd(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                     89:     return(rob);
                     90:     break;
                     91:
                     92:   case SrationalFunctionSrationalFunction:
                     93:     f1 = Knumerator(ob1);
                     94:     f2 = Kdenominator(ob1);
                     95:     g1 = Knumerator(ob2);
                     96:     g2 = Kdenominator(ob2);
                     97:     nn = KooAdd(KooMult(*g2,*f1),KooMult(*f2,*g1));
                     98:     dd = KooMult(*f2,*g2);
                     99:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    100:     KisInvalidRational(&rob);
                    101:     return(rob);
                    102:     break;
                    103:   case SpolySrationalFunction:  /* f1 + g1/g2 = (g2 f1 + g1)/g2 */
                    104:   case SuniversalNumberSrationalFunction:
                    105:     g1 = Knumerator(ob2);
                    106:     g2 = Kdenominator(ob2);
                    107:     nn = KooAdd(KooMult(*g2,ob1),*g1);
                    108:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    109:     KisInvalidRational(&rob);
                    110:     return(rob);
                    111:     break;
                    112:   case SrationalFunctionSpoly:
                    113:   case SrationalFunctionSuniversalNumber:
                    114:     return(KooAdd(ob2,ob1));
                    115:     break;
                    116:   case SdoubleSdouble:
                    117:     return(KpoDouble( KopDouble(ob1) + KopDouble(ob2) ));
                    118:     break;
                    119:   case SdoubleSinteger:
                    120:   case SdoubleSuniversalNumber:
                    121:   case SdoubleSrationalFunction:
                    122:     return(KpoDouble( KopDouble(ob1) + toDouble0(ob2) ) );
                    123:     break;
                    124:   case SintegerSdouble:
                    125:   case SuniversalNumberSdouble:
                    126:   case SrationalFunctionSdouble:
                    127:     return(KpoDouble( toDouble0(ob1) + KopDouble(ob2) ) );
                    128:     break;
                    129:   case SclassSclass:
                    130:   case SclassSinteger:
                    131:   case SclassSpoly:
                    132:   case SclassSuniversalNumber:
                    133:   case SclassSrationalFunction:
                    134:   case SclassSdouble:
                    135:   case SpolySclass:
                    136:   case SintegerSclass:
                    137:   case SuniversalNumberSclass:
                    138:   case SrationalFunctionSclass:
                    139:   case SdoubleSclass:
                    140:     return(Kclass_ooAdd(ob1,ob2));
                    141:     break;
                    142:
                    143:
                    144:   default:
                    145:     warningKan("KooAdd() has not supported yet these objects.\n");
                    146:     break;
                    147:   }
                    148:   return(rob);
                    149: }
                    150:
                    151: struct object KooSub(ob1,ob2)
                    152: struct object ob1,ob2;
                    153: {
                    154:   struct object rob = NullObject;
                    155:   POLY r;
                    156:   int s,i;
                    157:   objectp f1,f2,g1,g2;
                    158:   extern struct coeff *UniversalZero;
                    159:   struct object nn,dd;
                    160:
                    161:   switch (Lookup[ob1.tag][ob2.tag]) {
                    162:   case SintegerSinteger:
                    163:     return(KpoInteger(ob1.lc.ival - ob2.lc.ival));
                    164:     break;
                    165:   case SpolySpoly:
                    166:     r = ppSub(ob1.lc.poly,ob2.lc.poly);
                    167:     rob.tag = Spoly; rob.lc.poly = r;
                    168:     return(rob);
                    169:     break;
                    170:   case SarraySarray:
                    171:     s = getoaSize(ob1);
                    172:     if (s != getoaSize(ob2)) {
                    173:       errorKan1("%s\n","Two arrays must have a same size.");
                    174:     }
                    175:     rob = newObjectArray(s);
                    176:     for (i=0; i<s; i++) {
                    177:       putoa(rob,i,KooSub(getoa(ob1,i),getoa(ob2,i)));
                    178:     }
                    179:     return(rob);
                    180:     break;
                    181:   case SuniversalNumberSuniversalNumber:
                    182:     rob.tag = SuniversalNumber;
                    183:     rob.lc.universalNumber = newUniversalNumber(0);
                    184:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    185:     return(rob);
                    186:     break;
                    187:
                    188:   case SuniversalNumberSpoly:
                    189:     rob.tag = Spoly;
                    190:     r = ob2.lc.poly;
                    191:     if (r ISZERO) {
                    192:       rob = ob1;
                    193:       return(rob); /* returns universal number. */
                    194:     }
                    195:     rob.lc.poly = ppSub(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    196:     return(rob);
                    197:     break;
                    198:   case SpolySuniversalNumber:
                    199:     rob.tag = Spoly;
                    200:     r = ob1.lc.poly;
                    201:     if (r ISZERO) {
                    202:       rob.tag = SuniversalNumber;
                    203:       rob.lc.universalNumber = newUniversalNumber(0);
                    204:       Csub(rob.lc.universalNumber,UniversalZero,ob2.lc.universalNumber);
                    205:       return(rob); /* returns universal number. */
                    206:     }
                    207:     rob.lc.poly = ppSub(r,universalToPoly(ob2.lc.universalNumber,r->m->ringp));
                    208:     return(rob);
                    209:     break;
                    210:
                    211:   case SuniversalNumberSinteger:
                    212:     rob.tag = SuniversalNumber;
                    213:     rob.lc.universalNumber = newUniversalNumber(0);
                    214:     nn.tag = SuniversalNumber;
                    215:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    216:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    217:     return(rob);
                    218:     break;
                    219:   case SintegerSuniversalNumber:
                    220:     rob.tag = SuniversalNumber;
                    221:     rob.lc.universalNumber = newUniversalNumber(0);
                    222:     nn.tag = SuniversalNumber;
                    223:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    224:     Csub(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    225:     return(rob);
                    226:     break;
                    227:
                    228:   case SrationalFunctionSrationalFunction:
                    229:     f1 = Knumerator(ob1);
                    230:     f2 = Kdenominator(ob1);
                    231:     g1 = Knumerator(ob2);
                    232:     g2 = Kdenominator(ob2);
                    233:     nn = KooSub(KooMult(*g2,*f1),KooMult(*f2,*g1));
                    234:     dd = KooMult(*f2,*g2);
                    235:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    236:     KisInvalidRational(&rob);
                    237:     return(rob);
                    238:     break;
                    239:   case SpolySrationalFunction:  /* f1 - g1/g2 = (g2 f1 - g1)/g2 */
                    240:   case SuniversalNumberSrationalFunction:
                    241:     g1 = Knumerator(ob2);
                    242:     g2 = Kdenominator(ob2);
                    243:     nn = KooSub(KooMult(*g2,ob1),*g1);
                    244:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    245:     KisInvalidRational(&rob);
                    246:     return(rob);
                    247:     break;
                    248:   case SrationalFunctionSpoly:
                    249:   case SrationalFunctionSuniversalNumber: /* f1/f2 - ob2= (f1 - f2*ob2)/f2 */
                    250:     f1 = Knumerator(ob1);
                    251:     f2 = Kdenominator(ob1);
                    252:     nn = KooSub(*f1,KooMult(*f2,ob2));
                    253:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    254:     KisInvalidRational(&rob);
                    255:     return(rob);
                    256:     break;
                    257:
                    258:   case SdoubleSdouble:
                    259:     return(KpoDouble( KopDouble(ob1) - KopDouble(ob2) ));
                    260:     break;
                    261:   case SdoubleSinteger:
                    262:   case SdoubleSuniversalNumber:
                    263:   case SdoubleSrationalFunction:
                    264:     return(KpoDouble( KopDouble(ob1) - toDouble0(ob2) ) );
                    265:     break;
                    266:   case SintegerSdouble:
                    267:   case SuniversalNumberSdouble:
                    268:   case SrationalFunctionSdouble:
                    269:     return(KpoDouble( toDouble0(ob1) - KopDouble(ob2) ) );
                    270:     break;
                    271:
                    272:   default:
                    273:     warningKan("KooSub() has not supported yet these objects.\n");
                    274:     break;
                    275:   }
                    276:   return(rob);
                    277: }
                    278:
                    279: struct object KooMult(ob1,ob2)
                    280: struct object ob1,ob2;
                    281: {
                    282:   struct object rob = NullObject;
                    283:   POLY r;
                    284:   int i,s;
                    285:   objectp f1,f2,g1,g2;
                    286:   struct object dd,nn;
                    287:
                    288:
                    289:   switch (Lookup[ob1.tag][ob2.tag]) {
                    290:   case SintegerSinteger:
                    291:     return(KpoInteger(ob1.lc.ival * ob2.lc.ival));
                    292:     break;
                    293:   case SpolySpoly:
                    294:     r = ppMult(ob1.lc.poly,ob2.lc.poly);
                    295:     rob.tag = Spoly; rob.lc.poly = r;
                    296:     return(rob);
                    297:     break;
                    298:   case SarraySarray:
                    299:     return(KaoMult(ob1,ob2));
                    300:     break;
                    301:   case SpolySarray:
                    302:   case SuniversalNumberSarray:
                    303:   case SrationalFunctionSarray:
                    304:   case SintegerSarray:
                    305:     s = getoaSize(ob2);
                    306:     rob = newObjectArray(s);
                    307:     for (i=0; i<s; i++) {
                    308:       putoa(rob,i,KooMult(ob1,getoa(ob2,i)));
                    309:     }
                    310:     return(rob);
                    311:     break;
                    312:
                    313:   case SarraySpoly:
                    314:   case SarraySuniversalNumber:
                    315:   case SarraySrationalFunction:
                    316:   case SarraySinteger:
                    317:     s = getoaSize(ob1);
                    318:     rob = newObjectArray(s);
                    319:     for (i=0; i<s; i++) {
                    320:       putoa(rob,i,KooMult(getoa(ob1,i),ob2));
                    321:     }
                    322:     return(rob);
                    323:     break;
                    324:
                    325:
                    326:   case SuniversalNumberSuniversalNumber:
                    327:     rob.tag = SuniversalNumber;
                    328:     rob.lc.universalNumber = newUniversalNumber(0);
                    329:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    330:     return(rob);
                    331:     break;
                    332:
                    333:   case SuniversalNumberSpoly:
                    334:     r = ob2.lc.poly;
                    335:     if (r ISZERO) {
                    336:       rob.tag = SuniversalNumber;
                    337:       rob.lc.universalNumber = newUniversalNumber(0);
                    338:       return(rob); /* returns universal number. */
                    339:     }
                    340:     if (isZero(ob1.lc.universalNumber)) {
                    341:       rob.tag = Spoly;
                    342:       rob.lc.poly = ZERO;
                    343:       return(rob);
                    344:     }
                    345:     rob.tag = Spoly;
                    346:     rob.lc.poly = ppMult(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    347:     return(rob);
                    348:     break;
                    349:   case SpolySuniversalNumber:
                    350:     return(KooMult(ob2,ob1));
                    351:     break;
                    352:
                    353:   case SuniversalNumberSinteger:
                    354:     rob.tag = SuniversalNumber;
                    355:     rob.lc.universalNumber = newUniversalNumber(0);
                    356:     nn.tag = SuniversalNumber;
                    357:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    358:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    359:     return(rob);
                    360:     break;
                    361:   case SintegerSuniversalNumber:
                    362:     rob.tag = SuniversalNumber;
                    363:     rob.lc.universalNumber = newUniversalNumber(0);
                    364:     nn.tag = SuniversalNumber;
                    365:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    366:     Cmult(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    367:     return(rob);
                    368:     break;
                    369:
                    370:   case SrationalFunctionSrationalFunction:
                    371:     f1 = Knumerator(ob1);
                    372:     f2 = Kdenominator(ob1);
                    373:     g1 = Knumerator(ob2);
                    374:     g2 = Kdenominator(ob2);
                    375:     nn = KooMult(*f1,*g1);
                    376:     dd = KooMult(*f2,*g2);
                    377:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    378:     KisInvalidRational(&rob);
                    379:     return(rob);
                    380:     break;
                    381:   case SpolySrationalFunction:  /* ob1 g1/g2 */
                    382:   case SuniversalNumberSrationalFunction:
                    383:     g1 = Knumerator(ob2);
                    384:     g2 = Kdenominator(ob2);
                    385:     nn = KooMult(ob1,*g1);
                    386:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    387:     KisInvalidRational(&rob);
                    388:     return(rob);
                    389:     break;
                    390:   case SrationalFunctionSpoly:
                    391:   case SrationalFunctionSuniversalNumber: /* f1*ob2/f2 */
                    392:     f1 = Knumerator(ob1);
                    393:     f2 = Kdenominator(ob1);
                    394:     nn = KooMult(*f1,ob2);
                    395:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    396:     KisInvalidRational(&rob);
                    397:     return(rob);
                    398:     break;
                    399:
                    400:   case SdoubleSdouble:
                    401:     return(KpoDouble( KopDouble(ob1) * KopDouble(ob2) ));
                    402:     break;
                    403:   case SdoubleSinteger:
                    404:   case SdoubleSuniversalNumber:
                    405:   case SdoubleSrationalFunction:
                    406:     return(KpoDouble( KopDouble(ob1) * toDouble0(ob2) ) );
                    407:     break;
                    408:   case SintegerSdouble:
                    409:   case SuniversalNumberSdouble:
                    410:   case SrationalFunctionSdouble:
                    411:     return(KpoDouble( toDouble0(ob1) * KopDouble(ob2) ) );
                    412:     break;
                    413:
                    414:   default:
                    415:     warningKan("KooMult() has not supported yet these objects.\n");
                    416:     break;
                    417:   }
                    418:   return(rob);
                    419: }
                    420:
                    421:
                    422:
                    423: struct object KoNegate(obj)
                    424: struct object obj;
                    425: {
                    426:   struct object rob = NullObject;
                    427:   extern struct ring SmallRing;
                    428:   struct object tob;
                    429:   switch(obj.tag) {
                    430:   case Sinteger:
                    431:     rob = obj;
                    432:     rob.lc.ival = -rob.lc.ival;
                    433:     break;
                    434:   case Spoly:
                    435:     rob.tag = Spoly;
                    436:     rob.lc.poly = ppSub(ZERO,obj.lc.poly);
                    437:     break;
                    438:   case SuniversalNumber:
                    439:     rob.tag = SuniversalNumber;
                    440:     rob.lc.universalNumber = coeffNeg(obj.lc.universalNumber,&SmallRing);
                    441:     break;
                    442:   case SrationalFunction:
                    443:     rob.tag = SrationalFunction;
                    444:     tob = KoNegate(*(Knumerator(obj)));
                    445:     Knumerator(rob) = copyObjectp( &tob);
                    446:     Kdenominator(rob) = Kdenominator(obj);
                    447:     break;
                    448:
                    449:   case Sdouble:
                    450:     rob = KpoDouble( - toDouble0(obj) );
                    451:     break;
                    452:
                    453:   default:
