[BACK]Return to kanExport0.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport0.c, Revision 1.43

1.43    ! takayama    1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport0.c,v 1.42 2005/06/09 05:46:57 takayama Exp $  */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: #define universalToPoly(un,rp) (isZero(un)?ZERO:coeffToPoly(un,rp))
                     13:
                     14: static void checkDuplicateName(char *xvars[],char *dvars[],int n);
                     15:
                     16: static void yet() { fprintf(stderr,"Not implemented."); }
                     17:
                     18: int SerialCurrent = -1;  /* Current Serial number of the recieved packet as server. */
                     19:
                     20: int ReverseOutputOrder = 1;
                     21: int WarningNoVectorVariable = 1;
1.19      takayama   22: extern int QuoteMode;
1.1       maekawa    23:
                     24: /** :arithmetic **/
                     25: struct object KooAdd(ob1,ob2)
1.7       takayama   26:      struct object ob1,ob2;
1.1       maekawa    27: {
                     28:   extern struct ring *CurrentRingp;
                     29:   struct object rob = NullObject;
                     30:   POLY r;
                     31:   int s,i;
                     32:   objectp f1,f2,g1,g2;
1.43    ! takayama   33:   struct object nn = OINIT;
        !            34:   struct object dd = OINIT;
1.1       maekawa    35:
                     36:   switch (Lookup[ob1.tag][ob2.tag]) {
                     37:   case SintegerSinteger:
                     38:     return(KpoInteger(ob1.lc.ival + ob2.lc.ival));
                     39:     break;
                     40:   case SpolySpoly:
                     41:     r = ppAdd(ob1.lc.poly,ob2.lc.poly);
                     42:     rob.tag = Spoly; rob.lc.poly = r;
                     43:     return(rob);
                     44:     break;
                     45:   case SarraySarray:
                     46:     s = getoaSize(ob1);
                     47:     if (s != getoaSize(ob2)) {
                     48:       errorKan1("%s\n","Two arrays must have a same size.");
                     49:     }
                     50:     rob = newObjectArray(s);
                     51:     for (i=0; i<s; i++) {
                     52:       putoa(rob,i,KooAdd(getoa(ob1,i),getoa(ob2,i)));
                     53:     }
                     54:     return(rob);
                     55:     break;
                     56:   case SuniversalNumberSuniversalNumber:
                     57:     rob.tag = SuniversalNumber;
                     58:     rob.lc.universalNumber = newUniversalNumber(0);
                     59:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                     60:     return(rob);
                     61:     break;
                     62:   case SuniversalNumberSpoly:
                     63:     rob.tag = Spoly;
                     64:     r = ob2.lc.poly;
                     65:     if (r ISZERO) {
                     66:       /*warningKan("KooAdd(universalNumber,0 polynomial) cannot determine the ring for the result. Assume the current ring.");
                     67:         rob.lc.poly = universalToPoly(ob1.lc.universalNumber,CurrentRingp);*/
                     68:       rob = ob1;
                     69:       return(rob); /* returns universal number. */
                     70:     }
                     71:     rob.lc.poly = ppAdd(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                     72:     return(rob);
                     73:     break;
                     74:   case SpolySuniversalNumber:
                     75:     return(KooAdd(ob2,ob1));
                     76:     break;
                     77:   case SuniversalNumberSinteger:
                     78:     rob.tag = SuniversalNumber;
                     79:     rob.lc.universalNumber = newUniversalNumber(0);
                     80:     nn.tag = SuniversalNumber;
                     81:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                     82:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                     83:     return(rob);
                     84:     break;
                     85:   case SintegerSuniversalNumber:
                     86:     rob.tag = SuniversalNumber;
                     87:     rob.lc.universalNumber = newUniversalNumber(0);
                     88:     nn.tag = SuniversalNumber;
                     89:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                     90:     Cadd(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                     91:     return(rob);
                     92:     break;
                     93:
                     94:   case SrationalFunctionSrationalFunction:
                     95:     f1 = Knumerator(ob1);
                     96:     f2 = Kdenominator(ob1);
                     97:     g1 = Knumerator(ob2);
                     98:     g2 = Kdenominator(ob2);
                     99:     nn = KooAdd(KooMult(*g2,*f1),KooMult(*f2,*g1));
                    100:     dd = KooMult(*f2,*g2);
                    101:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    102:     KisInvalidRational(&rob);
                    103:     return(rob);
                    104:     break;
                    105:   case SpolySrationalFunction:  /* f1 + g1/g2 = (g2 f1 + g1)/g2 */
                    106:   case SuniversalNumberSrationalFunction:
                    107:     g1 = Knumerator(ob2);
                    108:     g2 = Kdenominator(ob2);
                    109:     nn = KooAdd(KooMult(*g2,ob1),*g1);
                    110:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    111:     KisInvalidRational(&rob);
                    112:     return(rob);
                    113:     break;
                    114:   case SrationalFunctionSpoly:
                    115:   case SrationalFunctionSuniversalNumber:
                    116:     return(KooAdd(ob2,ob1));
                    117:     break;
                    118:   case SdoubleSdouble:
                    119:     return(KpoDouble( KopDouble(ob1) + KopDouble(ob2) ));
                    120:     break;
                    121:   case SdoubleSinteger:
                    122:   case SdoubleSuniversalNumber:
                    123:   case SdoubleSrationalFunction:
                    124:     return(KpoDouble( KopDouble(ob1) + toDouble0(ob2) ) );
                    125:     break;
                    126:   case SintegerSdouble:
                    127:   case SuniversalNumberSdouble:
                    128:   case SrationalFunctionSdouble:
                    129:     return(KpoDouble( toDouble0(ob1) + KopDouble(ob2) ) );
                    130:     break;
                    131:   case SclassSclass:
                    132:   case SclassSinteger:
                    133:   case SclassSpoly:
                    134:   case SclassSuniversalNumber:
                    135:   case SclassSrationalFunction:
                    136:   case SclassSdouble:
                    137:   case SpolySclass:
                    138:   case SintegerSclass:
                    139:   case SuniversalNumberSclass:
                    140:   case SrationalFunctionSclass:
                    141:   case SdoubleSclass:
                    142:     return(Kclass_ooAdd(ob1,ob2));
                    143:     break;
                    144:
                    145:
                    146:   default:
1.19      takayama  147:     if (QuoteMode) {
1.22      takayama  148:       rob = addTree(ob1,ob2);
1.19      takayama  149:     }else{
                    150:       warningKan("KooAdd() has not supported yet these objects.\n");
                    151:     }
1.1       maekawa   152:     break;
                    153:   }
                    154:   return(rob);
                    155: }
                    156:
                    157: struct object KooSub(ob1,ob2)
1.7       takayama  158:      struct object ob1,ob2;
1.1       maekawa   159: {
                    160:   struct object rob = NullObject;
                    161:   POLY r;
                    162:   int s,i;
                    163:   objectp f1,f2,g1,g2;
                    164:   extern struct coeff *UniversalZero;
1.43    ! takayama  165:   struct object nn = OINIT;
        !           166:   struct object dd = OINIT;
1.1       maekawa   167:
                    168:   switch (Lookup[ob1.tag][ob2.tag]) {
                    169:   case SintegerSinteger:
                    170:     return(KpoInteger(ob1.lc.ival - ob2.lc.ival));
                    171:     break;
                    172:   case SpolySpoly:
                    173:     r = ppSub(ob1.lc.poly,ob2.lc.poly);
                    174:     rob.tag = Spoly; rob.lc.poly = r;
                    175:     return(rob);
                    176:     break;
                    177:   case SarraySarray:
                    178:     s = getoaSize(ob1);
                    179:     if (s != getoaSize(ob2)) {
                    180:       errorKan1("%s\n","Two arrays must have a same size.");
                    181:     }
                    182:     rob = newObjectArray(s);
                    183:     for (i=0; i<s; i++) {
                    184:       putoa(rob,i,KooSub(getoa(ob1,i),getoa(ob2,i)));
                    185:     }