                    454:     warningKan("KoNegate() has not supported yet these objects.\n");
                    455:     break;
                    456:   }
                    457:   return(rob);
                    458: }
                    459:
                    460: struct object KoInverse(obj)
                    461: struct object obj;
                    462: {
                    463:   struct object rob = NullObject;
                    464:   extern struct coeff *UniversalOne;
                    465:   objectp onep;
                    466:   struct object tob;
                    467:   switch(obj.tag) {
                    468:   case Spoly:
                    469:     tob.tag = SuniversalNumber;
                    470:     tob.lc.universalNumber = UniversalOne;
                    471:     onep = copyObjectp(& tob);
                    472:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    473:     KisInvalidRational(&rob);
                    474:     break;
                    475:   case SuniversalNumber:
                    476:     tob.tag = SuniversalNumber;
                    477:     tob.lc.universalNumber = UniversalOne;
                    478:     onep = copyObjectp(& tob);
                    479:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    480:     KisInvalidRational(&rob);
                    481:     break;
                    482:   case SrationalFunction:
                    483:     rob = obj;
                    484:     Knumerator(rob) = Kdenominator(obj);
                    485:     Kdenominator(rob) = Knumerator(obj);
                    486:     KisInvalidRational(&rob);
                    487:     break;
                    488:   default:
                    489:     warningKan("KoInverse() has not supported yet these objects.\n");
                    490:     break;
                    491:   }
                    492:   return(rob);
                    493: }
                    494:
                    495:
                    496: static int isVector(ob)
                    497: struct object ob;
                    498: {
                    499:   int i,n;
                    500:   n = getoaSize(ob);
                    501:   for (i=0; i<n; i++) {
                    502:     if (getoa(ob,i).tag == Sarray) return(0);
                    503:   }
                    504:   return(1);
                    505: }
                    506:
                    507: static int isMatrix(ob,m,n)
                    508: struct object ob;
                    509: int m,n;
                    510: {
                    511:   int i,j;
                    512:   for (i=0; i<m; i++) {
                    513:     if (getoa(ob,i).tag != Sarray) return(0);
                    514:     if (getoaSize(getoa(ob,i)) != n) return(0);
                    515:     for (j=0; j<n; j++) {
                    516:       if (getoa(getoa(ob,i),j).tag != Spoly) return(-1);
                    517:     }
                    518:   }
                    519:   return(1);
                    520: }
                    521:
                    522:
                    523: struct object KaoMult(aa,bb)
                    524: struct object aa,bb;
                    525: /* aa and bb is assumed to be array. */
                    526: {
                    527:   int m,n,m2,n2;
                    528:   int i,j,k;
                    529:   POLY tmp;
                    530:   POLY fik;
                    531:   POLY gkj;
                    532:   struct object rob;
                    533:   int r1,r2;
                    534:   int rsize;
                    535:   struct object tob;
                    536:   struct object ob1;
                    537:   extern struct ring SmallRing;
                    538:
                    539:   m = getoaSize(aa); m2 = getoaSize(bb);
                    540:   if (m == 0 || m2 == 0) errorKan1("%s\n","KaoMult(). Invalid matrix size.");
                    541:
                    542:   /*  new code for vector x vector,... etc */
                    543:   r1 = isVector(aa); r2 = isVector(bb);
                    544:   if (r1 && r2 ) { /* vector X vector ---> scalar.*/
                    545:     rsize = getoaSize(aa);
                    546:     if (rsize != getoaSize(bb)) {
                    547:       errorKan1("%s\n","KaoMult(vector,vector). The size of the vectors must be the same.");
                    548:     }
                    549:     if (r1 != 0) {
                    550:       ob1 = getoa(aa,0);
                    551:       if (ob1.tag == Spoly) {
                    552:        rob.tag = Spoly; rob.lc.poly = ZERO;
                    553:       }else if (ob1.tag == Sinteger) {
                    554:        rob.tag = Sinteger; rob.lc.ival = 0;
                    555:       }else {
                    556:        rob.tag = SuniversalNumber;
                    557:        rob.lc.universalNumber = intToCoeff(0,&SmallRing);
                    558:       }
                    559:     }else{
                    560:       rob.tag = Spoly; rob.lc.poly = ZERO;
                    561:     }
                    562:     for (i=0; i<rsize; i++) {
                    563:       rob = KooAdd(rob,KooMult(getoa(aa,i),getoa(bb,i)));
                    564:     }
                    565:     return(rob);
                    566:   } else if (r1 == 0 && r2 ) { /* matrix X vector ---> vector */
                    567:                                /* (m n) (m2=n) */
                    568:     n = getoaSize(getoa(aa,0));
                    569:     if (isMatrix(aa,m,n) == 0) {
                    570:       errorKan1("%s\n","KaoMult(matrix,vector). The left object is not matrix.");
                    571:     }else if (n != m2) {
                    572:       errorKan1("%s\n","KaoMult(). Invalid matrix and vector sizes for mult.");
                    573:     } else ;
                    574:     rob = newObjectArray(m);
                    575:     for (i=0; i<m; i++) {
                    576:       getoa(rob,i) = KooMult(getoa(aa,i),bb);
                    577:     }
                    578:     return(rob);
                    579:   }else if (r1 && r2 == 0) { /* vector X matrix ---> vector */
                    580:     tob = newObjectArray(1);
                    581:     getoa(tob,0) = aa;  /* [aa] * bb and strip [ ] */
                    582:     tob = KooMult(tob,bb);
                    583:     return(getoa(tob,0));
                    584:   } else ; /* continue: matrix X matrix case. */
                    585:   /* end of new code */
                    586:
                    587:   if (getoa(aa,0).tag != Sarray || getoa(bb,0).tag != Sarray) {
                    588:     errorKan1("%s\n","KaoMult(). Matrix must be given.");
                    589:   }
                    590:   n = getoaSize(getoa(aa,0));
                    591:   n2 = getoaSize(getoa(bb,0));
                    592:   if (n != m2) errorKan1("%s\n","KaoMult(). Invalid matrix size for mult. ((p,q)X(q,r)");
                    593:   r1 = isMatrix(aa,m,n); r2 = isMatrix(bb,m2,n2);
                    594:   if (r1 == -1 || r2 == -1) {
                    595:     /* Object multiplication. Elements are not polynomials. */
                    596:     struct object ofik,ogkj,otmp;
                    597:     rob = newObjectArray(m);
                    598:     for (i=0; i<m; i++) {
                    599:       getoa(rob,i) = newObjectArray(n2);
                    600:     }
                    601:     for (i=0; i<m; i++) {
                    602:       for (j=0; j<n2; j++) {
                    603:        ofik = getoa(getoa(aa,i),0);
                    604:        ogkj = getoa(getoa(bb,0),j);
                    605:        otmp = KooMult( ofik, ogkj);
                    606:        for (k=1; k<n; k++) {
                    607:          ofik = getoa(getoa(aa,i),k);
                    608:          ogkj = getoa(getoa(bb,k),j);
                    609:          otmp = KooAdd(otmp, KooMult( ofik, ogkj));
                    610:        }
                    611:        getoa(getoa(rob,i),j) = otmp;
                    612:       }
                    613:     }
                    614:     return(rob);
                    615:     /*errorKan1("%s\n","KaoMult().Elements of the matrix must be polynomials.");*/
                    616:   }
                    617:   if (r1 == 0 || r2 == 0)
                    618:     errorKan1("%s\n","KaoMult(). Invalid matrix form for mult.");
                    619:
                    620:   rob = newObjectArray(m);
                    621:   for (i=0; i<m; i++) {
                    622:     getoa(rob,i) = newObjectArray(n2);
                    623:   }
                    624:   for (i=0; i<m; i++) {
                    625:     for (j=0; j<n2; j++) {
                    626:       tmp = ZERO;
                    627:       for (k=0; k<n; k++) {
                    628:        fik = KopPOLY(getoa(getoa(aa,i),k));
                    629:        gkj = KopPOLY(getoa(getoa(bb,k),j));
                    630:        tmp = ppAdd(tmp, ppMult( fik, gkj));
                    631:       }
                    632:       getoa(getoa(rob,i),j) = KpoPOLY(tmp);
                    633:     }
                    634:   }
                    635:   return(rob);
                    636: }
                    637:
                    638: struct object KooDiv(ob1,ob2)
                    639: struct object ob1,ob2;
                    640: {
                    641:   struct object rob = NullObject;
                    642:   switch (Lookup[ob1.tag][ob2.tag]) {
                    643:   case SintegerSinteger:
                    644:     return(KpoInteger((ob1.lc.ival) / (ob2.lc.ival)));
                    645:     break;
                    646:   case SuniversalNumberSuniversalNumber:
                    647:     rob.tag = SuniversalNumber;
                    648:     rob.lc.universalNumber = newUniversalNumber(0);
                    649:     universalNumberDiv(rob.lc.universalNumber,ob1.lc.universalNumber,
                    650:                       ob2.lc.universalNumber);
                    651:     return(rob);
                    652:     break;
                    653:
                    654:
                    655:   default:
                    656:     warningKan("KooDiv() has not supported yet these objects.\n");
                    657:     break;
                    658:   }
                    659:   return(rob);
                    660: }
                    661:
                    662: /* :relation */
                    663: KooEqualQ(obj1,obj2)
                    664: struct object obj1;
                    665: struct object obj2;
                    666: {
                    667:   struct object ob;
                    668:   int i;
                    669:   if (obj1.tag != obj2.tag) {
                    670:     warningKan("KooEqualQ(ob1,ob2): the datatypes of ob1 and ob2  are not same. Returns false (0).\n");
                    671:     return(0);
                    672:   }
                    673:   switch(obj1.tag) {
                    674:     case 0:
                    675:       return(1); /* case of NullObject */
                    676:       break;
                    677:     case Sinteger:
                    678:       if (obj1.lc.ival == obj2.lc.ival) return(1);
                    679:       else return(0);
                    680:       break;
                    681:     case Sstring:
                    682:     case Sdollar:
                    683:       if (strcmp(obj1.lc.str, obj2.lc.str)==0) return(1);
                    684:       else return(0);
                    685:       break;
                    686:     case Spoly:
                    687:       ob = KooSub(obj1,obj2);
                    688:       if (KopPOLY(ob) == ZERO) return(1);
                    689:       else return(0);
                    690:     case Sarray:
                    691:       if (getoaSize(obj1) != getoaSize(obj2)) return(0);
                    692:       for (i=0; i< getoaSize(obj1); i++) {
                    693:        if (KooEqualQ(getoa(obj1,i),getoa(obj2,i))) { ; }
                    694:        else { return(0); }
                    695:       }
                    696:       return(1);
                    697:     case Slist:
                    698:       if (KooEqualQ(*(obj1.lc.op),*(obj2.lc.op))) {
                    699:        if (isNullList(obj1.rc.op)) {
                    700:          if (isNullList(obj2.rc.op)) return(1);
                    701:          else return(0);
                    702:        }else{
                    703:          if (isNullList(obj2.rc.op)) return(0);
                    704:          return(KooEqualQ(*(obj1.rc.op),*(obj2.rc.op)));
                    705:        }
                    706:       }else{
                    707:        return(0);
                    708:       }
                    709:       break;
                    710:     case SuniversalNumber:
                    711:       return(coeffEqual(obj1.lc.universalNumber,obj2.lc.universalNumber));
                    712:       break;
                    713:     case Sring:
                    714:       return(KopRingp(obj1) == KopRingp(obj2));
                    715:       break;
                    716:     case Sclass:
                    717:       return(KclassEqualQ(obj1,obj2));
                    718:       break;
                    719:     case Sdouble:
                    720:       return(KopDouble(obj1) == KopDouble(obj2));
                    721:       break;
                    722:     default:
                    723:       errorKan1("%s\n","KooEqualQ() has not supported these objects yet.");
                    724:       break;
                    725:     }
                    726: }
                    727:
                    728:
                    729: struct object KoIsPositive(ob1)
                    730: struct object ob1;
                    731: {
                    732:   struct object rob = NullObject;
                    733:   switch (ob1.tag) {
                    734:   case Sinteger:
                    735:     return(KpoInteger(ob1.lc.ival > 0));
                    736:     break;
                    737:   default:
                    738:     warningKan("KoIsPositive() has not supported yet these objects.\n");
                    739:     break;
                    740:   }
                    741:   return(rob);
                    742: }
                    743:
                    744: struct object KooGreater(obj1,obj2)
                    745: struct object obj1;
                    746: struct object obj2;
                    747: {
                    748:   struct object ob;
                    749:   int tt;
                    750:   if (obj1.tag != obj2.tag) {
                    751:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    752:   }
                    753:   switch(obj1.tag) {
                    754:     case 0:
                    755:       return(KpoInteger(1)); /* case of NullObject */
                    756:       break;
                    757:     case Sinteger:
                    758:       if (obj1.lc.ival > obj2.lc.ival) return(KpoInteger(1));
                    759:       else return(KpoInteger(0));
                    760:       break;
                    761:     case Sstring:
                    762:     case Sdollar:
                    763:       if (strcmp(obj1.lc.str, obj2.lc.str)>0) return(KpoInteger(1));
                    764:       else return(KpoInteger(0));
                    765:       break;
                    766:     case Spoly:
                    767:       if ((*mmLarger)(obj1.lc.poly,obj2.lc.poly) == 1) return(KpoInteger(1));
                    768:       else return(KpoInteger(0));
                    769:       break;
                    770:     case SuniversalNumber:
                    771:       tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    772:       if (tt > 0) return(KpoInteger(1));
                    773:       else return(KpoInteger(0));
                    774:       break;
                    775:     case Sdouble:
                    776:       if ( KopDouble(obj1) > KopDouble(obj2) ) return(KpoInteger(1));
                    777:       else return(KpoInteger(0));
                    778:       break;
                    779:     default:
                    780:       errorKan1("%s\n","KooGreater() has not supported these objects yet.");
                    781:       break;
                    782:     }
                    783: }
                    784:
                    785: struct object KooLess(obj1,obj2)
                    786: struct object obj1;
                    787: struct object obj2;
                    788: {
                    789:   struct object ob;
                    790:   int tt;
                    791:   if (obj1.tag != obj2.tag) {
                    792:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    793:   }
                    794:   switch(obj1.tag) {
                    795:     case 0:
                    796:       return(KpoInteger(1)); /* case of NullObject */
                    797:       break;
                    798:     case Sinteger:
                    799:       if (obj1.lc.ival < obj2.lc.ival) return(KpoInteger(1));
                    800:       else return(KpoInteger(0));
                    801:       break;
                    802:     case Sstring:
                    803:     case Sdollar:
                    804:       if (strcmp(obj1.lc.str, obj2.lc.str)<0) return(KpoInteger(1));
                    805:       else return(KpoInteger(0));
                    806:       break;
                    807:     case Spoly:
                    808:       if ((*mmLarger)(obj2.lc.poly,obj1.lc.poly) == 1) return(KpoInteger(1));
                    809:       else return(KpoInteger(0));
                    810:       break;
                    811:     case SuniversalNumber:
                    812:       tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    813:       if (tt < 0) return(KpoInteger(1));
                    814:       else return(KpoInteger(0));
                    815:       break;
                    816:     case Sdouble:
                    817:       if ( KopDouble(obj1) < KopDouble(obj2) ) return(KpoInteger(1));
                    818:       else return(KpoInteger(0));
                    819:       break;
                    820:     default:
                    821:       errorKan1("%s\n","KooLess() has not supported these objects yet.");
                    822:       break;
                    823:     }
                    824: }
                    825:
                    826: /* :conversion */
                    827:
                    828: struct object KdataConversion(obj,key)
                    829: struct object obj;
                    830: char *key;
                    831: {
                    832:   char tmps[128]; /* Assume that double is not more than 128 digits */
                    833:   char intstr[100]; /* Assume that int is not more than 100 digits */
                    834:   struct object rob;
                    835:   extern struct ring *CurrentRingp;
                    836:   extern struct ring SmallRing;
                    837:   int flag;
                    838:   struct object rob1,rob2;
                    839:   char *s;
                    840:   int i;
1.2       takayama  841:   double f;
                    842:   double f2;
1.1       maekawa   843:   /* reports the data type */
                    844:   if (key[0] == 't' || key[0] =='e') {
                    845:     if (strcmp(key,"type?")==0) {
                    846:       rob = KpoInteger(obj.tag);
                    847:       return(rob);
                    848:     }else if (strcmp(key,"type??")==0) {
                    849:       if (obj.tag != Sclass) {
                    850:        rob = KpoInteger(obj.tag);
                    851:       }else {
                    852:        rob = KpoInteger(ectag(obj));
                    853:       }
                    854:       return(rob);
                    855:     }else if (strcmp(key,"error")==0) {
                    856:       rob = KnewErrorPacketObj(obj);
                    857:       return(rob);
                    858:     }
                    859:   }
                    860:   switch(obj.tag) {
                    861:   case Snull:
                    862:     if (strcmp(key,"integer") == 0) {
                    863:       rob = KpoInteger(0);
                    864:       return(rob);
                    865:     }else if (strcmp(key,"universalNumber") == 0) {
                    866:       rob.tag = SuniversalNumber;
                    867:       rob.lc.universalNumber = intToCoeff(obj.lc.ival,&SmallRing);
                    868:       return(rob);
                    869:     }else if (strcmp(key,"poly") == 0) {
                    870:       rob = KpoPOLY(ZERO);
                    871:     }else{
                    872:       warningKan("Sorry. The data conversion from null to this data type has not supported yet.\n");
                    873:     }
                    874:     break;
                    875:   case Sinteger:
                    876:     if (strcmp(key,"string") == 0) { /* ascii code */
                    877:       rob.tag = Sdollar;
                    878:       rob.lc.str = (char *)sGC_malloc(2);
                    879:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    880:       (rob.lc.str)[0] = obj.lc.ival; (rob.lc.str)[1] = '\0';
                    881:       return(rob);
                    882:     }else if (strcmp(key,"integer")==0) {
                    883:       return(obj);
                    884:     }else if (strcmp(key,"poly") == 0) {
                    885:       rob.tag = Spoly;
                    886:       rob.lc.poly = cxx(obj.lc.ival,0,0,CurrentRingp);
                    887:       return(rob);
                    888:     }else if (strcmp(key,"dollar") == 0) {
                    889:       rob.tag = Sdollar;
                    890:       sprintf(intstr,"%d",obj.lc.ival);
                    891:       rob.lc.str = (char *)sGC_malloc(strlen(intstr)+2);
                    892:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    893:       strcpy(rob.lc.str,intstr);
                    894:       return(rob);
                    895:     }else if (strcmp(key,"universalNumber")==0) {
                    896:       rob.tag = SuniversalNumber;
                    897:       rob.lc.universalNumber = intToCoeff(obj.lc.ival,&SmallRing);
                    898:       return(rob);
                    899:     }else if (strcmp(key,"double") == 0) {
                    900:       rob = KpoDouble((double) (obj.lc.ival));
                    901:       return(rob);
                    902:     }else if (strcmp(key,"null") == 0) {
                    903:       rob = NullObject;
                    904:       return(rob);
                    905:     }else{
                    906:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    907:     }
                    908:     break;
                    909:   case Sdollar:
                    910:     if (strcmp(key,"dollar") == 0 || strcmp(key,"string")==0) {
                    911:       rob = obj;
                    912:       return(rob);
                    913:     }else if (strcmp(key,"literal") == 0) {
                    914:       rob.tag = Sstring;
                    915:       s = (char *) sGC_malloc(sizeof(char)*(strlen(obj.lc.str)+3));
                    916:       if (s == (char *) NULL)   {
                    917:        errorKan1("%s\n","No memory.");
                    918:       }
                    919:       s[0] = '/';
                    920:       strcpy(&(s[1]),obj.lc.str);
                    921:       rob.lc.str = &(s[1]);
                    922:       /* set the hashing value. */
                    923:       rob2 = lookupLiteralString(s);
                    924:       rob.rc.op = rob2.lc.op;
                    925:       return(rob);
                    926:     }else if (strcmp(key,"poly")==0) {
                    927:       rob.tag = Spoly;
                    928:       rob.lc.poly = stringToPOLY(obj.lc.str,CurrentRingp);
                    929:       return(rob);
                    930:     }else if (strcmp(key,"array")==0) {
                    931:       rob = newObjectArray(strlen(obj.lc.str));
                    932:       for (i=0; i<strlen(obj.lc.str); i++) {
                    933:        putoa(rob,i,KpoInteger((obj.lc.str)[i]));
                    934:       }
                    935:       return(rob);
                    936:     }else if (strcmp(key,"universalNumber") == 0) {
                    937:       rob.tag = SuniversalNumber;
                    938:       rob.lc.universalNumber = stringToUniversalNumber(obj.lc.str,&flag);
                    939:       if (flag == -1) errorKan1("KdataConversion(): %s",
                    940:                                  "It's not number.\n");
1.2       takayama  941:       return(rob);
                    942:     }else if (strcmp(key,"double") == 0) {
                    943:       /* Check the format.  2.3432 e2 is not allowed. It should be 2.3232e2.*/
                    944:       flag = 0;
                    945:       for (i=0; (obj.lc.str)[i] != '\0'; i++) {
                    946:        if ((obj.lc.str)[i] > ' ' && flag == 0) flag=1;
                    947:        else if ((obj.lc.str)[i] <= ' ' && flag == 1) flag = 2;
                    948:        else if ((obj.lc.str)[i] > ' ' && flag == 2) flag=3;
                    949:       }
                    950:       if (flag == 3) errorKan1("KdataConversion(): %s","The data for the double contains blanck(s)");
                    951:       /* Read the double. */
                    952:       if (sscanf(obj.lc.str,"%lf",&f) <= 0) {
                    953:        errorKan1("KdataConversion(): %s","It cannot be translated to double.");
                    954:       }
                    955:       rob = KpoDouble(f);
1.1       maekawa   956:       return(rob);
                    957:     }else if (strcmp(key,"null") == 0) {
                    958:       rob = NullObject;
                    959:       return(rob);
                    960:     }else{
                    961:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    962:     }
                    963:     break;
                    964:   case Sarray:
                    965:     if (strcmp(key,"array") == 0) {
                    966:       return(rob);
                    967:     }else if (strcmp(key,"list") == 0) {
                    968:       rob = *( arrayToList(obj) );
                    969:       return(rob);
                    970:     }else if (strcmp(key,"arrayOfPOLY")==0) {
                    971:       rob = KpoArrayOfPOLY(arrayToArrayOfPOLY(obj));
                    972:       return(rob);
                    973:     }else if (strcmp(key,"matrixOfPOLY")==0) {
                    974:       rob = KpoMatrixOfPOLY(arrayToMatrixOfPOLY(obj));
                    975:       return(rob);
                    976:     }else if (strcmp(key,"gradedPolySet")==0) {
                    977:       rob = KpoGradedPolySet(arrayToGradedPolySet(obj));
                    978:       return(rob);
                    979:     }else if (strcmp(key,"null") == 0) {
                    980:       rob = NullObject;
                    981:       return(rob);
                    982:     }else {
                    983:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    984:     }
                    985:     break;
                    986:   case Spoly:
                    987:     if (strcmp(key,"poly")==0) {
                    988:       return(rob);
                    989:     }else if (strcmp(key,"integer")==0) {
                    990:       if (obj.lc.poly == ZERO) return(KpoInteger(0));
                    991:       else {
                    992:        return(KpoInteger(coeffToInt(obj.lc.poly->coeffp)));
                    993:       }
                    994:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                    995:       rob.tag = Sdollar;
                    996:       rob.lc.str = KPOLYToString(KopPOLY(obj));
                    997:       return(rob);
                    998:     }else if (strcmp(key,"array") == 0) {
                    999:       return( POLYToArray(KopPOLY(obj)));
                   1000:     }else if (strcmp(key,"map")==0) {
                   1001:       return(KringMap(obj));
                   1002:     }else if (strcmp(key,"universalNumber")==0) {
                   1003:       if (obj.lc.poly == ZERO) {
                   1004:        rob.tag = SuniversalNumber;
                   1005:        rob.lc.universalNumber = newUniversalNumber(0);
                   1006:       } else {
                   1007:        if (obj.lc.poly->coeffp->tag == MP_INTEGER) {
                   1008:          rob.tag = SuniversalNumber;
                   1009:          rob.lc.universalNumber = newUniversalNumber2(obj.lc.poly->coeffp->val.bigp);
                   1010:        }else {
                   1011:          rob = NullObject;
                   1012:          warningKan("Coefficient is not MP_INT.");
                   1013:        }
                   1014:       }
                   1015:       return(rob);
                   1016:     }else if (strcmp(key,"ring")==0) {
                   1017:       if (obj.lc.poly ISZERO) {
                   1018:        warningKan("Zero polynomial does not have the ring structure field.\n");
                   1019:       }else{
                   1020:        rob.tag = Sring;
                   1021:        rob.lc.ringp = (obj.lc.poly)->m->ringp;
                   1022:        return(rob);
                   1023:       }
                   1024:     }else if (strcmp(key,"null") == 0) {
                   1025:       rob = NullObject;
                   1026:       return(rob);
                   1027:     }else{
                   1028:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1029:     }
                   1030:     break;
                   1031:   case SarrayOfPOLY:
                   1032:     if (strcmp(key,"array")==0) {
                   1033:       rob = arrayOfPOLYToArray(KopArrayOfPOLYp(obj));
                   1034:       return(rob);
                   1035:     }else{
                   1036:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1037:     }
                   1038:     break;
                   1039:   case SmatrixOfPOLY:
                   1040:     if (strcmp(key,"array")==0) {
                   1041:       rob = matrixOfPOLYToArray(KopMatrixOfPOLYp(obj));
                   1042:       return(rob);
                   1043:     }else if (strcmp(key,"null") == 0) {
                   1044:       rob = NullObject;
                   1045:       return(rob);
                   1046:     }else{
                   1047:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1048:     }
                   1049:     break;
                   1050:   case Slist:
                   1051:     if (strcmp(key,"array") == 0) {
                   1052:       rob = listToArray(&obj);
                   1053:       return(rob);
                   1054:     }
                   1055:     break;
                   1056:   case SuniversalNumber:
                   1057:     if (strcmp(key,"universalNumber")==0) {
                   1058:       return(rob);
                   1059:     }else if (strcmp(key,"integer")==0) {
                   1060:       rob = KpoInteger(coeffToInt(obj.lc.universalNumber));
                   1061:       return(rob);
                   1062:     }else if (strcmp(key,"poly")==0) {
                   1063:       rob = KpoPOLY(universalToPoly(obj.lc.universalNumber,CurrentRingp));
                   1064:       return(rob);
                   1065:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1066:       rob.tag = Sdollar;
                   1067:       rob.lc.str = coeffToString(obj.lc.universalNumber);
                   1068:       return(rob);
                   1069:     }else if (strcmp(key,"null") == 0) {
                   1070:       rob = NullObject;
                   1071:       return(rob);
                   1072:     }else if (strcmp(key,"double") == 0) {
                   1073:       rob = KpoDouble( toDouble0(obj) );
                   1074:       return(rob);
                   1075:     }else{
                   1076:       warningKan("Sorry. This type of data conversion of universalNumber has not supported yet.\n");
                   1077:     }
                   1078:     break;
                   1079:   case SrationalFunction:
                   1080:     if (strcmp(key,"rationalFunction")==0) {
                   1081:       return(rob);
                   1082:     } if (strcmp(key,"numerator")==0) {
                   1083:       rob = *(Knumerator(obj));
                   1084:       return(rob);
                   1085:     }else if  (strcmp(key,"denominator")==0) {
                   1086:       rob = *(Kdenominator(obj));
                   1087:       return(rob);
                   1088:     }else if  (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1089:       rob1 = KdataConversion(*(Knumerator(obj)),"string");
                   1090:       rob2 = KdataConversion(*(Kdenominator(obj)),"string");
                   1091:       s = sGC_malloc(sizeof(char)*( strlen(rob1.lc.str) + strlen(rob2.lc.str) + 10));
                   1092:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1093:       sprintf(s,"(%s)/(%s)",rob1.lc.str,rob2.lc.str);
                   1094:       rob.tag = Sdollar;
                   1095:       rob.lc.str = s;
                   1096:       return(rob);
                   1097:     }else if  (strcmp(key,"cancel")==0) {
                   1098:       warningKan("Sorry. Data conversion <<cancel>> of rationalFunction has not supported yet.\n");
                   1099:       return(obj);
                   1100:     }else if (strcmp(key,"null") == 0) {
                   1101:       rob = NullObject;
                   1102:       return(rob);
                   1103:     }else if (strcmp(key,"double") == 0) {
                   1104:       rob = KpoDouble( toDouble0(obj) );
                   1105:       return(rob);
                   1106:     }else{
                   1107:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1108:     }
                   1109:     break;
                   1110:   case Sdouble:
                   1111:     if (strcmp(key,"integer") == 0) {
                   1112:       rob = KpoInteger( (int) KopDouble(obj));
                   1113:       return(rob);
                   1114:     } else if (strcmp(key,"universalNumber") == 0) {
                   1115:       rob.tag = SuniversalNumber;
                   1116:       rob.lc.universalNumber = intToCoeff((int) KopDouble(obj),&SmallRing);
                   1117:       return(rob);
                   1118:     }else if ((strcmp(key,"string") == 0) || (strcmp(key,"dollar") == 0)) {
                   1119:       sprintf(tmps,"%f",KopDouble(obj));
                   1120:       s = sGC_malloc(strlen(tmps)+2);
                   1121:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1122:       strcpy(s,tmps);
                   1123:       rob.tag = Sdollar;
                   1124:       rob.lc.str = s;
                   1125:       return(rob);
                   1126:     }else if (strcmp(key,"double")==0) {
                   1127:       return(obj);
                   1128:     }else if (strcmp(key,"null") == 0) {
                   1129:       rob = NullObject;
                   1130:       return(rob);
                   1131:     }else {
                   1132:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1133:     }
                   1134:     break;
                   1135:   case Sring:
                   1136:     if (strcmp(key,"orderMatrix")==0) {
                   1137:       rob = oGetOrderMatrix(KopRingp(obj));
                   1138:       return(rob);
                   1139:     }else{
                   1140:       warningKan("Sorryl This type of data conversion of ringp has not supported yet.\n");
                   1141:     }
                   1142:     break;
                   1143:   default:
                   1144:     warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1145:   }
                   1146:   return(NullObject);
                   1147: }
                   1148:
                   1149: /* conversion functions between primitive data and objects.