                    186:     return(rob);
                    187:     break;
                    188:   case SuniversalNumberSuniversalNumber:
                    189:     rob.tag = SuniversalNumber;
                    190:     rob.lc.universalNumber = newUniversalNumber(0);
                    191:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    192:     return(rob);
                    193:     break;
                    194:
                    195:   case SuniversalNumberSpoly:
                    196:     rob.tag = Spoly;
                    197:     r = ob2.lc.poly;
                    198:     if (r ISZERO) {
                    199:       rob = ob1;
                    200:       return(rob); /* returns universal number. */
                    201:     }
                    202:     rob.lc.poly = ppSub(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    203:     return(rob);
                    204:     break;
                    205:   case SpolySuniversalNumber:
                    206:     rob.tag = Spoly;
                    207:     r = ob1.lc.poly;
                    208:     if (r ISZERO) {
                    209:       rob.tag = SuniversalNumber;
                    210:       rob.lc.universalNumber = newUniversalNumber(0);
                    211:       Csub(rob.lc.universalNumber,UniversalZero,ob2.lc.universalNumber);
                    212:       return(rob); /* returns universal number. */
                    213:     }
                    214:     rob.lc.poly = ppSub(r,universalToPoly(ob2.lc.universalNumber,r->m->ringp));
                    215:     return(rob);
                    216:     break;
                    217:
                    218:   case SuniversalNumberSinteger:
                    219:     rob.tag = SuniversalNumber;
                    220:     rob.lc.universalNumber = newUniversalNumber(0);
                    221:     nn.tag = SuniversalNumber;
                    222:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    223:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    224:     return(rob);
                    225:     break;
                    226:   case SintegerSuniversalNumber:
                    227:     rob.tag = SuniversalNumber;
                    228:     rob.lc.universalNumber = newUniversalNumber(0);
                    229:     nn.tag = SuniversalNumber;
                    230:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    231:     Csub(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    232:     return(rob);
                    233:     break;
                    234:
                    235:   case SrationalFunctionSrationalFunction:
                    236:     f1 = Knumerator(ob1);
                    237:     f2 = Kdenominator(ob1);
                    238:     g1 = Knumerator(ob2);
                    239:     g2 = Kdenominator(ob2);
                    240:     nn = KooSub(KooMult(*g2,*f1),KooMult(*f2,*g1));
                    241:     dd = KooMult(*f2,*g2);
                    242:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    243:     KisInvalidRational(&rob);
                    244:     return(rob);
                    245:     break;
                    246:   case SpolySrationalFunction:  /* f1 - g1/g2 = (g2 f1 - g1)/g2 */
                    247:   case SuniversalNumberSrationalFunction:
                    248:     g1 = Knumerator(ob2);
                    249:     g2 = Kdenominator(ob2);
                    250:     nn = KooSub(KooMult(*g2,ob1),*g1);
                    251:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    252:     KisInvalidRational(&rob);
                    253:     return(rob);
                    254:     break;
                    255:   case SrationalFunctionSpoly:
                    256:   case SrationalFunctionSuniversalNumber: /* f1/f2 - ob2= (f1 - f2*ob2)/f2 */
                    257:     f1 = Knumerator(ob1);
                    258:     f2 = Kdenominator(ob1);
                    259:     nn = KooSub(*f1,KooMult(*f2,ob2));
                    260:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    261:     KisInvalidRational(&rob);
                    262:     return(rob);
                    263:     break;
                    264:
                    265:   case SdoubleSdouble:
                    266:     return(KpoDouble( KopDouble(ob1) - KopDouble(ob2) ));
                    267:     break;
                    268:   case SdoubleSinteger:
                    269:   case SdoubleSuniversalNumber:
                    270:   case SdoubleSrationalFunction:
                    271:     return(KpoDouble( KopDouble(ob1) - toDouble0(ob2) ) );
                    272:     break;
                    273:   case SintegerSdouble:
                    274:   case SuniversalNumberSdouble:
                    275:   case SrationalFunctionSdouble:
                    276:     return(KpoDouble( toDouble0(ob1) - KopDouble(ob2) ) );
                    277:     break;
                    278:
                    279:   default:
1.20      takayama  280:     if (QuoteMode) {
                    281:       rob = minusTree(ob1,ob2);
                    282:     }else{
                    283:       warningKan("KooSub() has not supported yet these objects.\n");
                    284:     }
1.1       maekawa   285:     break;
                    286:   }
                    287:   return(rob);
                    288: }
                    289:
                    290: struct object KooMult(ob1,ob2)
1.7       takayama  291:      struct object ob1,ob2;
1.1       maekawa   292: {
                    293:   struct object rob = NullObject;
                    294:   POLY r;
                    295:   int i,s;
                    296:   objectp f1,f2,g1,g2;
1.43    ! takayama  297:   struct object dd = OINIT;
        !           298:   struct object nn = OINIT;
1.1       maekawa   299:
                    300:
                    301:   switch (Lookup[ob1.tag][ob2.tag]) {
                    302:   case SintegerSinteger:
                    303:     return(KpoInteger(ob1.lc.ival * ob2.lc.ival));
                    304:     break;
                    305:   case SpolySpoly:
                    306:     r = ppMult(ob1.lc.poly,ob2.lc.poly);
                    307:     rob.tag = Spoly; rob.lc.poly = r;
                    308:     return(rob);
                    309:     break;
                    310:   case SarraySarray:
                    311:     return(KaoMult(ob1,ob2));
                    312:     break;
                    313:   case SpolySarray:
                    314:   case SuniversalNumberSarray:
                    315:   case SrationalFunctionSarray:
                    316:   case SintegerSarray:
                    317:     s = getoaSize(ob2);
                    318:     rob = newObjectArray(s);
                    319:     for (i=0; i<s; i++) {
                    320:       putoa(rob,i,KooMult(ob1,getoa(ob2,i)));
                    321:     }
                    322:     return(rob);
                    323:     break;
                    324:
                    325:   case SarraySpoly:
                    326:   case SarraySuniversalNumber:
                    327:   case SarraySrationalFunction:
                    328:   case SarraySinteger:
                    329:     s = getoaSize(ob1);
                    330:     rob = newObjectArray(s);
                    331:     for (i=0; i<s; i++) {
                    332:       putoa(rob,i,KooMult(getoa(ob1,i),ob2));
                    333:     }
                    334:     return(rob);
                    335:     break;
                    336:
                    337:
                    338:   case SuniversalNumberSuniversalNumber:
                    339:     rob.tag = SuniversalNumber;
                    340:     rob.lc.universalNumber = newUniversalNumber(0);
                    341:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    342:     return(rob);
                    343:     break;
                    344:
                    345:   case SuniversalNumberSpoly:
                    346:     r = ob2.lc.poly;
                    347:     if (r ISZERO) {
                    348:       rob.tag = SuniversalNumber;
                    349:       rob.lc.universalNumber = newUniversalNumber(0);
                    350:       return(rob); /* returns universal number. */
                    351:     }
                    352:     if (isZero(ob1.lc.universalNumber)) {
                    353:       rob.tag = Spoly;
                    354:       rob.lc.poly = ZERO;
                    355:       return(rob);
                    356:     }
                    357:     rob.tag = Spoly;
                    358:     rob.lc.poly = ppMult(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    359:     return(rob);
                    360:     break;
                    361:   case SpolySuniversalNumber:
                    362:     return(KooMult(ob2,ob1));
                    363:     break;
                    364:
                    365:   case SuniversalNumberSinteger:
                    366:     rob.tag = SuniversalNumber;
                    367:     rob.lc.universalNumber = newUniversalNumber(0);
                    368:     nn.tag = SuniversalNumber;
                    369:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    370:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    371:     return(rob);