                   1150:    If it's not time critical, it is recommended to use these functions */
                   1151: struct object KpoInteger(k)
                   1152: int k;
                   1153: {
                   1154:   struct object obj;
                   1155:   obj.tag = Sinteger;
                   1156:   obj.lc.ival = k; obj.rc.ival = 0;
                   1157:   return(obj);
                   1158: }
                   1159: struct object KpoString(s)
                   1160: char *s;
                   1161: {
                   1162:   struct object obj;
                   1163:   obj.tag = Sdollar;
                   1164:   obj.lc.str = s; obj.rc.ival = 0;
                   1165:   return(obj);
                   1166: }
                   1167: struct object KpoPOLY(f)
                   1168: POLY f;
                   1169: {
                   1170:   struct object obj;
                   1171:   obj.tag = Spoly;
                   1172:   obj.lc.poly = f; obj.rc.ival = 0;
                   1173:   return(obj);
                   1174: }
                   1175: struct object KpoArrayOfPOLY(ap)
                   1176: struct arrayOfPOLY *ap ;
                   1177: {
                   1178:   struct object obj;
                   1179:   obj.tag = SarrayOfPOLY;
                   1180:   obj.lc.arrayp = ap; obj.rc.ival = 0;
                   1181:   return(obj);
                   1182: }
                   1183:
                   1184: struct object KpoMatrixOfPOLY(mp)
                   1185: struct matrixOfPOLY *mp ;
                   1186: {
                   1187:   struct object obj;
                   1188:   obj.tag = SmatrixOfPOLY;
                   1189:   obj.lc.matrixp = mp; obj.rc.ival = 0;
                   1190:   return(obj);
                   1191: }
                   1192:
                   1193: struct object KpoRingp(ringp)
                   1194: struct ring *ringp;
                   1195: {
                   1196:   struct object obj;
                   1197:   obj.tag = Sring;
                   1198:   obj.lc.ringp = ringp;
                   1199:   return(obj);
                   1200: }
                   1201:
                   1202: /*** conversion 2. Data conversions on arrays and matrices. ****/
                   1203: struct object arrayOfPOLYToArray(aa)
                   1204: struct arrayOfPOLY *aa;
                   1205: {
                   1206:   POLY *a;
                   1207:   int size;
                   1208:   struct object r;
                   1209:   int j;
                   1210:   struct object tmp;
                   1211:
                   1212:   size = aa->n; a = aa->array;
                   1213:   r = newObjectArray(size);
                   1214:   for (j=0; j<size; j++) {
                   1215:     tmp.tag = Spoly;
                   1216:     tmp.lc.poly= a[j];
                   1217:     putoa(r,j,tmp);
                   1218:   }
                   1219:   return( r );
                   1220: }
                   1221:
                   1222: struct object matrixOfPOLYToArray(pmat)
                   1223: struct matrixOfPOLY *pmat;
                   1224: {
                   1225:   struct object r;
                   1226:   struct object tmp;
                   1227:   int i,j;
                   1228:   int m,n;
                   1229:   POLY *mat;
                   1230:   struct arrayOfPOLY ap;
                   1231:
                   1232:   m = pmat->m; n = pmat->n; mat = pmat->mat;
                   1233:   r = newObjectArray(m);
                   1234:   for (i=0; i<m; i++) {
                   1235:     ap.n = n; ap.array = &(mat[ind(i,0)]);
                   1236:     tmp = arrayOfPOLYToArray(&ap);
                   1237:     /* ind() is the macro defined in matrix.h. */
                   1238:     putoa(r,i,tmp);
                   1239:   }
                   1240:   return(r);
                   1241: }
                   1242:
                   1243: struct arrayOfPOLY *arrayToArrayOfPOLY(oa)
                   1244: struct object oa;
                   1245: {
                   1246:   POLY *a;
                   1247:   int size;
                   1248:   int i;
                   1249:   struct object tmp;
                   1250:   struct arrayOfPOLY *ap;
                   1251:
                   1252:   if (oa.tag != Sarray) errorKan1("KarrayToArrayOfPOLY(): %s",
                   1253:                                  "Argument is not array\n");
                   1254:   size = getoaSize(oa);
                   1255:   a = (POLY *)sGC_malloc(sizeof(POLY)*size);
                   1256:   for (i=0; i<size; i++) {
                   1257:     tmp = getoa(oa,i);
                   1258:     if (tmp.tag != Spoly) errorKan1("KarrayToArrayOfPOLY():%s ",
                   1259:                                    "element must be polynomial.\n");
                   1260:     a[i] = tmp.lc.poly;
                   1261:   }
                   1262:   ap = (struct arrayOfPOLY *)sGC_malloc(sizeof(struct arrayOfPOLY));
                   1263:   ap->n = size;
                   1264:   ap->array = a;
                   1265:   return(ap);
                   1266: }
                   1267:
                   1268: struct matrixOfPOLY *arrayToMatrixOfPOLY(oa)
                   1269: struct object oa;
                   1270: {
                   1271:   POLY *a;
                   1272:   int m;
                   1273:   int n;
                   1274:   int i,j;
                   1275:   struct matrixOfPOLY *ma;
                   1276:
                   1277:   struct object tmp,tmp2;
                   1278:   if (oa.tag != Sarray) errorKan1("KarrayToMatrixOfPOLY(): %s",
                   1279:                                  "Argument is not array\n");
                   1280:   m = getoaSize(oa);
                   1281:   tmp = getoa(oa,0);
                   1282:   if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY():%s ",
                   1283:                                  "Argument is not array\n");
                   1284:   n = getoaSize(tmp);
                   1285:   a = (POLY *)sGC_malloc(sizeof(POLY)*(m*n));
                   1286:   for (i=0; i<m; i++) {
                   1287:     tmp = getoa(oa,i);
                   1288:     if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY(): %s",
                   1289:                                     "element must be array.\n");
                   1290:     for (j=0; j<n; j++) {
                   1291:       tmp2 = getoa(tmp,j);
                   1292:       if (tmp2.tag != Spoly) errorKan1("arrayToMatrixOfPOLY(): %s",
                   1293:                                       "element must be a polynomial.\n");
                   1294:       a[ind(i,j)] = tmp2.lc.poly;
                   1295:       /* we use the macro ind here.  Be careful of using m and n. */
                   1296:     }
                   1297:   }
                   1298:   ma = (struct matrixOfPOLY *)sGC_malloc(sizeof(struct matrixOfPOLY));
                   1299:   ma->m = m; ma->n = n;
                   1300:   ma->mat = a;
                   1301:   return(ma);
                   1302: }
                   1303:
                   1304: /* :misc */
                   1305:
                   1306: /* :ring    :kan */
                   1307: int objArrayToOrderMatrix(oA,order,n,oasize)
                   1308: struct object oA;
                   1309: int order[];
                   1310: int n;
                   1311: int oasize;
                   1312: {
                   1313:   int size;
                   1314:   int k,j;
                   1315:   struct object tmpOa;
                   1316:   struct object obj;
                   1317:   if (oA.tag != Sarray) {
                   1318:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1319:     return(-1);
                   1320:   }
                   1321:   size = getoaSize(oA);
                   1322:   if (size != oasize) {
                   1323:     warningKan("The row size of the array is wrong.");
                   1324:     return(-1);
                   1325:   }
                   1326:   for (k=0; k<size; k++) {
                   1327:     tmpOa = getoa(oA,k);
                   1328:     if (tmpOa.tag != Sarray) {
                   1329:       warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1330:       return(-1);
                   1331:     }
                   1332:     if (getoaSize(tmpOa) != 2*n) {
                   1333:       warningKan("The column size of the array is wrong.");
                   1334:       return(-1);
                   1335:     }
                   1336:     for (j=0; j<2*n; j++) {
                   1337:       obj = getoa(tmpOa,j);
                   1338:       order[k*2*n+j] = obj.lc.ival;
                   1339:     }
                   1340:   }
                   1341:   return(0);
                   1342: }
                   1343:
                   1344: int KsetOrderByObjArray(oA)
                   1345: struct object oA;
                   1346: {
                   1347:   int *order;
                   1348:   int n,c,l, oasize;
                   1349:   extern struct ring *CurrentRingp;
                   1350:   extern int AvoidTheSameRing;
                   1351:   /* n,c,l must be set in the CurrentRing */
                   1352:   if (AvoidTheSameRing) {
                   1353:     errorKan1("%s\n","KsetOrderByObjArray(): You cannot change the order matrix when AvoidTheSameRing == 1.");
                   1354:   }
                   1355:   n = CurrentRingp->n;
                   1356:   c = CurrentRingp->c;
                   1357:   l = CurrentRingp->l;
                   1358:   if (oA.tag != Sarray) {
                   1359:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1360:     return(-1);
                   1361:   }
                   1362:   oasize = getoaSize(oA);
                   1363:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1364:   if (order == (int *)NULL) errorKan1("%s\n","KsetOrderByObjArray(): No memory.");
                   1365:   if (objArrayToOrderMatrix(oA,order,n,oasize) == -1) {
                   1366:     return(-1);
                   1367:   }
                   1368:   setOrderByMatrix(order,n,c,l,oasize); /* Set order to the current ring. */
                   1369:   return(0);
                   1370: }
                   1371:
                   1372: static int checkRelations(c,l,m,n,cc,ll,mm,nn)
                   1373: int c,l,m,n,cc,ll,mm,nn;
                   1374: {
                   1375:   if (!(1<=c && c<=l && l<=m && m<=n)) return(1);
                   1376:   if (!(cc<=ll && ll<=mm && mm<=nn && nn <= n)) return(1);
                   1377:   if (!(cc<c || ll < l || mm < m || nn < n)) {
                   1378:     if (WarningNoVectorVariable) {
                   1379:       warningKan("Ring definition: there is no variable to represent vectors.\n");
                   1380:     }
                   1381:   }
                   1382:   if (!(cc<=c && ll <= l && mm <= m && nn <= n)) return(1);
                   1383:   return(0);
                   1384: }
                   1385:
                   1386: struct object KgetOrderMatrixOfCurrentRing()
                   1387: {
                   1388:   extern struct ring *CurrentRingp;
                   1389:   return(oGetOrderMatrix(CurrentRingp));
                   1390: }
                   1391:
                   1392:
                   1393: int KsetUpRing(ob1,ob2,ob3,ob4,ob5)
                   1394: struct object ob1,ob2,ob3,ob4,ob5;
                   1395: /* ob1 = [x(0), ..., x(n-1)];
                   1396:    ob2 = [D(0), ..., D(n-1)];
                   1397:    ob3 = [p,c,l,m,n,cc,ll,mm,nn,next];
                   1398:    ob4 = Order matrix
                   1399:    ob5 = [(keyword) value (keyword) value ....]
                   1400: */
                   1401: #define RP_LIMIT 500
                   1402: {
                   1403:   int i;
                   1404:   struct object ob;
                   1405:   int c,l,m,n;
                   1406:   int cc,ll,mm,nn;
                   1407:   int p;
                   1408:   char **xvars;
                   1409:   char **dvars;
                   1410:   int *outputVars;
                   1411:   int *order;
                   1412:   static int rp = 0;
                   1413:   static struct ring *rstack[RP_LIMIT];
                   1414:
                   1415:   extern struct ring *CurrentRingp;
                   1416:   struct ring *newRingp;
                   1417:   int ob3Size;
                   1418:   struct ring *nextRing;
                   1419:   int oasize;
                   1420:   static int ringSerial = 0;
                   1421:   char *ringName = NULL;
                   1422:   int aa;
                   1423:   extern int AvoidTheSameRing;
                   1424:   extern char *F_mpMult;
                   1425:   char *fmp_mult_saved;
                   1426:   char *mpMultName = NULL;
                   1427:   struct object rob;
                   1428:   struct ring *savedCurrentRingp;
                   1429:
                   1430:   /* To get the ring structure. */
                   1431:   if (ob1.tag == Snull) {
                   1432:     rob = newObjectArray(rp);
                   1433:     for (i=0; i<rp; i++) {
                   1434:       putoa(rob,i,KpoRingp(rstack[i]));
                   1435:     }
                   1436:     KSpush(rob);
                   1437:     return(0);
                   1438:   }
                   1439:
                   1440:   if (ob3.tag != Sarray) errorKan1("%s\n","Error in the 3rd argument. You need to give 4 arguments.");
                   1441:   ob3Size = getoaSize(ob3);
                   1442:   if (ob3Size != 9 && ob3Size != 10)
                   1443:     errorKan1("%s\n","Error in the 3rd argument.");
                   1444:   for (i=0; i<9; i++) {
                   1445:     ob = getoa(ob3,i);
                   1446:     if (ob.tag != Sinteger) errorKan1("%s\n","The 3rd argument should be a list of integers.");
                   1447:   }
                   1448:   if (ob3Size == 10) {
                   1449:     ob = getoa(ob3,9);
                   1450:     if (ob.tag != Sring)
                   1451:       errorKan1("%s\n","The last arguments of the 3rd argument must be a pointer to a ring.");
                   1452:     nextRing = KopRingp(ob);
                   1453:   } else {
                   1454:     nextRing = (struct ring *)NULL;
                   1455:   }
                   1456:
                   1457:   p = getoa(ob3,0).lc.ival;
                   1458:   c = getoa(ob3,1).lc.ival;  l = getoa(ob3,2).lc.ival;
                   1459:   m = getoa(ob3,3).lc.ival;  n = getoa(ob3,4).lc.ival;
                   1460:   cc = getoa(ob3,5).lc.ival;  ll = getoa(ob3,6).lc.ival;
                   1461:   mm = getoa(ob3,7).lc.ival;  nn = getoa(ob3,8).lc.ival;
                   1462:   if (checkRelations(c,l,m,n,cc,ll,mm,nn,n)) {
                   1463:     errorKan1("%s\n","1<=c<=l<=m<=n and cc<=c<=ll<=l<=mm<=m<=nn<=n \nand (cc<c or ll < l or mm < m or nn < n)  must be satisfied.");
                   1464:   }
                   1465:   if (getoaSize(ob2) != n || getoaSize(ob1) != n) {
                   1466:     errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1467:   }
                   1468:   for (i=0; i<n; i++) {
                   1469:     if (getoa(ob1,i).tag != Sdollar || getoa(ob2,i).tag != Sdollar) {
                   1470:       errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1471:     }
                   1472:   }
                   1473:   xvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1474:   dvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1475:   if (xvars == (char **)NULL || dvars == (char **)NULL) {
                   1476:     fprintf(stderr,"No more memory.\n");
                   1477:     exit(15);
                   1478:   }
                   1479:   for (i=0; i<n; i++) {
                   1480:     xvars[i] = getoa(ob1,i).lc.str;
                   1481:     dvars[i] = getoa(ob2,i).lc.str;
                   1482:   }
                   1483:   checkDuplicateName(xvars,dvars,n);
                   1484:
                   1485:   outputVars = (int *)sGC_malloc(sizeof(int)*n*2);
                   1486:   if (outputVars == NULL) {
                   1487:     fprintf(stderr,"No more memory.\n");
                   1488:     exit(15);
                   1489:   }
                   1490:   if (ReverseOutputOrder) {
                   1491:     for (i=0; i<n; i++) outputVars[i] = n-i-1;
                   1492:     for (i=0; i<n; i++) outputVars[n+i] = 2*n-i-1;
                   1493:   }else{
                   1494:     for (i=0; i<2*n; i++) {
                   1495:       outputVars[i] = i;
                   1496:     }
                   1497:   }
                   1498:
                   1499:   oasize = getoaSize(ob4);
                   1500:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1501:   if (order == (int *)NULL) errorKan1("%s\n","No memory.");
                   1502:   if (objArrayToOrderMatrix(ob4,order,n,oasize) == -1) {
                   1503:     errorKan1("%s\n","Errors in the 4th matrix (order matrix).");
                   1504:   }
                   1505:   /* It's better to check the consistency of the order matrix here. */
                   1506:   savedCurrentRingp = CurrentRingp;
                   1507:
                   1508:   newRingp = (struct ring *)sGC_malloc(sizeof(struct ring));
                   1509:   if (newRingp == NULL) errorKan1("%s\n","No more memory.");
                   1510:   /* Generate the new ring before calling setOrder...(). */
                   1511:   *newRingp = *CurrentRingp;
                   1512:   CurrentRingp = newRingp;  /* Push the current ring. */
                   1513:   setOrderByMatrix(order,n,c,l,oasize); /* set order to the CurrentRing. */
                   1514:   CurrentRingp = savedCurrentRingp; /* recover it. */
                   1515:
                   1516:
                   1517:   /* Set the default name of the ring */
                   1518:   ringName = (char *)sGC_malloc(16);
                   1519:   sprintf(ringName,"ring%05d",ringSerial);
                   1520:   ringSerial++;
                   1521:
                   1522:   /* Set the current ring */
                   1523:   newRingp->n = n; newRingp->m = m; newRingp->l = l; newRingp->c = c;
                   1524:   newRingp->nn = nn; newRingp->mm = mm; newRingp->ll = ll;
                   1525:   newRingp->cc = cc;
                   1526:   newRingp->x = xvars;
                   1527:   newRingp->D = dvars;
                   1528:   /* You don't need to set order and orderMatrixSize here.
                   1529:      It was set by setOrder(). */
                   1530:   setFromTo(newRingp);
                   1531:
                   1532:   newRingp->p = p;
                   1533:   newRingp->next = nextRing;
                   1534:   newRingp->multiplication = mpMult;
                   1535:   /* These values  should will be reset if the optional value is given. */
                   1536:   newRingp->schreyer = 0;
                   1537:   newRingp->gbListTower = NULL;
                   1538:   newRingp->outputOrder = outputVars;
                   1539:
                   1540:   if (ob5.tag != Sarray || (getoaSize(ob5) % 2) != 0) {
                   1541:     errorKan1("%s\n","[(keyword) value (keyword) value ....] should be given.");
                   1542:   }
                   1543:   for (i=0; i < getoaSize(ob5); i += 2) {
                   1544:     if (getoa(ob5,i).tag == Sdollar) {
                   1545:       if (strcmp(KopString(getoa(ob5,i)),"mpMult") == 0) {
                   1546:        if (getoa(ob5,i+1).tag != Sdollar) {
                   1547:          errorKan1("%s\n","A keyword should be given. (mpMult)");
                   1548:        }
                   1549:        fmp_mult_saved = F_mpMult;
                   1550:        mpMultName = KopString(getoa(ob5,i+1));
                   1551:        switch_function("mpMult",mpMultName);
                   1552:        /* Note that this cause a global effect. It will be done again. */
                   1553:        newRingp->multiplication = mpMult;
                   1554:        switch_function("mpMult",fmp_mult_saved);
                   1555:       } else if (strcmp(KopString(getoa(ob5,i)),"coefficient ring") == 0) {
                   1556:        if (getoa(ob5,i+1).tag != Sring) {
                   1557:          errorKan1("%s\n","The pointer to a ring should be given. (coefficient ring)");
                   1558:        }
                   1559:        nextRing = KopRingp(getoa(ob5,i+1));
                   1560:        newRingp->next = nextRing;
                   1561:       } else if (strcmp(KopString(getoa(ob5,i)),"valuation") == 0) {
                   1562:        errorKan1("%s\n","Not implemented. (valuation)");
                   1563:       } else if (strcmp(KopString(getoa(ob5,i)),"characteristic") == 0) {
                   1564:        if (getoa(ob5,i+1).tag != Sinteger) {
                   1565:          errorKan1("%s\n","A integer should be given. (characteristic)");
                   1566:        }
                   1567:        p = KopInteger(getoa(ob5,i+1));
                   1568:        newRingp->p = p;
                   1569:       } else if (strcmp(KopString(getoa(ob5,i)),"schreyer") == 0) {
                   1570:        if (getoa(ob5,i+1).tag != Sinteger) {
                   1571:          errorKan1("%s\n","A integer should be given. (schreyer)");
                   1572:        }
                   1573:        newRingp->schreyer = KopInteger(getoa(ob5,i+1));
                   1574:       } else if (strcmp(KopString(getoa(ob5,i)),"gbListTower") == 0) {
                   1575:        if (getoa(ob5,i+1).tag != Slist) {
                   1576:          errorKan1("%s\n","A list should be given (gbListTower).");
                   1577:        }
                   1578:        newRingp->gbListTower = newObject();
                   1579:        *((struct object *)(newRingp->gbListTower)) = getoa(ob5,i+1);
                   1580:       } else if (strcmp(KopString(getoa(ob5,i)),"ringName") == 0) {
                   1581:        if (getoa(ob5,i+1).tag != Sdollar) {
                   1582:          errorKan1("%s\n","A name should be given. (ringName)");
                   1583:        }
                   1584:        ringName = KopString(getoa(ob5,i+1));
                   1585:       } else {
                   1586:        errorKan1("%s\n","Unknown keyword to set_up_ring@");
                   1587:       }
                   1588:     }else{
                   1589:       errorKan1("%s\n","A keyword enclosed by braces have to be given.");
                   1590:     }
                   1591:   }
                   1592:
                   1593:   newRingp->name = ringName;
                   1594:
                   1595:
                   1596:   if (AvoidTheSameRing) {
                   1597:     aa = isTheSameRing(rstack,rp,newRingp);
                   1598:     if (aa < 0) {
                   1599:       /* This ring has never been defined. */
                   1600:       CurrentRingp = newRingp;
                   1601:       /* Install it to the RingStack */
                   1602:       if (rp <RP_LIMIT) {
                   1603:        rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
                   1604:       }else{
                   1605:        rp = 0;
                   1606:        errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
                   1607:       }
                   1608:     }else{
                   1609:       /* This ring has been defined. */
                   1610:       /* Discard the newRingp */
                   1611:       CurrentRingp = rstack[aa];
                   1612:       ringSerial--;
                   1613:     }
                   1614:   }else{
                   1615:     CurrentRingp = newRingp;
                   1616:     /* Install it to the RingStack */
                   1617:     if (rp <RP_LIMIT) {
                   1618:       rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
                   1619:     }else{
                   1620:       rp = 0;
                   1621:       errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
                   1622:     }
                   1623:   }
                   1624:   if (mpMultName != NULL) {
                   1625:     switch_function("mpMult",mpMultName);
                   1626:   }
                   1627:
                   1628:   initSyzRingp();
                   1629:
                   1630:   return(0);
                   1631: }
                   1632:
                   1633:
                   1634: struct object KsetVariableNames(struct object ob,struct ring *rp)
                   1635: {
                   1636:   int n,i;
                   1637:   struct object ox;
                   1638:   struct object otmp;
                   1639:   char **xvars;
                   1640:   char **dvars;
                   1641:   if (ob.tag  != Sarray) {
                   1642:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...]");
                   1643:   }
                   1644:   n = rp->n;
                   1645:   ox = ob;
                   1646:   if (getoaSize(ox) != 2*n) {
                   1647:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...] and the length of [(x) (y) (z) ...] must be equal to the number of x and D variables.");
                   1648:   }
                   1649:   xvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1650:   dvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1651:   if (xvars == NULL || dvars == NULL) {
                   1652:     errorKan1("%s\n","KsetVariableNames(): no more memory.");
                   1653:   }
                   1654:   for (i=0; i<2*n; i++) {
                   1655:     otmp = getoa(ox,i);
                   1656:     if(otmp.tag != Sdollar) {
                   1657:       errorKan1("%s\n","KsetVariableNames(): elements must be strings.");
                   1658:     }
                   1659:     if (i < n) {
                   1660:       xvars[i] = KopString(otmp);
                   1661:     }else{
                   1662:       dvars[i-n] = KopString(otmp);
                   1663:     }
                   1664:   }
                   1665:   checkDuplicateName(xvars,dvars,n);
                   1666:   rp->x = xvars;
                   1667:   rp->D = dvars;
                   1668:   return(ob);
                   1669: }
                   1670:
                   1671:
                   1672:
                   1673: void KshowRing(ringp)
                   1674: struct ring *ringp;
                   1675: {
                   1676:   showRing(1,ringp);
                   1677: }
                   1678:
                   1679: struct object KswitchFunction(ob1,ob2)
                   1680: struct object ob1,ob2;
                   1681: {
                   1682:   char *ans ;
                   1683:   struct object rob;
                   1684:   int needWarningForAvoidTheSameRing = 0;
                   1685:   extern int AvoidTheSameRing;
                   1686:   if ((ob1.tag != Sdollar) || (ob2.tag != Sdollar)) {
                   1687:     errorKan1("%s\n","$function$ $name$ switch_function\n");
                   1688:   }
                   1689:   if (AvoidTheSameRing && needWarningForAvoidTheSameRing) {
                   1690:     if (strcmp(KopString(ob1),"mmLarger") == 0 ||
                   1691:         strcmp(KopString(ob1),"mpMult") == 0 ||
                   1692:         strcmp(KopString(ob1),"monomialAdd") == 0 ||
                   1693:         strcmp(KopString(ob1),"isSameComponent") == 0) {
                   1694:       fprintf(stderr,",switch_function ==> %s ",KopString(ob1));
                   1695:       warningKan("switch_function might cause a trouble under AvoidTheSameRing == 1.\n");
                   1696:     }
                   1697:   }
                   1698:   if (AvoidTheSameRing) {
                   1699:     if (strcmp(KopString(ob1),"mmLarger") == 0 &&
                   1700:        strcmp(KopString(ob2),"matrix") != 0) {
                   1701:       fprintf(stderr,"mmLarger = %s",KopString(ob2));
                   1702:       errorKan1("%s\n","mmLarger can set only to matrix under AvoidTheSameRing == 1.");
                   1703:     }
                   1704:   }
                   1705:
                   1706:   ans = switch_function(ob1.lc.str,ob2.lc.str);
                   1707:   if (ans == NULL) {
                   1708:     rob = NullObject;
                   1709:   }else{
                   1710:     rob = KpoString(ans);
                   1711:   }
                   1712:   return(rob);