                    372:     break;
                    373:   case SintegerSuniversalNumber:
                    374:     rob.tag = SuniversalNumber;
                    375:     rob.lc.universalNumber = newUniversalNumber(0);
                    376:     nn.tag = SuniversalNumber;
                    377:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    378:     Cmult(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    379:     return(rob);
                    380:     break;
                    381:
                    382:   case SrationalFunctionSrationalFunction:
                    383:     f1 = Knumerator(ob1);
                    384:     f2 = Kdenominator(ob1);
                    385:     g1 = Knumerator(ob2);
                    386:     g2 = Kdenominator(ob2);
                    387:     nn = KooMult(*f1,*g1);
                    388:     dd = KooMult(*f2,*g2);
                    389:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    390:     KisInvalidRational(&rob);
                    391:     return(rob);
                    392:     break;
                    393:   case SpolySrationalFunction:  /* ob1 g1/g2 */
                    394:   case SuniversalNumberSrationalFunction:
                    395:     g1 = Knumerator(ob2);
                    396:     g2 = Kdenominator(ob2);
                    397:     nn = KooMult(ob1,*g1);
                    398:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    399:     KisInvalidRational(&rob);
                    400:     return(rob);
                    401:     break;
                    402:   case SrationalFunctionSpoly:
                    403:   case SrationalFunctionSuniversalNumber: /* f1*ob2/f2 */
                    404:     f1 = Knumerator(ob1);
                    405:     f2 = Kdenominator(ob1);
                    406:     nn = KooMult(*f1,ob2);
                    407:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    408:     KisInvalidRational(&rob);
                    409:     return(rob);
                    410:     break;
                    411:
                    412:   case SdoubleSdouble:
                    413:     return(KpoDouble( KopDouble(ob1) * KopDouble(ob2) ));
                    414:     break;
                    415:   case SdoubleSinteger:
                    416:   case SdoubleSuniversalNumber:
                    417:   case SdoubleSrationalFunction:
                    418:     return(KpoDouble( KopDouble(ob1) * toDouble0(ob2) ) );
                    419:     break;
                    420:   case SintegerSdouble:
                    421:   case SuniversalNumberSdouble:
                    422:   case SrationalFunctionSdouble:
                    423:     return(KpoDouble( toDouble0(ob1) * KopDouble(ob2) ) );
                    424:     break;
                    425:
                    426:   default:
1.20      takayama  427:     if (QuoteMode) {
1.22      takayama  428:       rob = timesTree(ob1,ob2);
1.20      takayama  429:     }else{
                    430:       warningKan("KooMult() has not supported yet these objects.\n");
                    431:     }
1.1       maekawa   432:     break;
                    433:   }
                    434:   return(rob);
                    435: }
                    436:
                    437:
                    438:
                    439: struct object KoNegate(obj)
1.7       takayama  440:      struct object obj;
1.1       maekawa   441: {
                    442:   struct object rob = NullObject;
                    443:   extern struct ring SmallRing;
1.43    ! takayama  444:   struct object tob = OINIT;
1.1       maekawa   445:   switch(obj.tag) {
                    446:   case Sinteger:
                    447:     rob = obj;
                    448:     rob.lc.ival = -rob.lc.ival;
                    449:     break;
                    450:   case Spoly:
                    451:     rob.tag = Spoly;
                    452:     rob.lc.poly = ppSub(ZERO,obj.lc.poly);
                    453:     break;
                    454:   case SuniversalNumber:
                    455:     rob.tag = SuniversalNumber;
                    456:     rob.lc.universalNumber = coeffNeg(obj.lc.universalNumber,&SmallRing);
                    457:     break;
                    458:   case SrationalFunction:
                    459:     rob.tag = SrationalFunction;
                    460:     tob = KoNegate(*(Knumerator(obj)));
                    461:     Knumerator(rob) = copyObjectp( &tob);
                    462:     Kdenominator(rob) = Kdenominator(obj);
                    463:     break;
                    464:
                    465:   case Sdouble:
                    466:     rob = KpoDouble( - toDouble0(obj) );
                    467:     break;
                    468:
                    469:   default:
1.20      takayama  470:     if (QuoteMode) {
                    471:       rob = unaryminusTree(obj);
                    472:     }else{
                    473:       warningKan("KoNegate() has not supported yet these objects.\n");
                    474:     }
1.1       maekawa   475:     break;
                    476:   }
                    477:   return(rob);
                    478: }
                    479:
                    480: struct object KoInverse(obj)
1.7       takayama  481:      struct object obj;
1.1       maekawa   482: {
                    483:   struct object rob = NullObject;
                    484:   extern struct coeff *UniversalOne;
                    485:   objectp onep;
1.43    ! takayama  486:   struct object tob = OINIT;
1.1       maekawa   487:   switch(obj.tag) {
                    488:   case Spoly:
                    489:     tob.tag = SuniversalNumber;
                    490:     tob.lc.universalNumber = UniversalOne;
                    491:     onep = copyObjectp(& tob);
                    492:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    493:     KisInvalidRational(&rob);
                    494:     break;
                    495:   case SuniversalNumber:
                    496:     tob.tag = SuniversalNumber;
                    497:     tob.lc.universalNumber = UniversalOne;
                    498:     onep = copyObjectp(& tob);
                    499:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    500:     KisInvalidRational(&rob);
                    501:     break;
                    502:   case SrationalFunction:
                    503:     rob = obj;
                    504:     Knumerator(rob) = Kdenominator(obj);
                    505:     Kdenominator(rob) = Knumerator(obj);
                    506:     KisInvalidRational(&rob);
                    507:     break;
                    508:   default:
                    509:     warningKan("KoInverse() has not supported yet these objects.\n");
                    510:     break;
                    511:   }
                    512:   return(rob);
                    513: }
                    514:
                    515:
                    516: static int isVector(ob)
1.7       takayama  517:      struct object ob;
1.1       maekawa   518: {
                    519:   int i,n;
                    520:   n = getoaSize(ob);
                    521:   for (i=0; i<n; i++) {
                    522:     if (getoa(ob,i).tag == Sarray) return(0);
                    523:   }
                    524:   return(1);
                    525: }
                    526:
                    527: static int isMatrix(ob,m,n)
1.7       takayama  528:      struct object ob;
                    529:      int m,n;
1.1       maekawa   530: {
                    531:   int i,j;
                    532:   for (i=0; i<m; i++) {
                    533:     if (getoa(ob,i).tag != Sarray) return(0);
                    534:     if (getoaSize(getoa(ob,i)) != n) return(0);
                    535:     for (j=0; j<n; j++) {
                    536:       if (getoa(getoa(ob,i),j).tag != Spoly) return(-1);
                    537:     }
                    538:   }
                    539:   return(1);
                    540: }
                    541:
                    542:
                    543: struct object KaoMult(aa,bb)
1.7       takayama  544:      struct object aa,bb;
                    545:      /* aa and bb is assumed to be array. */
1.1       maekawa   546: {
                    547:   int m,n,m2,n2;
                    548:   int i,j,k;
                    549:   POLY tmp;
                    550:   POLY fik;
                    551:   POLY gkj;
1.43    ! takayama  552:   struct object rob = OINIT;
1.1       maekawa   553:   int r1,r2;
                    554:   int rsize;
1.43    ! takayama  555:   struct object tob = OINIT;
        !           556:   struct object ob1 = OINIT;
1.1       maekawa   557:   extern struct ring SmallRing;
                    558:
                    559:   m = getoaSize(aa); m2 = getoaSize(bb);
                    560:   if (m == 0 || m2 == 0) errorKan1("%s\n","KaoMult(). Invalid matrix size.");
                    561:
                    562:   /*  new code for vector x vector,... etc */
                    563:   r1 = isVector(aa); r2 = isVector(bb);
                    564:   if (r1 && r2 ) { /* vector X vector ---> scalar.*/
                    565:     rsize = getoaSize(aa);
                    566:     if (rsize != getoaSize(bb)) {
                    567:       errorKan1("%s\n","KaoMult(vector,vector). The size of the vectors must be the same.");
                    568:     }
                    569:     if (r1 != 0) {
                    570:       ob1 = getoa(aa,0);
                    571:       if (ob1.tag == Spoly) {
1.7       takayama  572:         rob.tag = Spoly; rob.lc.poly = ZERO;
1.1       maekawa   573:       }else if (ob1.tag == Sinteger) {
1.7       takayama  574:         rob.tag = Sinteger; rob.lc.ival = 0;
1.1       maekawa   575:       }else {
1.7       takayama  576:         rob.tag = SuniversalNumber;
                    577:         rob.lc.universalNumber = intToCoeff(0,&SmallRing);
1.1       maekawa   578:       }
                    579:     }else{
                    580:       rob.tag = Spoly; rob.lc.poly = ZERO;
                    581:     }
                    582:     for (i=0; i<rsize; i++) {
                    583:       rob = KooAdd(rob,KooMult(getoa(aa,i),getoa(bb,i)));
                    584:     }
                    585:     return(rob);
                    586:   } else if (r1 == 0 && r2 ) { /* matrix X vector ---> vector */
1.7       takayama  587:     /* (m n) (m2=n) */
1.1       maekawa   588:     n = getoaSize(getoa(aa,0));
                    589:     if (isMatrix(aa,m,n) == 0) {
                    590:       errorKan1("%s\n","KaoMult(matrix,vector). The left object is not matrix.");
                    591:     }else if (n != m2) {
                    592:       errorKan1("%s\n","KaoMult(). Invalid matrix and vector sizes for mult.");
                    593:     } else ;
                    594:     rob = newObjectArray(m);
                    595:     for (i=0; i<m; i++) {
                    596:       getoa(rob,i) = KooMult(getoa(aa,i),bb);
                    597:     }
                    598:     return(rob);
                    599:   }else if (r1 && r2 == 0) { /* vector X matrix ---> vector */
                    600:     tob = newObjectArray(1);
                    601:     getoa(tob,0) = aa;  /* [aa] * bb and strip [ ] */
                    602:     tob = KooMult(tob,bb);
                    603:     return(getoa(tob,0));
                    604:   } else ; /* continue: matrix X matrix case. */
                    605:   /* end of new code */
                    606:
                    607:   if (getoa(aa,0).tag != Sarray || getoa(bb,0).tag != Sarray) {
                    608:     errorKan1("%s\n","KaoMult(). Matrix must be given.");
                    609:   }
                    610:   n = getoaSize(getoa(aa,0));
                    611:   n2 = getoaSize(getoa(bb,0));
                    612:   if (n != m2) errorKan1("%s\n","KaoMult(). Invalid matrix size for mult. ((p,q)X(q,r)");
                    613:   r1 = isMatrix(aa,m,n); r2 = isMatrix(bb,m2,n2);
                    614:   if (r1 == -1 || r2 == -1) {
                    615:     /* Object multiplication. Elements are not polynomials. */
1.43    ! takayama  616:     struct object ofik = OINIT;
        !           617:        struct object ogkj = OINIT;
        !           618:        struct object otmp = OINIT;
1.1       maekawa   619:     rob = newObjectArray(m);
                    620:     for (i=0; i<m; i++) {
                    621:       getoa(rob,i) = newObjectArray(n2);
                    622:     }
                    623:     for (i=0; i<m; i++) {
                    624:       for (j=0; j<n2; j++) {
1.7       takayama  625:         ofik = getoa(getoa(aa,i),0);
                    626:         ogkj = getoa(getoa(bb,0),j);
                    627:         otmp = KooMult( ofik, ogkj);
                    628:         for (k=1; k<n; k++) {
                    629:           ofik = getoa(getoa(aa,i),k);
                    630:           ogkj = getoa(getoa(bb,k),j);
                    631:           otmp = KooAdd(otmp, KooMult( ofik, ogkj));
                    632:         }
                    633:         getoa(getoa(rob,i),j) = otmp;
1.1       maekawa   634:       }
                    635:     }
                    636:     return(rob);
                    637:     /*errorKan1("%s\n","KaoMult().Elements of the matrix must be polynomials.");*/
                    638:   }
                    639:   if (r1 == 0 || r2 == 0)
                    640:     errorKan1("%s\n","KaoMult(). Invalid matrix form for mult.");
                    641:
                    642:   rob = newObjectArray(m);
                    643:   for (i=0; i<m; i++) {
                    644:     getoa(rob,i) = newObjectArray(n2);
                    645:   }
                    646:   for (i=0; i<m; i++) {
                    647:     for (j=0; j<n2; j++) {
                    648:       tmp = ZERO;
                    649:       for (k=0; k<n; k++) {
1.7       takayama  650:         fik = KopPOLY(getoa(getoa(aa,i),k));
                    651:         gkj = KopPOLY(getoa(getoa(bb,k),j));
                    652:         tmp = ppAdd(tmp, ppMult( fik, gkj));
1.1       maekawa   653:       }
                    654:       getoa(getoa(rob,i),j) = KpoPOLY(tmp);
                    655:     }
                    656:   }
                    657:   return(rob);
                    658: }
                    659:
                    660: struct object KooDiv(ob1,ob2)
1.7       takayama  661:      struct object ob1,ob2;
1.1       maekawa   662: {
                    663:   struct object rob = NullObject;
                    664:   switch (Lookup[ob1.tag][ob2.tag]) {
                    665:   case SintegerSinteger:
                    666:     return(KpoInteger((ob1.lc.ival) / (ob2.lc.ival)));
                    667:     break;
                    668:   case SuniversalNumberSuniversalNumber:
                    669:     rob.tag = SuniversalNumber;
                    670:     rob.lc.universalNumber = newUniversalNumber(0);
                    671:     universalNumberDiv(rob.lc.universalNumber,ob1.lc.universalNumber,
1.7       takayama  672:                        ob2.lc.universalNumber);
1.1       maekawa   673:     return(rob);
                    674:     break;
                    675:
                    676:
                    677:   default:
1.20      takayama  678:     if (QuoteMode) {
                    679:       rob = divideTree(ob1,ob2);
                    680:     }else{
                    681:       warningKan("KooDiv() has not supported yet these objects.\n");
                    682:     }
1.1       maekawa   683:     break;
                    684:   }
                    685:   return(rob);
                    686: }
                    687:
                    688: /* :relation */
                    689: KooEqualQ(obj1,obj2)
1.7       takayama  690:      struct object obj1;
                    691:      struct object obj2;
1.1       maekawa   692: {
1.43    ! takayama  693:   struct object ob = OINIT;
1.1       maekawa   694:   int i;
1.35      takayama  695:   extern int Verbose;
1.1       maekawa   696:   if (obj1.tag != obj2.tag) {
                    697:     warningKan("KooEqualQ(ob1,ob2): the datatypes of ob1 and ob2  are not same. Returns false (0).\n");
1.35      takayama  698:        if (Verbose & 0x10) {
1.36      takayama  699:          fprintf(stderr,"obj1(tag:%d)=",obj1.tag);
1.35      takayama  700:          printObject(obj1,0,stderr);
1.36      takayama  701:          fprintf(stderr,", obj2(tag:%d)=",obj2.tag);
1.35      takayama  702:          printObject(obj2,0,stderr);
                    703:          fprintf(stderr,"\n"); fflush(stderr);
                    704:        }
1.1       maekawa   705:     return(0);
                    706:   }
                    707:   switch(obj1.tag) {
1.7       takayama  708:   case 0:
                    709:     return(1); /* case of NullObject */
                    710:     break;
                    711:   case Sinteger:
                    712:     if (obj1.lc.ival == obj2.lc.ival) return(1);
                    713:     else return(0);
                    714:     break;
                    715:   case Sstring:
                    716:   case Sdollar:
                    717:     if (strcmp(obj1.lc.str, obj2.lc.str)==0) return(1);
                    718:     else return(0);
                    719:     break;
                    720:   case Spoly:
                    721:     ob = KooSub(obj1,obj2);
                    722:     if (KopPOLY(ob) == ZERO) return(1);
                    723:     else return(0);
                    724:   case Sarray:
                    725:     if (getoaSize(obj1) != getoaSize(obj2)) return(0);
                    726:     for (i=0; i< getoaSize(obj1); i++) {
                    727:       if (KooEqualQ(getoa(obj1,i),getoa(obj2,i))) { ; }
                    728:       else { return(0); }
                    729:     }
                    730:     return(1);
                    731:   case Slist:
                    732:     if (KooEqualQ(*(obj1.lc.op),*(obj2.lc.op))) {
                    733:       if (isNullList(obj1.rc.op)) {
                    734:         if (isNullList(obj2.rc.op)) return(1);
                    735:         else return(0);
1.1       maekawa   736:       }else{
1.7       takayama  737:         if (isNullList(obj2.rc.op)) return(0);
                    738:         return(KooEqualQ(*(obj1.rc.op),*(obj2.rc.op)));
1.1       maekawa   739:       }
1.7       takayama  740:     }else{