                   1713:
                   1714: }
                   1715:
                   1716: void KprintSwitchStatus(void)
                   1717: {
                   1718:   print_switch_status();
                   1719: }
                   1720:
                   1721: struct object KoReplace(of,rule)
                   1722: struct object of;
                   1723: struct object rule;
                   1724: {
                   1725:   struct object rob;
                   1726:   POLY f;
                   1727:   POLY lRule[N0*2];
                   1728:   POLY rRule[N0*2];
                   1729:   POLY r;
                   1730:   int i;
                   1731:   int n;
                   1732:   struct object trule;
                   1733:
                   1734:
                   1735:   if (rule.tag != Sarray) {
                   1736:     errorKan1("%s\n"," KoReplace(): The second argument must be array.");
                   1737:   }
                   1738:   n = getoaSize(rule);
                   1739:
                   1740:   if (of.tag != Spoly) {
                   1741:     errorKan1("%s\n"," KoReplace(): The first argument must be a polynomial.");
                   1742:   }
                   1743:   f = KopPOLY(of);
                   1744:
                   1745:   if (f ISZERO) {
                   1746:   }else{
                   1747:     if (n >= 2*(f->m->ringp->n)) {
                   1748:       errorKan1("%s\n"," KoReplace(): too many rules for replacement. ");
                   1749:     }
                   1750:   }
                   1751:
                   1752:   for (i=0; i<n; i++) {
                   1753:     trule = getoa(rule,i);
                   1754:     if (trule.tag != Sarray) {
                   1755:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1756:     }
                   1757:     if (getoaSize(trule) != 2) {
                   1758:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1759:     }
                   1760:
                   1761:     if (getoa(trule,0).tag != Spoly) {
                   1762:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1763:     }
                   1764:     if (getoa(trule,1).tag != Spoly) {
                   1765:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1766:     }
                   1767:
                   1768:     lRule[i] = KopPOLY(getoa(trule,0));
                   1769:     rRule[i] = KopPOLY(getoa(trule,1));
                   1770:   }
                   1771:
                   1772:   r = replace(f,lRule,rRule,n);
                   1773:   rob.tag = Spoly; rob.lc.poly = r;
                   1774:
                   1775:   return(rob);
                   1776: }
                   1777:
                   1778:
                   1779: struct object Kparts(f,v)
                   1780: struct object f;
                   1781: struct object v;
                   1782: {
                   1783:   POLY ff;
                   1784:   POLY vv;
                   1785:   struct object obj;
                   1786:   struct matrixOfPOLY *co;
                   1787:   /* check the data type */
                   1788:   if (f.tag != Spoly || v.tag != Spoly)
                   1789:     errorKan1("%s\n","arguments of Kparts() must have polynomial as arguments.");
                   1790:
                   1791:   co = parts(KopPOLY(f),KopPOLY(v));
                   1792:   obj = matrixOfPOLYToArray(co);
                   1793:   return(obj);
                   1794: }
                   1795:
                   1796: struct object Kparts2(f,v)
                   1797: struct object f;
                   1798: struct object v;
                   1799: {
                   1800:   POLY ff;
                   1801:   POLY vv;
                   1802:   struct object obj;
                   1803:   struct matrixOfPOLY *co;
                   1804:   /* check the data type */
                   1805:   if (f.tag != Spoly || v.tag != Spoly)
                   1806:     errorKan1("%s\n","arguments of Kparts2() must have polynomial as arguments.");
                   1807:
                   1808:   obj = parts2(KopPOLY(f),KopPOLY(v));
                   1809:   return(obj);
                   1810: }
                   1811:
                   1812:
                   1813: struct object Kdegree(ob1,ob2)
                   1814: struct object ob1,ob2;
                   1815: {
                   1816:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   1817:     errorKan1("%s\n","The arguments must be polynomials.");
                   1818:
                   1819:   return(KpoInteger(pDegreeWrtV(KopPOLY(ob1),KopPOLY(ob2))));
                   1820: }
                   1821:
                   1822: struct object KringMap(obj)
                   1823: struct object obj;
                   1824: {
                   1825:   extern struct ring *CurrentRingp;
                   1826:   extern struct ring *SyzRingp;
                   1827:   POLY f;
                   1828:   POLY r;
                   1829:   if (obj.tag != Spoly)
                   1830:     errorKan1("%s\n","The argments must be polynomial.");
                   1831:   f = KopPOLY(obj);
                   1832:   if (f ISZERO) return(obj);
                   1833:   if (f->m->ringp == CurrentRingp) return(obj);
                   1834:   if (f->m->ringp == CurrentRingp->next) {
                   1835:     r = newCell(newCoeff(),newMonomial(CurrentRingp));
                   1836:     r->coeffp->tag = POLY_COEFF;
                   1837:     r->coeffp->val.f = f;
                   1838:     return(KpoPOLY(r));
                   1839:   }else if (f->m->ringp == SyzRingp) {
                   1840:     return(KpoPOLY(f->coeffp->val.f));
                   1841:   }
                   1842:   errorKan1("%s\n","The ring map is not defined in this case.");
                   1843: }
                   1844:
                   1845:
                   1846: struct object Ksp(ob1,ob2)
                   1847: struct object ob1,ob2;
                   1848: {
                   1849:   struct spValue sv;
                   1850:   struct object rob,cob;
                   1851:   POLY f;
                   1852:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   1853:     errorKan1("%s\n","Ksp(): The arguments must be polynomials.");
                   1854:   sv = (*sp)(ob1.lc.poly,ob2.lc.poly);
                   1855:   f = ppAddv(ppMult(sv.a,KopPOLY(ob1)),
                   1856:             ppMult(sv.b,KopPOLY(ob2)));
                   1857:   rob = newObjectArray(2);
                   1858:   cob = newObjectArray(2);
                   1859:   putoa(rob,1,KpoPOLY(f));
                   1860:   putoa(cob,0,KpoPOLY(sv.a));
                   1861:   putoa(cob,1,KpoPOLY(sv.b));
                   1862:   putoa(rob,0,cob);
                   1863:   return(rob);
                   1864: }
                   1865:
                   1866: struct object Khead(ob)
                   1867: struct object ob;
                   1868: {
                   1869:   if (ob.tag != Spoly) errorKan1("%s\n","Khead(): The argument should be a polynomial.");
                   1870:   return(KpoPOLY(head( KopPOLY(ob))));
                   1871: }
                   1872:
                   1873:
                   1874: /* :eval */
                   1875: struct object Keval(obj)
                   1876: struct object obj;
                   1877: {
                   1878:   char *key;
                   1879:   int size;
                   1880:   struct object rob;
                   1881:   rob = NullObject;
                   1882:
                   1883:   if (obj.tag != Sarray)
                   1884:     errorKan1("%s\n","[$key$ arguments] eval");
                   1885:   if (getoaSize(obj) < 1)
                   1886:     errorKan1("%s\n","[$key$ arguments] eval");
                   1887:   if (getoa(obj,0).tag != Sdollar)
                   1888:     errorKan1("%s\n","[$key$ arguments] eval");
                   1889:   key = getoa(obj,0).lc.str;
                   1890:   size = getoaSize(obj);
                   1891:
                   1892:
                   1893:   return(rob);
                   1894: }
                   1895:
                   1896: /* :Utilities */
                   1897: char *KremoveSpace(str)
                   1898: char str[];
                   1899: {
                   1900:   int size;
                   1901:   int start;
                   1902:   int end;
                   1903:   char *s;
                   1904:   int i;
                   1905:
                   1906:   size = strlen(str);
                   1907:   for (start = 0; start <= size; start++) {
                   1908:     if (str[start] > ' ') break;
                   1909:   }
                   1910:   for (end = size-1; end >= 0; end--) {
                   1911:     if (str[end] > ' ') break;
                   1912:   }
                   1913:   if (start > end) return((char *) NULL);
                   1914:   s = (char *) sGC_malloc(sizeof(char)*(end-start+2));
                   1915:   if (s == (char *)NULL) errorKan1("%s\n","removeSpace(): No more memory.");
                   1916:   for (i=0; i< end-start+1; i++)
                   1917:     s[i] = str[i+start];
                   1918:   s[end-start+1] = '\0';
                   1919:   return(s);
                   1920: }
                   1921:
                   1922: struct object KtoRecords(ob)
                   1923: struct object ob;
                   1924: {
                   1925:   struct object obj;
                   1926:   struct object tmp;
                   1927:   int i;
                   1928:   int size;
                   1929:   char **argv;
                   1930:
                   1931:   obj = NullObject;
                   1932:   switch(ob.tag) {
                   1933:   case Sdollar: break;
                   1934:   default:
                   1935:     errorKan1("%s","Argument of KtoRecords() must be a string enclosed by dollars.\n");
                   1936:     break;
                   1937:   }
                   1938:   size = strlen(ob.lc.str)+3;
                   1939:   argv = (char **) sGC_malloc((size+1)*sizeof(char *));
                   1940:   if (argv == (char **)NULL)
                   1941:     errorKan1("%s","No more memory.\n");
                   1942:   size = KtoArgvbyCurryBrace(ob.lc.str,argv,size);
                   1943:   if (size < 0)
                   1944:     errorKan1("%s"," KtoRecords(): You have an error in the argument.\n");
                   1945:
                   1946:   obj = newObjectArray(size);
                   1947:   for (i=0; i<size; i++) {
                   1948:     tmp.tag = Sdollar;
                   1949:     tmp.lc.str = argv[i];
                   1950:     (obj.rc.op)[i] = tmp;
                   1951:   }
                   1952:   return(obj);
                   1953: }
                   1954:
                   1955: int KtoArgvbyCurryBrace(str,argv,limit)
                   1956: char *str;
                   1957: char *argv[];
                   1958: int limit;
                   1959: /* This function returns argc */
                   1960: /* decompose into tokens by the separators
                   1961:    { }, [ ], and characters of which code is less than SPACE.
                   1962:    Example.   { }  ---> nothing            (argc=0)
                   1963:               {x}----> x                   (argc=1)
                   1964:               {x,y} --> x   y              (argc=2)
                   1965:              {ab, y, z } --> ab   y   z   (argc=3)
                   1966:               [[ab],c,d]  --> [ab] c   d
                   1967: */
                   1968: {
                   1969:   int argc;
                   1970:   int n;
                   1971:   int i;
                   1972:   int k;
                   1973:   char *a;
                   1974:   char *ident;
                   1975:   int level = 0;
                   1976:   int comma;
                   1977:
                   1978:   if (str == (char *)NULL) {
                   1979:     fprintf(stderr,"You use NULL string to toArgvbyCurryBrace()\n");
                   1980:     return(0);
                   1981:   }
                   1982:
                   1983:   n = strlen(str);
                   1984:   a = (char *) sGC_malloc(sizeof(char)*(n+3));
                   1985:   a[0]=' ';
                   1986:   strcpy(&(a[1]),str);
                   1987:   n = strlen(a); a[0] = '\0';
                   1988:   comma = -1;
                   1989:   for (i=1; i<n; i++) {
                   1990:     if (a[i] == '{' || a[i] == '[') level++;
                   1991:     if (level <= 1 && ( a[i] == ',')) {a[i] = '\0'; ++comma;}
                   1992:     if (level <= 1 && (a[i]=='{' || a[i]=='}' || a[i]=='[' || a[i]==']'))
                   1993:       a[i] = '\0';
                   1994:     if (a[i] == '}' || a[i] == ']') level--;
                   1995:     if ((level <= 1) && (comma == -1) && ( a[i] > ' ')) comma = 0;
                   1996:   }
                   1997:
                   1998:   if (comma == -1) return(0);
                   1999:
                   2000:   argc=0;
                   2001:   for (i=0; i<n; i++) {
                   2002:     if ((a[i] == '\0') && (a[i+1] != '\0')) ++argc;
                   2003:   }
                   2004:   if (argc > limit) return(-argc);
                   2005:
                   2006:   k = 0;
                   2007:   for (i=0; i<n; i++) {
                   2008:     if ((a[i] == '\0') && (a[i+1] != '\0')) {
                   2009:       ident = (char *) sGC_malloc(sizeof(char)*( strlen(&(a[i+1])) + 3));
                   2010:       strcpy(ident,&(a[i+1]));
                   2011:       argv[k] = KremoveSpace(ident);
                   2012:       if (argv[k] != (char *)NULL) k++;
                   2013:       if (k >= limit) errorKan1("%s\n","KtoArgvbyCurryBraces(): k>=limit.");
                   2014:     }
                   2015:   }
                   2016:   argc = k;
                   2017:   /*for (i=0; i<argc; i++) fprintf(stderr,"%d %s\n",i,argv[i]);*/
                   2018:   return(argc);
                   2019: }
                   2020:
                   2021:
                   2022: static void checkDuplicateName(xvars,dvars,n)
                   2023: char *xvars[];
                   2024: char *dvars[];
                   2025: int n;
                   2026: {
                   2027:   int i,j;
                   2028:   char *names[N0*2];
                   2029:   for (i=0; i<n; i++) {
                   2030:     names[i] = xvars[i]; names[i+n] = dvars[i];
                   2031:   }
                   2032:   n = 2*n;
                   2033:   for (i=0; i<n; i++) {
                   2034:     for (j=i+1; j<n; j++) {
                   2035:       if (strcmp(names[i],names[j]) == 0) {
                   2036:        fprintf(stderr,"\n%d=%s, %d=%s\n",i,names[i],j,names[j]);
                   2037:        errorKan1("%s\n","Duplicate definition of the name above in SetUpRing().");
                   2038:       }
                   2039:     }
                   2040:   }
                   2041: }
                   2042:
                   2043:
                   2044:
                   2045:
                   2046: struct object KooDiv2(ob1,ob2)
                   2047: struct object ob1,ob2;
                   2048: {
                   2049:   struct object rob = NullObject;
                   2050:   POLY f;
                   2051:   extern struct ring *CurrentRingp;
                   2052:   int s,i;
                   2053:   double d;
                   2054:
                   2055:   switch (Lookup[ob1.tag][ob2.tag]) {
                   2056:   case SpolySpoly:
                   2057:   case SuniversalNumberSuniversalNumber:
                   2058:   case SuniversalNumberSpoly:
                   2059:   case SpolySuniversalNumber:
                   2060:     rob = KnewRationalFunction0(copyObjectp(&ob1),copyObjectp(&ob2));
                   2061:     KisInvalidRational(&rob);
                   2062:     return(rob);
                   2063:     break;
                   2064:   case SarraySpoly:
                   2065:   case SarraySuniversalNumber:
                   2066:   case SarraySrationalFunction:
                   2067:     s = getoaSize(ob1);
                   2068:     rob = newObjectArray(s);
                   2069:     for (i=0; i<s; i++) {
                   2070:       putoa(rob,i,KooDiv2(getoa(ob1,i),ob2));
                   2071:     }
                   2072:     return(rob);
                   2073:     break;
                   2074:   case SpolySrationalFunction:
                   2075:   case SrationalFunctionSpoly:
                   2076:   case SrationalFunctionSrationalFunction:
                   2077:   case SuniversalNumberSrationalFunction:
                   2078:   case SrationalFunctionSuniversalNumber:
                   2079:     rob = KoInverse(ob2);
                   2080:     rob = KooMult(ob1,rob);
                   2081:     return(rob);
                   2082:     break;
                   2083:
                   2084:   case SdoubleSdouble:
                   2085:     d = KopDouble(ob2);
                   2086:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2087:     return(KpoDouble( KopDouble(ob1) / d ));
                   2088:     break;
                   2089:   case SdoubleSinteger:
                   2090:   case SdoubleSuniversalNumber:
                   2091:   case SdoubleSrationalFunction:
                   2092:     d = toDouble0(ob2);
                   2093:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2094:     return(KpoDouble( KopDouble(ob1) / d) );
                   2095:     break;
                   2096:   case SintegerSdouble:
                   2097:   case SuniversalNumberSdouble:
                   2098:   case SrationalFunctionSdouble:
                   2099:     d = KopDouble(ob2);
                   2100:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2101:     return(KpoDouble( toDouble0(ob1) / d ) );
                   2102:     break;
                   2103:
                   2104:   default:
                   2105:     warningKan("KooDiv2() has not supported yet these objects.\n");
                   2106:     break;
                   2107:   }
                   2108:   return(rob);
                   2109: }
                   2110: /* Template
                   2111:   case SrationalFunctionSrationalFunction:
                   2112:     warningKan("Koo() has not supported yet these objects.\n");
                   2113:     return(rob);
                   2114:     break;
                   2115:   case SpolySrationalFunction:
                   2116:     warningKan("Koo() has not supported yet these objects.\n");
                   2117:     return(rob);
                   2118:     break;
                   2119:   case SrationalFunctionSpoly:
                   2120:     warningKan("Koo() has not supported yet these objects.\n");
                   2121:     return(rob);
                   2122:     break;
                   2123:   case SuniversalNumberSrationalFunction:
                   2124:     warningKan("Koo() has not supported yet these objects.\n");
                   2125:     return(rob);
                   2126:     break;
                   2127:   case SrationalFunctionSuniversalNumber:
                   2128:     warningKan("Koo() has not supported yet these objects.\n");
                   2129:     return(rob);
                   2130:     break;
                   2131: */
                   2132:
                   2133: int KisInvalidRational(op)
                   2134: objectp op;
                   2135: {
                   2136:   extern struct coeff *UniversalZero;
                   2137:   if (op->tag != SrationalFunction) return(0);
                   2138:   if (KisZeroObject(Kdenominator(*op))) {
                   2139:     errorKan1("%s\n","KisInvalidRational(): zero division. You have f/0.");
                   2140:   }
                   2141:   if (KisZeroObject(Knumerator(*op))) {
                   2142:     op->tag = SuniversalNumber;
                   2143:     op->lc.universalNumber = UniversalZero;
                   2144:   }
                   2145:   return(0);
                   2146: }
                   2147:
                   2148: struct object KgbExtension(struct object obj)
                   2149: {
                   2150:   char *key;
                   2151:   int size;
                   2152:   struct object keyo;
                   2153:   struct object rob = NullObject;
                   2154:   struct object obj1,obj2,obj3;
                   2155:   POLY f1;
                   2156:   POLY f2;
                   2157:   POLY f3;
                   2158:   POLY f;
                   2159:   int m,i;
                   2160:   struct pairOfPOLY pf;
                   2161:
                   2162:   if (obj.tag != Sarray) errorKan1("%s\n","KgbExtension(): The argument must be an array.");
                   2163:   size = getoaSize(obj);
                   2164:   if (size < 1) errorKan1("%s\n","KgbExtension(): Empty array.");
                   2165:   keyo = getoa(obj,0);
                   2166:   if (keyo.tag != Sdollar) errorKan1("%s\n","KgbExtension(): No key word.");
                   2167:   key = KopString(keyo);
                   2168:
                   2169:   /* branch by the key word. */
                   2170:   if (strcmp(key,"isReducible")==0) {
                   2171:     if (size != 3) errorKan1("%s\n","[(isReducible)  poly1 poly2] gbext.");
                   2172:     obj1 = getoa(obj,1);
                   2173:     obj2 = getoa(obj,2);
                   2174:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2175:       errorKan1("%s\n","[(isReducible)  poly1 poly2] gb.");
                   2176:     f1 = KopPOLY(obj1);
                   2177:     f2 = KopPOLY(obj2);
                   2178:     rob = KpoInteger((*isReducible)(f1,f2));
                   2179:   }else if (strcmp(key,"lcm") == 0) {
                   2180:     if (size != 3) errorKan1("%s\n","[(lcm)  poly1 poly2] gb.");
                   2181:     obj1 = getoa(obj,1);
                   2182:     obj2 = getoa(obj,2);
                   2183:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2184:       errorKan1("%s\n","[(lcm)  poly1 poly2] gbext.");
                   2185:     f1 = KopPOLY(obj1);
                   2186:     f2 = KopPOLY(obj2);
                   2187:     rob = KpoPOLY((*lcm)(f1,f2));
                   2188:   }else if (strcmp(key,"grade")==0) {
                   2189:     if (size != 2) errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2190:     obj1 = getoa(obj,1);
                   2191:     if (obj1.tag != Spoly)
                   2192:       errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2193:     f1 = KopPOLY(obj1);
                   2194:     rob = KpoInteger((*grade)(f1));
                   2195:   }else if (strcmp(key,"mod")==0) {
                   2196:     if (size != 3) errorKan1("%s\n","[(mod) poly num] gbext");
                   2197:     obj1 = getoa(obj,1);
                   2198:     obj2 = getoa(obj,2);
                   2199:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2200:       errorKan1("%s\n","The datatype of the argument mismatch: [(mod) polynomial  universalNumber] gbext");
                   2201:     }
                   2202:     rob = KpoPOLY( modulopZ(KopPOLY(obj1),KopUniversalNumber(obj2)) );
                   2203:   }else if (strcmp(key,"tomodp")==0) {
                   2204:     /* The ring must be a ring of characteristic p. */
                   2205:     if (size != 3) errorKan1("%s\n","[(tomod) poly ring] gbext");
                   2206:     obj1 = getoa(obj,1);
                   2207:     obj2 = getoa(obj,2);
                   2208:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2209:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod) polynomial  ring] gbext");
                   2210:     }
                   2211:     rob = KpoPOLY( modulop(KopPOLY(obj1),KopRingp(obj2)) );
                   2212:   }else if (strcmp(key,"tomod0")==0) {
                   2213:     /* Ring must be a ring of characteristic 0. */
                   2214:     if (size != 3) errorKan1("%s\n","[(tomod0) poly ring] gbext");
                   2215:     obj1 = getoa(obj,1);
                   2216:     obj2 = getoa(obj,2);
                   2217:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2218:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod0) polynomial  ring] gbext");
                   2219:     }
                   2220:     errorKan1("%s\n","It has not been implemented.");
                   2221:     rob = KpoPOLY( POLYNULL );
                   2222:   }else if (strcmp(key,"divByN")==0) {
                   2223:     if (size != 3) errorKan1("%s\n","[(divByN) poly num] gbext");
                   2224:     obj1 = getoa(obj,1);
                   2225:     obj2 = getoa(obj,2);
                   2226:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2227:       errorKan1("%s\n","The datatype of the argument mismatch: [(divByN) polynomial  universalNumber] gbext");
                   2228:     }
                   2229:     pf =  quotientByNumber(KopPOLY(obj1),KopUniversalNumber(obj2));
                   2230:     rob  = newObjectArray(2);
                   2231:     putoa(rob,0,KpoPOLY(pf.first));
                   2232:     putoa(rob,1,KpoPOLY(pf.second));
                   2233:   }else if (strcmp(key,"isConstant")==0) {
                   2234:     if (size != 2) errorKan1("%s\n","[(isConstant) poly ] gbext bool");
                   2235:     obj1 = getoa(obj,1);
                   2236:     if (obj1.tag != Spoly) {
                   2237:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstant) polynomial] gbext");
                   2238:     }
                   2239:     return(KpoInteger(isConstant(KopPOLY(obj1))));
                   2240:   }else if (strcmp(key,"schreyerSkelton") == 0) {
                   2241:     if (size != 2) errorKan1("%s\n","[(schreyerSkelton) array_of_poly ] gbext array");
                   2242:     obj1 = getoa(obj,1);
                   2243:     return(KschreyerSkelton(obj1));
                   2244:   }else if (strcmp(key,"lcoeff") == 0) {
                   2245:     if (size != 2) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2246:     obj1 = getoa(obj,1);
                   2247:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2248:     f = KopPOLY(obj1);
                   2249:     if (f == POLYNULL) return(KpoPOLY(f));
                   2250:     return(KpoPOLY( newCell(coeffCopy(f->coeffp),newMonomial(f->m->ringp))));
                   2251:   }else if (strcmp(key,"lmonom") == 0) {
                   2252:     if (size != 2) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2253:     obj1 = getoa(obj,1);
                   2254:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2255:     f = KopPOLY(obj1);
                   2256:     if (f == POLYNULL) return(KpoPOLY(f));
                   2257:     return(KpoPOLY( newCell(intToCoeff(1,f->m->ringp),monomialCopy(f->m))));
                   2258:   }else if (strcmp(key,"toes") == 0) {
                   2259:     if (size != 2) errorKan1("%s\n","[(toes) array] gbext poly");
                   2260:     obj1 = getoa(obj,1);
                   2261:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toes) array] gbext poly");
                   2262:     return(KvectorToSchreyer_es(obj1));
1.3     ! takayama 2263:   }else if (strcmp(key,"toe_") == 0) {
        !          2264:     if (size != 2) errorKan1("%s\n","[(toe_) array] gbext poly");
        !          2265:     obj1 = getoa(obj,1);
        !          2266:     if (obj1.tag == Spoly) return(obj1);
        !          2267:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toe_) array] gbext poly");
        !          2268:     return(KpoPOLY(arrayToPOLY(obj1)));
1.1       maekawa  2269:   }else if (strcmp(key,"isOrdered") == 0) {
                   2270:     if (size != 2) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2271:     obj1 = getoa(obj,1);
                   2272:     if (obj1.tag != Spoly) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2273:     return(KisOrdered(obj1));
                   2274:   }else {
                   2275:     errorKan1("%s\n","gbext : unknown tag.");
                   2276:   }
                   2277:   return(rob);
                   2278: }
                   2279:
                   2280: struct object KmpzExtension(struct object obj)
                   2281: {
                   2282:   char *key;
                   2283:   int size;
                   2284:   struct object keyo;
                   2285:   struct object rob = NullObject;
                   2286:   struct object obj0,obj1,obj2,obj3;
                   2287:   MP_INT *f;
                   2288:   MP_INT *g;
                   2289:   MP_INT *h;
                   2290:   MP_INT *r0;
                   2291:   MP_INT *r1;
                   2292:   MP_INT *r2;
                   2293:   int gi;
                   2294:   extern struct ring *SmallRingp;
                   2295:
                   2296:
                   2297:   if (obj.tag != Sarray) errorKan1("%s\n","KmpzExtension(): The argument must be an array.");
                   2298:   size = getoaSize(obj);
                   2299:   if (size < 1) errorKan1("%s\n","KmpzExtension(): Empty array.");
                   2300:   keyo = getoa(obj,0);
                   2301:   if (keyo.tag != Sdollar) errorKan1("%s\n","KmpzExtension(): No key word.");
                   2302:   key = KopString(keyo);
                   2303:
                   2304:   /* branch by the key word. */
                   2305:   if (strcmp(key,"gcd")==0) {
                   2306:     if (size != 3) errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2307:     obj1 = getoa(obj,1);
                   2308:     obj2 = getoa(obj,2);
                   2309:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2310:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2311:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
                   2312:        ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
                   2313:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2314:     }
                   2315:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2316:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2317:     r1 = newMP_INT();
                   2318:     mpz_gcd(r1,f,g);
                   2319:     rob.tag = SuniversalNumber;
                   2320:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2321:   }else if (strcmp(key,"tdiv_qr")==0) {
                   2322:     if (size != 3) errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2323:     obj1 = getoa(obj,1);
                   2324:     obj2 = getoa(obj,2);
                   2325:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2326:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2327:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
                   2328:        ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
                   2329:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2330:     }
                   2331:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2332:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2333:     r1 = newMP_INT();
                   2334:     r2 = newMP_INT();
                   2335:     mpz_tdiv_qr(r1,r2,f,g);
                   2336:     obj1.tag = SuniversalNumber;
                   2337:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2338:     obj2.tag = SuniversalNumber;
                   2339:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2340:     rob = newObjectArray(2);
                   2341:     putoa(rob,0,obj1); putoa(rob,1,obj2);
                   2342:   } else if (strcmp(key,"cancel")==0) {
                   2343:     if (size != 2) {
                   2344:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2345:     }
                   2346:     obj0 = getoa(obj,1);
                   2347:     if (obj0.tag == SuniversalNumber) return(obj0);
                   2348:     if (obj0.tag != SrationalFunction) {
                   2349:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2350:       return(obj0);
                   2351:     }
                   2352:     obj1 = *(Knumerator(obj0));
                   2353:     obj2 = *(Kdenominator(obj0));
                   2354:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber) {
                   2355:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2356:       return(obj0);
                   2357:     }
                   2358:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
                   2359:        ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
                   2360:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2361:     }
                   2362:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2363:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2364:
                   2365:     r0 = newMP_INT();
                   2366:     r1 = newMP_INT();
                   2367:     r2 = newMP_INT();
                   2368:     mpz_gcd(r0,f,g);
                   2369:     mpz_divexact(r1,f,r0);
                   2370:     mpz_divexact(r2,g,r0);
                   2371:     obj1.tag = SuniversalNumber;
                   2372:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2373:     obj2.tag = SuniversalNumber;
                   2374:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2375:
                   2376:     rob = KnewRationalFunction0(copyObjectp(&obj1),copyObjectp(&obj2));
                   2377:     KisInvalidRational(&rob);
                   2378:   }else if (strcmp(key,"sqrt")==0 ||
                   2379:            strcmp(key,"com")==0) {
                   2380:     /*  One arg functions  */
                   2381:     if (size != 2) errorKan1("%s\n","[key num] mpzext");
                   2382:     obj1 = getoa(obj,1);
                   2383:     if (obj1.tag != SuniversalNumber)