                    741:       return(0);
1.1       maekawa   742:     }
1.7       takayama  743:     break;
                    744:   case SuniversalNumber:
                    745:     return(coeffEqual(obj1.lc.universalNumber,obj2.lc.universalNumber));
                    746:     break;
                    747:   case Sring:
                    748:     return(KopRingp(obj1) == KopRingp(obj2));
                    749:     break;
                    750:   case Sclass:
                    751:     return(KclassEqualQ(obj1,obj2));
                    752:     break;
                    753:   case Sdouble:
                    754:     return(KopDouble(obj1) == KopDouble(obj2));
                    755:     break;
                    756:   default:
                    757:     errorKan1("%s\n","KooEqualQ() has not supported these objects yet.");
                    758:     break;
                    759:   }
1.1       maekawa   760: }
                    761:
                    762:
                    763: struct object KoIsPositive(ob1)
1.7       takayama  764:      struct object ob1;
1.1       maekawa   765: {
                    766:   struct object rob = NullObject;
                    767:   switch (ob1.tag) {
                    768:   case Sinteger:
                    769:     return(KpoInteger(ob1.lc.ival > 0));
                    770:     break;
                    771:   default:
                    772:     warningKan("KoIsPositive() has not supported yet these objects.\n");
                    773:     break;
                    774:   }
                    775:   return(rob);
                    776: }
                    777:
                    778: struct object KooGreater(obj1,obj2)
1.7       takayama  779:      struct object obj1;
                    780:      struct object obj2;
1.1       maekawa   781: {
1.43    ! takayama  782:   struct object ob = OINIT;
1.1       maekawa   783:   int tt;
                    784:   if (obj1.tag != obj2.tag) {
                    785:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    786:   }
                    787:   switch(obj1.tag) {
1.7       takayama  788:   case 0:
                    789:     return(KpoInteger(1)); /* case of NullObject */
                    790:     break;
                    791:   case Sinteger:
                    792:     if (obj1.lc.ival > obj2.lc.ival) return(KpoInteger(1));
                    793:     else return(KpoInteger(0));
                    794:     break;
                    795:   case Sstring:
                    796:   case Sdollar:
                    797:     if (strcmp(obj1.lc.str, obj2.lc.str)>0) return(KpoInteger(1));
                    798:     else return(KpoInteger(0));
                    799:     break;
                    800:   case Spoly:
                    801:     if ((*mmLarger)(obj1.lc.poly,obj2.lc.poly) == 1) return(KpoInteger(1));
                    802:     else return(KpoInteger(0));
                    803:     break;
                    804:   case SuniversalNumber:
                    805:     tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    806:     if (tt > 0) return(KpoInteger(1));
                    807:     else return(KpoInteger(0));
                    808:     break;
                    809:   case Sdouble:
                    810:     if ( KopDouble(obj1) > KopDouble(obj2) ) return(KpoInteger(1));
                    811:     else return(KpoInteger(0));
                    812:     break;
1.26      takayama  813:   case Sarray:
                    814:   {
                    815:     int i,m1,m2;
1.43    ! takayama  816:     struct object rr = OINIT;
1.26      takayama  817:     m1 = getoaSize(obj1); m2 = getoaSize(obj2);
                    818:     for (i=0; i< (m1>m2?m2:m1); i++) {
                    819:       rr=KooGreater(getoa(obj1,i),getoa(obj2,i));
                    820:       if (KopInteger(rr) == 1) return rr;
                    821:       rr=KooGreater(getoa(obj2,i),getoa(obj1,i));
                    822:       if (KopInteger(rr) == 1) return KpoInteger(0);
                    823:     }
                    824:     if (m1 > m2) return KpoInteger(1);
                    825:     else return KpoInteger(0);
                    826:   }
                    827:   break;
1.7       takayama  828:   default:
                    829:     errorKan1("%s\n","KooGreater() has not supported these objects yet.");
                    830:     break;
                    831:   }
1.1       maekawa   832: }
                    833:
                    834: struct object KooLess(obj1,obj2)
1.7       takayama  835:      struct object obj1;
                    836:      struct object obj2;
1.1       maekawa   837: {
                    838:   struct object ob;
                    839:   int tt;
                    840:   if (obj1.tag != obj2.tag) {
                    841:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    842:   }
                    843:   switch(obj1.tag) {
1.7       takayama  844:   case 0:
                    845:     return(KpoInteger(1)); /* case of NullObject */
                    846:     break;
                    847:   case Sinteger:
                    848:     if (obj1.lc.ival < obj2.lc.ival) return(KpoInteger(1));
                    849:     else return(KpoInteger(0));
                    850:     break;
                    851:   case Sstring:
                    852:   case Sdollar:
                    853:     if (strcmp(obj1.lc.str, obj2.lc.str)<0) return(KpoInteger(1));
                    854:     else return(KpoInteger(0));
                    855:     break;
                    856:   case Spoly:
                    857:     if ((*mmLarger)(obj2.lc.poly,obj1.lc.poly) == 1) return(KpoInteger(1));
                    858:     else return(KpoInteger(0));
                    859:     break;
                    860:   case SuniversalNumber:
                    861:     tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    862:     if (tt < 0) return(KpoInteger(1));
                    863:     else return(KpoInteger(0));
                    864:     break;
                    865:   case Sdouble:
                    866:     if ( KopDouble(obj1) < KopDouble(obj2) ) return(KpoInteger(1));
                    867:     else return(KpoInteger(0));
                    868:     break;
1.26      takayama  869:   case Sarray:
                    870:   {
                    871:     int i,m1,m2;
1.43    ! takayama  872:     struct object rr = OINIT;
1.26      takayama  873:     m1 = getoaSize(obj1); m2 = getoaSize(obj2);
                    874:     for (i=0; i< (m1>m2?m2:m1); i++) {
                    875:       rr=KooLess(getoa(obj1,i),getoa(obj2,i));
                    876:       if (KopInteger(rr) == 1) return rr;
                    877:       rr=KooLess(getoa(obj2,i),getoa(obj1,i));
                    878:       if (KopInteger(rr) == 1) return KpoInteger(0);
                    879:     }
                    880:     if (m1 < m2) return KpoInteger(1);
                    881:     else return KpoInteger(0);
                    882:   }
                    883:   break;
1.7       takayama  884:   default:
                    885:     errorKan1("%s\n","KooLess() has not supported these objects yet.");
                    886:     break;
                    887:   }
1.1       maekawa   888: }
                    889:
                    890: /* :conversion */
                    891:
                    892: struct object KdataConversion(obj,key)
1.7       takayama  893:      struct object obj;
                    894:      char *key;
1.1       maekawa   895: {
                    896:   char tmps[128]; /* Assume that double is not more than 128 digits */
                    897:   char intstr[100]; /* Assume that int is not more than 100 digits */
1.43    ! takayama  898:   struct object rob = OINIT;
1.1       maekawa   899:   extern struct ring *CurrentRingp;
                    900:   extern struct ring SmallRing;
                    901:   int flag;
1.43    ! takayama  902:   struct object rob1 = OINIT;
        !           903:   struct object rob2 = OINIT;
1.1       maekawa   904:   char *s;
                    905:   int i;
1.2       takayama  906:   double f;
                    907:   double f2;
1.1       maekawa   908:   /* reports the data type */
                    909:   if (key[0] == 't' || key[0] =='e') {
                    910:     if (strcmp(key,"type?")==0) {
                    911:       rob = KpoInteger(obj.tag);
                    912:       return(rob);
                    913:     }else if (strcmp(key,"type??")==0) {
                    914:       if (obj.tag != Sclass) {
1.7       takayama  915:         rob = KpoInteger(obj.tag);
1.1       maekawa   916:       }else {
1.7       takayama  917:         rob = KpoInteger(ectag(obj));
1.1       maekawa   918:       }
                    919:       return(rob);
                    920:     }else if (strcmp(key,"error")==0) {
                    921:       rob = KnewErrorPacketObj(obj);
                    922:       return(rob);
                    923:     }
                    924:   }
                    925:   switch(obj.tag) {
                    926:   case Snull:
                    927:     if (strcmp(key,"integer") == 0) {
                    928:       rob = KpoInteger(0);
                    929:       return(rob);