                   2384:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2385:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber))
                   2386:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2387:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2388:     if (strcmp(key,"sqrt")==0) {
                   2389:       r1 = newMP_INT();
                   2390:       mpz_sqrt(r1,f);
                   2391:     }else if (strcmp(key,"com")==0) {
                   2392:       r1 = newMP_INT();
                   2393:       mpz_com(r1,f);
                   2394:     }
                   2395:     rob.tag = SuniversalNumber;
                   2396:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2397:   }else if (strcmp(key,"probab_prime_p")==0 ||
                   2398:            strcmp(key,"and") == 0 ||
                   2399:            strcmp(key,"ior")==0) {
                   2400:     /* Two args functions */
                   2401:     if (size != 3) errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2402:     obj1 = getoa(obj,1);
                   2403:     obj2 = getoa(obj,2);
                   2404:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2405:       errorKan1("%s\n","[key num1 num2] mpzext.");
                   2406:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
                   2407:        ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
                   2408:       errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2409:     }
                   2410:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2411:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2412:     if (strcmp(key,"probab_prime_p")==0) {
                   2413:       gi = (int) mpz_get_si(g);
                   2414:       if (mpz_probab_prime_p(f,gi)) {
                   2415:        rob = KpoInteger(1);
                   2416:       }else {
                   2417:        rob = KpoInteger(0);
                   2418:       }
                   2419:     }else if (strcmp(key,"and")==0) {
                   2420:       r1 = newMP_INT();
                   2421:       mpz_and(r1,f,g);
                   2422:       rob.tag = SuniversalNumber;
                   2423:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2424:     }else if (strcmp(key,"ior")==0) {
                   2425:       r1 = newMP_INT();
                   2426:       mpz_ior(r1,f,g);
                   2427:       rob.tag = SuniversalNumber;
                   2428:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2429:     }
                   2430:
                   2431:   }else if (strcmp(key,"powm")==0) {
                   2432:     /* three args */
                   2433:     if (size != 4) errorKan1("%s\n","[key num1 num2 num3] mpzext");
                   2434:     obj1 = getoa(obj,1); obj2 = getoa(obj,2); obj3 = getoa(obj,3);
                   2435:     if (obj1.tag != SuniversalNumber ||
                   2436:         obj2.tag != SuniversalNumber ||
                   2437:         obj3.tag != SuniversalNumber ) {
                   2438:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2439:     }
                   2440:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
                   2441:        ! is_this_coeff_MP_INT(obj2.lc.universalNumber) ||
                   2442:        ! is_this_coeff_MP_INT(obj3.lc.universalNumber)) {
                   2443:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2444:     }
                   2445:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2446:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2447:     h = coeff_to_MP_INT(obj3.lc.universalNumber);
                   2448:     if (mpz_sgn(g) < 0) errorKan1("%s\n","[(powm) base exp mod] mpzext : exp must not be negative.");
                   2449:     r1 = newMP_INT();
                   2450:     mpz_powm(r1,f,g,h);
                   2451:     rob.tag = SuniversalNumber;
                   2452:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2453:   }else {
                   2454:     errorKan1("%s\n","mpzExtension(): Unknown tag.");
                   2455:   }
                   2456:   return(rob);
                   2457: }
                   2458:
                   2459:
                   2460: /** : context   */
                   2461: struct object KnewContext(struct object superObj,char *name) {
                   2462:   struct context *cp;
                   2463:   struct object ob;
                   2464:   if (superObj.tag != Sclass) {
                   2465:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2466:   }
                   2467:   if (superObj.lc.ival != CLASSNAME_CONTEXT) {
                   2468:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2469:   }
                   2470:   cp = newContext0((struct context *)(superObj.rc.voidp),name);
                   2471:   ob.tag = Sclass;
                   2472:   ob.lc.ival = CLASSNAME_CONTEXT;
                   2473:   ob.rc.voidp = cp;
                   2474:   return(ob);
                   2475: }
                   2476:
                   2477: struct object KcreateClassIncetance(struct object ob1,
                   2478:                                    struct object ob2,
                   2479:                                    struct object ob3)
                   2480: {
                   2481:   /* [class-tag super-obj] size [class-tag]  cclass */
                   2482:   struct object ob4;
                   2483:   int size,size2,i;
                   2484:   struct object ob5;
                   2485:   struct object rob;
                   2486:
                   2487:   if (ob1.tag != Sarray)
                   2488:     errorKan1("%s\n","cclass: The first argument must be an array.");
                   2489:   if (getoaSize(ob1) < 1)
                   2490:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2491:   ob4 = getoa(ob1,0);
                   2492:   if (ectag(ob4) != CLASSNAME_CONTEXT)
                   2493:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2494:
                   2495:   if (ob2.tag != Sinteger)
                   2496:     errorKan1("%s\n","cclass: The second argument must be an integer.");
                   2497:   size = KopInteger(ob2);
                   2498:   if (size < 1)
                   2499:     errorKan1("%s\n","cclass: The size must be > 0.");
                   2500:
                   2501:   if (ob3.tag != Sarray)
                   2502:     errorKan1("%s\n","cclass: The third argument must be an array.");
                   2503:   if (getoaSize(ob3) < 1)
                   2504:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
                   2505:   ob5 = getoa(ob3,0);
                   2506:   if (ectag(ob5) != CLASSNAME_CONTEXT)
                   2507:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
                   2508:
                   2509:   rob = newObjectArray(size);
                   2510:   putoa(rob,0,ob5);
                   2511:   if (getoaSize(ob1) < size) size2 = getoaSize(ob1);
                   2512:   else size2 = size;
                   2513:   for (i=1; i<size2; i++) {
                   2514:     putoa(rob,i,getoa(ob1,i));
                   2515:   }
                   2516:   for (i=size2; i<size; i++) {
                   2517:     putoa(rob,i,NullObject);
                   2518:   }
                   2519:   return(rob);
                   2520: }
                   2521:
                   2522:
                   2523: struct object KpoDouble(double a) {
                   2524:   struct object rob;
                   2525:   rob.tag = Sdouble;
                   2526:   /* rob.lc.dbl = (double *)sGC_malloc_atomic(sizeof(double)); */
                   2527:   rob.lc.dbl = (double *)sGC_malloc(sizeof(double));
                   2528:   if (rob.lc.dbl == (double *)NULL) {
                   2529:     fprintf(stderr,"No memory.\n"); exit(10);
                   2530:   }
                   2531:   *(rob.lc.dbl) = a;
                   2532:   return(rob);
                   2533: }
                   2534:
                   2535: double toDouble0(struct object ob) {
                   2536:   double r;
                   2537:   int r3;
                   2538:   struct object ob2;
                   2539:   struct object ob3;
                   2540:   switch(ob.tag) {
                   2541:   case Sinteger:
                   2542:     return( (double) (KopInteger(ob)) );
                   2543:   case SuniversalNumber:
                   2544:     return((double) coeffToInt(ob.lc.universalNumber));
                   2545:   case SrationalFunction:
                   2546:     /* The argument is assumed to be a rational number. */
                   2547:     ob2 = newObjectArray(2);  ob3 = KpoString("cancel");
                   2548:     putoa(ob2,0,ob3); putoa(ob2,1,ob);
                   2549:     ob = KmpzExtension(ob2);
                   2550:     ob2 = *Knumerator(ob);  ob3 = *Kdenominator(ob);
                   2551:     r3 =  coeffToInt(ob3.lc.universalNumber);
                   2552:     if (r3  == 0) {
                   2553:       errorKan1("%s\n","toDouble0(): Division by zero.");
                   2554:       break;
                   2555:     }
                   2556:     r = ((double) coeffToInt(ob2.lc.universalNumber)) / ((double)r3);
                   2557:     return(r);
                   2558:   case Sdouble:
                   2559:     return( KopDouble(ob) );
                   2560:   default:
                   2561:     errorKan1("%s\n","toDouble0(): This type of conversion is not supported.");
                   2562:     break;
                   2563:   }
                   2564:   return(0.0);
                   2565: }
                   2566:
                   2567: struct object KpoGradedPolySet(struct gradedPolySet *grD) {
                   2568:   struct object rob;
                   2569:   rob.tag = Sclass;
                   2570:   rob.lc.ival = CLASSNAME_GradedPolySet;
                   2571:   rob.rc.voidp = (void *) grD;
                   2572:   return(rob);
                   2573: }
                   2574:
                   2575: static char *getspace0(int a) {
                   2576:   char *s;
                   2577:   a = (a > 0? a:-a);
                   2578:   s = (char *) sGC_malloc(a+1);
                   2579:   if (s == (char *)NULL) {
                   2580:     errorKan1("%s\n","no more memory.");
                   2581:   }
                   2582:   return(s);
                   2583: }
                   2584: struct object KdefaultPolyRing(struct object ob) {
                   2585:   struct object rob;
                   2586:   int i,j,k,n;
                   2587:   struct object ob1,ob2,ob3,ob4,ob5;
                   2588:   struct object t1;
                   2589:   char *s1;
                   2590:   extern struct ring *CurrentRingp;
                   2591:   static struct ring *a[N0];
                   2592:
                   2593:   rob = NullObject;
                   2594:   if (ob.tag != Sinteger) {
                   2595:     errorKan1("%s\n","KdefaultPolyRing(): the argument must be integer.");
                   2596:   }
                   2597:   n = KopInteger(ob);
                   2598:   if (n <= 0) {
                   2599:     /* initializing */
                   2600:     for (i=0; i<N0; i++) {
                   2601:       a[i] = (struct ring*) NULL;
                   2602:     }
                   2603:     return(rob);
                   2604:   }
                   2605:
                   2606:   if ( a[n] != (struct ring*)NULL) return(KpoRingp(a[n]));
                   2607:
                   2608:   /* Let's construct ring of polynomials of 2n variables  */
                   2609:   /* x variables */
                   2610:   ob1 = newObjectArray(n);
                   2611:   for (i=0; i<n; i++) {
                   2612:     s1 = getspace0(1+ ((n-i)/10) + 1);
                   2613:     sprintf(s1,"x%d",n-i);
                   2614:     putoa(ob1,i,KpoString(s1));
                   2615:   }
                   2616:   ob2 = newObjectArray(n);
                   2617:   s1 = getspace0(1);
                   2618:   sprintf(s1,"h");
                   2619:   putoa(ob2,0,KpoString(s1));
                   2620:   for (i=1; i<n; i++) {
                   2621:     s1 = getspace0(1+((n+n-i)/10)+1);
                   2622:     sprintf(s1,"x%d",n+n-i);
                   2623:     putoa(ob2,i,KpoString(s1));
                   2624:   }
                   2625:
                   2626:   ob3 = newObjectArray(9);
                   2627:   putoa(ob3,0,KpoInteger(0));
                   2628:   for (i=1; i<9; i++) {
                   2629:     putoa(ob3,i,KpoInteger(n));
                   2630:   }
                   2631:
                   2632:   ob4 = newObjectArray(2*n);
                   2633:   t1 = newObjectArray(2*n);
                   2634:   for (i=0; i<2*n; i++) {
                   2635:     putoa(t1,i,KpoInteger(1));
                   2636:   }
                   2637:   putoa(ob4,0,t1);
                   2638:   for (i=1; i<2*n; i++) {
                   2639:     t1 = newObjectArray(2*n);
                   2640:     for (j=0; j<2*n; j++) {
                   2641:       putoa(t1,j,KpoInteger(0));
                   2642:       if (j == (2*n-i)) {
                   2643:        putoa(t1,j,KpoInteger(-1));
                   2644:       }
                   2645:     }
                   2646:     putoa(ob4,i,t1);
                   2647:   }
                   2648:
                   2649:   ob5 = newObjectArray(2);
                   2650:   putoa(ob5,0,KpoString("mpMult"));
                   2651:   putoa(ob5,1,KpoString("poly"));
                   2652:
                   2653:   KsetUpRing(ob1,ob2,ob3,ob4,ob5);
                   2654:   a[n] = CurrentRingp;
                   2655:   return(KpoRingp(a[n]));
                   2656: }
                   2657:
                   2658:
                   2659:
                   2660:
                   2661:
                   2662: /******************************************************************
                   2663:      error handler
                   2664: ******************************************************************/
                   2665:
                   2666: errorKan1(str,message)
                   2667: char *str;
                   2668: char *message;
                   2669: {
                   2670:   extern char *GotoLabel;
                   2671:   extern int GotoP;
                   2672:   extern int ErrorMessageMode;
                   2673:   char tmpc[1024];
                   2674:   if (ErrorMessageMode == 1 || ErrorMessageMode == 2) {
                   2675:     sprintf(tmpc,"\nERROR(kanExport[0|1].c): ");
                   2676:     if (strlen(message) < 900) {
                   2677:       strcat(tmpc,message);
                   2678:     }
                   2679:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   2680:   }
                   2681:   if (ErrorMessageMode != 1) {
                   2682:     fprintf(stderr,"\nERROR(kanExport[0|1].c): ");
                   2683:     fprintf(stderr,str,message);
                   2684:   }
                   2685:   /* fprintf(stderr,"Hello "); */
                   2686:   if (GotoP) {
                   2687:     /* fprintf(stderr,"Hello. GOTO "); */
                   2688:     fprintf(Fstack,"The interpreter was looking for the label <<%s>>. It is also aborted.\n",GotoLabel);
                   2689:     GotoP = 0;
                   2690:   }
                   2691:   stdOperandStack(); contextControl(CCRESTORE);
                   2692:   /* fprintf(stderr,"Now. Long jump!\n"); */
                   2693:   longjmp(EnvOfStackMachine,1);
                   2694: }
                   2695:
                   2696: warningKan(str)
                   2697: char *str;
                   2698: {
                   2699:   extern int WarningMessageMode;
                   2700:   extern int Strict;
                   2701:   char tmpc[1024];
                   2702:   if (WarningMessageMode == 1 || WarningMessageMode == 2) {
                   2703:     sprintf(tmpc,"\nWARNING(kanExport[0|1].c): ");
                   2704:     if (strlen(str) < 900) {
                   2705:       strcat(tmpc,str);
                   2706:     }
                   2707:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   2708:   }
                   2709:   if (WarningMessageMode != 1) {
                   2710:     fprintf(stderr,"\nWARNING(kanExport[0|1].c): ");
                   2711:     fprintf(stderr,str);
                   2712:     fprintf(stderr,"\n");
                   2713:   }
                   2714:   /* if (Strict) errorKan1("%s\n"," "); */
                   2715:   if (Strict) errorKan1("%s\n",str);
                   2716:   return(0);
                   2717: }
                   2718:
                   2719:
                   2720:
                   2721:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>