                    930:     }else if (strcmp(key,"universalNumber") == 0) {
                    931:       rob.tag = SuniversalNumber;
                    932:       rob.lc.universalNumber = intToCoeff(obj.lc.ival,&SmallRing);
                    933:       return(rob);
                    934:     }else if (strcmp(key,"poly") == 0) {
                    935:       rob = KpoPOLY(ZERO);
1.32      takayama  936:       return rob;
                    937:     }else if (strcmp(key,"array") == 0) {
                    938:       rob = newObjectArray(0);
                    939:       return rob;
1.1       maekawa   940:     }else{
                    941:       warningKan("Sorry. The data conversion from null to this data type has not supported yet.\n");
                    942:     }
                    943:     break;
                    944:   case Sinteger:
                    945:     if (strcmp(key,"string") == 0) { /* ascii code */
                    946:       rob.tag = Sdollar;
                    947:       rob.lc.str = (char *)sGC_malloc(2);
                    948:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    949:       (rob.lc.str)[0] = obj.lc.ival; (rob.lc.str)[1] = '\0';
                    950:       return(rob);
                    951:     }else if (strcmp(key,"integer")==0) {
                    952:       return(obj);
                    953:     }else if (strcmp(key,"poly") == 0) {
                    954:       rob.tag = Spoly;
                    955:       rob.lc.poly = cxx(obj.lc.ival,0,0,CurrentRingp);
                    956:       return(rob);
                    957:     }else if (strcmp(key,"dollar") == 0) {
                    958:       rob.tag = Sdollar;
                    959:       sprintf(intstr,"%d",obj.lc.ival);
                    960:       rob.lc.str = (char *)sGC_malloc(strlen(intstr)+2);
                    961:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    962:       strcpy(rob.lc.str,intstr);
                    963:       return(rob);
                    964:     }else if (strcmp(key,"universalNumber")==0) {
1.25      takayama  965:       rob = KintToUniversalNumber(obj.lc.ival);
1.1       maekawa   966:       return(rob);
                    967:     }else if (strcmp(key,"double") == 0) {
                    968:       rob = KpoDouble((double) (obj.lc.ival));
                    969:       return(rob);
                    970:     }else if (strcmp(key,"null") == 0) {
                    971:       rob = NullObject;
                    972:       return(rob);
                    973:     }else{
                    974:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    975:     }
                    976:     break;
                    977:   case Sdollar:
                    978:     if (strcmp(key,"dollar") == 0 || strcmp(key,"string")==0) {
                    979:       rob = obj;
                    980:       return(rob);
                    981:     }else if (strcmp(key,"literal") == 0) {
                    982:       rob.tag = Sstring;
                    983:       s = (char *) sGC_malloc(sizeof(char)*(strlen(obj.lc.str)+3));
                    984:       if (s == (char *) NULL)   {
1.7       takayama  985:         errorKan1("%s\n","No memory.");
1.1       maekawa   986:       }
                    987:       s[0] = '/';
                    988:       strcpy(&(s[1]),obj.lc.str);
                    989:       rob.lc.str = &(s[1]);
                    990:       /* set the hashing value. */
                    991:       rob2 = lookupLiteralString(s);
                    992:       rob.rc.op = rob2.lc.op;
                    993:       return(rob);
                    994:     }else if (strcmp(key,"poly")==0) {
                    995:       rob.tag = Spoly;
                    996:       rob.lc.poly = stringToPOLY(obj.lc.str,CurrentRingp);
                    997:       return(rob);
                    998:     }else if (strcmp(key,"array")==0) {
                    999:       rob = newObjectArray(strlen(obj.lc.str));
                   1000:       for (i=0; i<strlen(obj.lc.str); i++) {
1.7       takayama 1001:         putoa(rob,i,KpoInteger((obj.lc.str)[i]));
1.1       maekawa  1002:       }
                   1003:       return(rob);
                   1004:     }else if (strcmp(key,"universalNumber") == 0) {
                   1005:       rob.tag = SuniversalNumber;
                   1006:       rob.lc.universalNumber = stringToUniversalNumber(obj.lc.str,&flag);
                   1007:       if (flag == -1) errorKan1("KdataConversion(): %s",
1.7       takayama 1008:                                 "It's not number.\n");
1.2       takayama 1009:       return(rob);
                   1010:     }else if (strcmp(key,"double") == 0) {
                   1011:       /* Check the format.  2.3432 e2 is not allowed. It should be 2.3232e2.*/
                   1012:       flag = 0;
                   1013:       for (i=0; (obj.lc.str)[i] != '\0'; i++) {
1.7       takayama 1014:         if ((obj.lc.str)[i] > ' ' && flag == 0) flag=1;
                   1015:         else if ((obj.lc.str)[i] <= ' ' && flag == 1) flag = 2;
                   1016:         else if ((obj.lc.str)[i] > ' ' && flag == 2) flag=3;
1.2       takayama 1017:       }
                   1018:       if (flag == 3) errorKan1("KdataConversion(): %s","The data for the double contains blanck(s)");
                   1019:       /* Read the double. */
                   1020:       if (sscanf(obj.lc.str,"%lf",&f) <= 0) {
1.7       takayama 1021:         errorKan1("KdataConversion(): %s","It cannot be translated to double.");
1.2       takayama 1022:       }
                   1023:       rob = KpoDouble(f);
1.1       maekawa  1024:       return(rob);
                   1025:     }else if (strcmp(key,"null") == 0) {
                   1026:       rob = NullObject;
                   1027:       return(rob);
                   1028:     }else{
                   1029:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1030:     }
                   1031:     break;
                   1032:   case Sarray:
                   1033:     if (strcmp(key,"array") == 0) {
                   1034:       return(rob);
                   1035:     }else if (strcmp(key,"list") == 0) {
1.32      takayama 1036:       rob = KarrayToList(obj);
1.1       maekawa  1037:       return(rob);
                   1038:     }else if (strcmp(key,"arrayOfPOLY")==0) {
                   1039:       rob = KpoArrayOfPOLY(arrayToArrayOfPOLY(obj));
                   1040:       return(rob);
                   1041:     }else if (strcmp(key,"matrixOfPOLY")==0) {
                   1042:       rob = KpoMatrixOfPOLY(arrayToMatrixOfPOLY(obj));
                   1043:       return(rob);
                   1044:     }else if (strcmp(key,"gradedPolySet")==0) {
                   1045:       rob = KpoGradedPolySet(arrayToGradedPolySet(obj));
                   1046:       return(rob);
                   1047:     }else if (strcmp(key,"null") == 0) {
                   1048:       rob = NullObject;
                   1049:       return(rob);
1.38      takayama 1050:     }else if (strcmp(key,"byteArray") == 0) {
                   1051:       rob = newByteArray(getoaSize(obj),obj);
                   1052:       return(rob);
1.1       maekawa  1053:     }else {
1.23      takayama 1054:          { /* Automatically maps the elements. */
                   1055:                int n,i;
                   1056:                n = getoaSize(obj);
                   1057:                rob = newObjectArray(n);
                   1058:                for (i=0; i<n; i++) {
                   1059:                  putoa(rob,i,KdataConversion(getoa(obj,i),key));
                   1060:                }
                   1061:                return(rob);
                   1062:          }
1.1       maekawa  1063:     }
                   1064:     break;
                   1065:   case Spoly:
1.15      takayama 1066:     if ((strcmp(key,"poly")==0) || (strcmp(key,"numerator")==0)) {
1.5       takayama 1067:       rob = obj;
1.1       maekawa  1068:       return(rob);
                   1069:     }else if (strcmp(key,"integer")==0) {
                   1070:       if (obj.lc.poly == ZERO) return(KpoInteger(0));
                   1071:       else {
1.7       takayama 1072:         return(KpoInteger(coeffToInt(obj.lc.poly->coeffp)));
1.1       maekawa  1073:       }
                   1074:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1075:       rob.tag = Sdollar;
                   1076:       rob.lc.str = KPOLYToString(KopPOLY(obj));
                   1077:       return(rob);
                   1078:     }else if (strcmp(key,"array") == 0) {
                   1079:       return( POLYToArray(KopPOLY(obj)));
                   1080:     }else if (strcmp(key,"map")==0) {
                   1081:       return(KringMap(obj));
                   1082:     }else if (strcmp(key,"universalNumber")==0) {
                   1083:       if (obj.lc.poly == ZERO) {
1.7       takayama 1084:         rob.tag = SuniversalNumber;
                   1085:         rob.lc.universalNumber = newUniversalNumber(0);
1.1       maekawa  1086:       } else {
1.7       takayama 1087:         if (obj.lc.poly->coeffp->tag == MP_INTEGER) {
                   1088:           rob.tag = SuniversalNumber;
                   1089:           rob.lc.universalNumber = newUniversalNumber2(obj.lc.poly->coeffp->val.bigp);
                   1090:         }else {
                   1091:           rob = NullObject;
                   1092:           warningKan("Coefficient is not MP_INT.");
                   1093:         }
1.1       maekawa  1094:       }
                   1095:       return(rob);
                   1096:     }else if (strcmp(key,"ring")==0) {
                   1097:       if (obj.lc.poly ISZERO) {
1.7       takayama 1098:         warningKan("Zero polynomial does not have the ring structure field.\n");
1.1       maekawa  1099:       }else{
1.7       takayama 1100:         rob.tag = Sring;
                   1101:         rob.lc.ringp = (obj.lc.poly)->m->ringp;
                   1102:         return(rob);
1.1       maekawa  1103:       }
                   1104:     }else if (strcmp(key,"null") == 0) {
                   1105:       rob = NullObject;
                   1106:       return(rob);
                   1107:     }else{
                   1108:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1109:     }
                   1110:     break;
                   1111:   case SarrayOfPOLY:
                   1112:     if (strcmp(key,"array")==0) {
                   1113:       rob = arrayOfPOLYToArray(KopArrayOfPOLYp(obj));
                   1114:       return(rob);
                   1115:     }else{
                   1116:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1117:     }
                   1118:     break;
                   1119:   case SmatrixOfPOLY:
                   1120:     if (strcmp(key,"array")==0) {
                   1121:       rob = matrixOfPOLYToArray(KopMatrixOfPOLYp(obj));
                   1122:       return(rob);
                   1123:     }else if (strcmp(key,"null") == 0) {
                   1124:       rob = NullObject;
                   1125:       return(rob);
                   1126:     }else{
                   1127:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1128:     }
                   1129:     break;
                   1130:   case Slist:
                   1131:     if (strcmp(key,"array") == 0) {
1.32      takayama 1132:       rob = KlistToArray(obj);
1.1       maekawa  1133:       return(rob);
                   1134:     }
                   1135:     break;
                   1136:   case SuniversalNumber:
1.15      takayama 1137:     if ((strcmp(key,"universalNumber")==0) || (strcmp(key,"numerator")==0)) {
1.27      takayama 1138:       rob = obj;
1.1       maekawa  1139:       return(rob);
                   1140:     }else if (strcmp(key,"integer")==0) {
                   1141:       rob = KpoInteger(coeffToInt(obj.lc.universalNumber));
                   1142:       return(rob);
                   1143:     }else if (strcmp(key,"poly")==0) {
                   1144:       rob = KpoPOLY(universalToPoly(obj.lc.universalNumber,CurrentRingp));
                   1145:       return(rob);
                   1146:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1147:       rob.tag = Sdollar;
                   1148:       rob.lc.str = coeffToString(obj.lc.universalNumber);
                   1149:       return(rob);
                   1150:     }else if (strcmp(key,"null") == 0) {
                   1151:       rob = NullObject;
                   1152:       return(rob);
                   1153:     }else if (strcmp(key,"double") == 0) {
                   1154:       rob = KpoDouble( toDouble0(obj) );
                   1155:       return(rob);
1.25      takayama 1156:     }else if (strcmp(key,"denominator") == 0) {
                   1157:       rob = KintToUniversalNumber(1);
                   1158:       return(rob);
1.1       maekawa  1159:     }else{
                   1160:       warningKan("Sorry. This type of data conversion of universalNumber has not supported yet.\n");
                   1161:     }
                   1162:     break;
                   1163:   case SrationalFunction:
                   1164:     if (strcmp(key,"rationalFunction")==0) {
                   1165:       return(rob);
                   1166:     } if (strcmp(key,"numerator")==0) {
                   1167:       rob = *(Knumerator(obj));
                   1168:       return(rob);
                   1169:     }else if  (strcmp(key,"denominator")==0) {
                   1170:       rob = *(Kdenominator(obj));
                   1171:       return(rob);
                   1172:     }else if  (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1173:       rob1 = KdataConversion(*(Knumerator(obj)),"string");
                   1174:       rob2 = KdataConversion(*(Kdenominator(obj)),"string");
                   1175:       s = sGC_malloc(sizeof(char)*( strlen(rob1.lc.str) + strlen(rob2.lc.str) + 10));
                   1176:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1177:       sprintf(s,"(%s)/(%s)",rob1.lc.str,rob2.lc.str);
                   1178:       rob.tag = Sdollar;
                   1179:       rob.lc.str = s;
                   1180:       return(rob);
                   1181:     }else if  (strcmp(key,"cancel")==0) {
                   1182:       warningKan("Sorry. Data conversion <<cancel>> of rationalFunction has not supported yet.\n");
                   1183:       return(obj);
                   1184:     }else if (strcmp(key,"null") == 0) {
                   1185:       rob = NullObject;
                   1186:       return(rob);
                   1187:     }else if (strcmp(key,"double") == 0) {
                   1188:       rob = KpoDouble( toDouble0(obj) );
                   1189:       return(rob);
                   1190:     }else{
                   1191:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1192:     }
                   1193:     break;
                   1194:   case Sdouble:
                   1195:     if (strcmp(key,"integer") == 0) {
                   1196:       rob = KpoInteger( (int) KopDouble(obj));
                   1197:       return(rob);
                   1198:     } else if (strcmp(key,"universalNumber") == 0) {
                   1199:       rob.tag = SuniversalNumber;
                   1200:       rob.lc.universalNumber = intToCoeff((int) KopDouble(obj),&SmallRing);
                   1201:       return(rob);
                   1202:     }else if ((strcmp(key,"string") == 0) || (strcmp(key,"dollar") == 0)) {
                   1203:       sprintf(tmps,"%f",KopDouble(obj));
                   1204:       s = sGC_malloc(strlen(tmps)+2);
                   1205:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1206:       strcpy(s,tmps);
                   1207:       rob.tag = Sdollar;
                   1208:       rob.lc.str = s;
                   1209:       return(rob);
                   1210:     }else if (strcmp(key,"double")==0) {
                   1211:       return(obj);
                   1212:     }else if (strcmp(key,"null") == 0) {
                   1213:       rob = NullObject;
                   1214:       return(rob);
                   1215:     }else {
                   1216:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1217:     }
                   1218:     break;
                   1219:   case Sring:
                   1220:     if (strcmp(key,"orderMatrix")==0) {
                   1221:       rob = oGetOrderMatrix(KopRingp(obj));
                   1222:       return(rob);
1.22      takayama 1223:     }else if (strcmp(key,"oxRingStructure")==0) {
                   1224:       rob = oRingToOXringStructure(KopRingp(obj));
                   1225:       return(rob);
1.1       maekawa  1226:     }else{
                   1227:       warningKan("Sorryl This type of data conversion of ringp has not supported yet.\n");
                   1228:     }
                   1229:     break;
1.38      takayama 1230:   case SbyteArray:
                   1231:     if (strcmp(key,"array") == 0) {
                   1232:       rob = byteArrayToArray(obj);
                   1233:       return(rob);
                   1234:     } else {
                   1235:       warningKan("Sorryl This type of data conversion of ringp has not supported yet.\n");
                   1236:     }
                   1237:     break;
1.1       maekawa  1238:   default:
                   1239:     warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1240:   }
                   1241:   return(NullObject);
                   1242: }
1.28      takayama 1243:
1.29      takayama 1244: /* cf. macro to_int32 */
                   1245: struct object Kto_int32(struct object ob) {
1.28      takayama 1246:   int n,i;
1.43    ! takayama 1247:   struct object otmp = OINIT;
        !          1248:   struct object rob = OINIT;
1.28      takayama 1249:   if (ob.tag == SuniversalNumber) return KdataConversion(ob,"integer");
                   1250:   if (ob.tag == Sarray) {
                   1251:        n = getoaSize(ob);
                   1252:        rob = newObjectArray(n);
                   1253:        for (i=0; i<n; i++) {
1.29      takayama 1254:          otmp = Kto_int32(getoa(ob,i));
1.28      takayama 1255:          putoa(rob,i,otmp);
                   1256:        }
                   1257:        return rob;
                   1258:   }
                   1259:   return ob;
                   1260: }
1.1       maekawa  1261: /* conversion functions between primitive data and objects.
                   1262:    If it's not time critical, it is recommended to use these functions */
                   1263: struct object KpoInteger(k)
1.7       takayama 1264:      int k;
1.1       maekawa  1265: {
1.43    ! takayama 1266:   struct object obj = OINIT;
1.1       maekawa  1267:   obj.tag = Sinteger;
                   1268:   obj.lc.ival = k; obj.rc.ival = 0;
                   1269:   return(obj);
                   1270: }
                   1271: struct object KpoString(s)
1.7       takayama 1272:      char *s;
1.1       maekawa  1273: {
1.43    ! takayama 1274:   struct object obj = OINIT;
1.1       maekawa  1275:   obj.tag = Sdollar;
                   1276:   obj.lc.str = s; obj.rc.ival = 0;
                   1277:   return(obj);
                   1278: }
                   1279: struct object KpoPOLY(f)
1.7       takayama 1280:      POLY f;
1.1       maekawa  1281: {
1.43    ! takayama 1282:   struct object obj = OINIT;
1.1       maekawa  1283:   obj.tag = Spoly;
                   1284:   obj.lc.poly = f; obj.rc.ival = 0;
                   1285:   return(obj);
                   1286: }
                   1287: struct object KpoArrayOfPOLY(ap)
1.7       takayama 1288:      struct arrayOfPOLY *ap ;
1.1       maekawa  1289: {
1.43    ! takayama 1290:   struct object obj = OINIT;
1.1       maekawa  1291:   obj.tag = SarrayOfPOLY;
                   1292:   obj.lc.arrayp = ap; obj.rc.ival = 0;
                   1293:   return(obj);
                   1294: }
                   1295:
                   1296: struct object KpoMatrixOfPOLY(mp)
1.7       takayama 1297:      struct matrixOfPOLY *mp ;
1.1       maekawa  1298: {
1.43    ! takayama 1299:   struct object obj = OINIT;
1.1       maekawa  1300:   obj.tag = SmatrixOfPOLY;
                   1301:   obj.lc.matrixp = mp; obj.rc.ival = 0;
                   1302:   return(obj);
                   1303: }
                   1304:
                   1305: struct object KpoRingp(ringp)
1.7       takayama 1306:      struct ring *ringp;
1.1       maekawa  1307: {
1.43    ! takayama 1308:   struct object obj = OINIT;
1.1       maekawa  1309:   obj.tag = Sring;
                   1310:   obj.lc.ringp = ringp;
                   1311:   return(obj);
                   1312: }
                   1313:
1.22      takayama 1314: struct object KpoUniversalNumber(u)
                   1315:      struct coeff *u;
                   1316: {
1.43    ! takayama 1317:   struct object obj = OINIT;
1.22      takayama 1318:   obj.tag = SuniversalNumber;
                   1319:   obj.lc.universalNumber = u;
                   1320:   return(obj);
                   1321: }
1.25      takayama 1322: struct object KintToUniversalNumber(n)
                   1323:         int n;
                   1324: {
1.43    ! takayama 1325:   struct object rob = OINIT;
1.25      takayama 1326:   extern struct ring SmallRing;
                   1327:   rob.tag = SuniversalNumber;
                   1328:   rob.lc.universalNumber = intToCoeff(n,&SmallRing);
                   1329:   return(rob);
                   1330: }
                   1331:
1.1       maekawa  1332: /*** conversion 2. Data conversions on arrays and matrices. ****/
                   1333: struct object arrayOfPOLYToArray(aa)
1.7       takayama 1334:      struct arrayOfPOLY *aa;
1.1       maekawa  1335: {
                   1336:   POLY *a;
                   1337:   int size;
1.43    ! takayama 1338:   struct object r = OINIT;
1.1       maekawa  1339:   int j;
1.43    ! takayama 1340:   struct object tmp = OINIT;
1.1       maekawa  1341:
                   1342:   size = aa->n; a = aa->array;
                   1343:   r = newObjectArray(size);
                   1344:   for (j=0; j<size; j++) {
                   1345:     tmp.tag = Spoly;
                   1346:     tmp.lc.poly= a[j];
                   1347:     putoa(r,j,tmp);
                   1348:   }
                   1349:   return( r );
                   1350: }
                   1351:
                   1352: struct object matrixOfPOLYToArray(pmat)
1.7       takayama 1353:      struct matrixOfPOLY *pmat;
1.1       maekawa  1354: {
1.43    ! takayama 1355:   struct object r = OINIT;
        !          1356:   struct object tmp = OINIT;
1.1       maekawa  1357:   int i,j;
                   1358:   int m,n;
                   1359:   POLY *mat;
                   1360:   struct arrayOfPOLY ap;
                   1361:
                   1362:   m = pmat->m; n = pmat->n; mat = pmat->mat;
                   1363:   r = newObjectArray(m);
                   1364:   for (i=0; i<m; i++) {
                   1365:     ap.n = n; ap.array = &(mat[ind(i,0)]);
                   1366:     tmp = arrayOfPOLYToArray(&ap);
                   1367:     /* ind() is the macro defined in matrix.h. */
                   1368:     putoa(r,i,tmp);
                   1369:   }
                   1370:   return(r);
                   1371: }
                   1372:
                   1373: struct arrayOfPOLY *arrayToArrayOfPOLY(oa)
1.7       takayama 1374:      struct object oa;
1.1       maekawa  1375: {
                   1376:   POLY *a;
                   1377:   int size;
                   1378:   int i;
1.43    ! takayama 1379:   struct object tmp = OINIT;
1.1       maekawa  1380:   struct arrayOfPOLY *ap;
                   1381:
                   1382:   if (oa.tag != Sarray) errorKan1("KarrayToArrayOfPOLY(): %s",
1.7       takayama 1383:                                   "Argument is not array\n");
1.1       maekawa  1384:   size = getoaSize(oa);
                   1385:   a = (POLY *)sGC_malloc(sizeof(POLY)*size);
                   1386:   for (i=0; i<size; i++) {
                   1387:     tmp = getoa(oa,i);
                   1388:     if (tmp.tag != Spoly) errorKan1("KarrayToArrayOfPOLY():%s ",
1.7       takayama 1389:                                     "element must be polynomial.\n");
1.1       maekawa  1390:     a[i] = tmp.lc.poly;
                   1391:   }
                   1392:   ap = (struct arrayOfPOLY *)sGC_malloc(sizeof(struct arrayOfPOLY));
                   1393:   ap->n = size;
                   1394:   ap->array = a;
                   1395:   return(ap);
                   1396: }
                   1397:
                   1398: struct matrixOfPOLY *arrayToMatrixOfPOLY(oa)
1.7       takayama 1399:      struct object oa;
1.1       maekawa  1400: {
                   1401:   POLY *a;
                   1402:   int m;
                   1403:   int n;
                   1404:   int i,j;
                   1405:   struct matrixOfPOLY *ma;
                   1406:
1.43    ! takayama 1407:   struct object tmp = OINIT;
        !          1408:   struct object tmp2 = OINIT;
1.1       maekawa  1409:   if (oa.tag != Sarray) errorKan1("KarrayToMatrixOfPOLY(): %s",
1.7       takayama 1410:                                   "Argument is not array\n");
1.1       maekawa  1411:   m = getoaSize(oa);
                   1412:   tmp = getoa(oa,0);
                   1413:   if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY():%s ",
1.7       takayama 1414:                                    "Argument is not array\n");
1.1       maekawa  1415:   n = getoaSize(tmp);
                   1416:   a = (POLY *)sGC_malloc(sizeof(POLY)*(m*n));
                   1417:   for (i=0; i<m; i++) {
                   1418:     tmp = getoa(oa,i);
                   1419:     if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY(): %s",
1.7       takayama 1420:                                      "element must be array.\n");
1.1       maekawa  1421:     for (j=0; j<n; j++) {
                   1422:       tmp2 = getoa(tmp,j);
                   1423:       if (tmp2.tag != Spoly) errorKan1("arrayToMatrixOfPOLY(): %s",
1.7       takayama 1424:                                        "element must be a polynomial.\n");
1.1       maekawa  1425:       a[ind(i,j)] = tmp2.lc.poly;
                   1426:       /* we use the macro ind here.  Be careful of using m and n. */
                   1427:     }
                   1428:   }
                   1429:   ma = (struct matrixOfPOLY *)sGC_malloc(sizeof(struct matrixOfPOLY));
                   1430:   ma->m = m; ma->n = n;
                   1431:   ma->mat = a;
                   1432:   return(ma);
                   1433: }
                   1434:
                   1435: /* :misc */
                   1436:
                   1437: /* :ring    :kan */
                   1438: int objArrayToOrderMatrix(oA,order,n,oasize)
1.7       takayama 1439:      struct object oA;
                   1440:      int order[];
                   1441:      int n;
                   1442:      int oasize;
1.1       maekawa  1443: {
                   1444:   int size;
                   1445:   int k,j;
1.43    ! takayama 1446:   struct object tmpOa = OINIT;
        !          1447:   struct object obj = OINIT;
1.1       maekawa  1448:   if (oA.tag != Sarray) {
                   1449:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1450:     return(-1);
                   1451:   }
                   1452:   size = getoaSize(oA);
                   1453:   if (size != oasize) {
                   1454:     warningKan("The row size of the array is wrong.");
                   1455:     return(-1);
                   1456:   }
                   1457:   for (k=0; k<size; k++) {
                   1458:     tmpOa = getoa(oA,k);
                   1459:     if (tmpOa.tag != Sarray) {
                   1460:       warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1461:       return(-1);
                   1462:     }
                   1463:     if (getoaSize(tmpOa) != 2*n) {
                   1464:       warningKan("The column size of the array is wrong.");
                   1465:       return(-1);
                   1466:     }
                   1467:     for (j=0; j<2*n; j++) {
                   1468:       obj = getoa(tmpOa,j);
                   1469:       order[k*2*n+j] = obj.lc.ival;
                   1470:     }
                   1471:   }
                   1472:   return(0);
                   1473: }
                   1474:
                   1475: int KsetOrderByObjArray(oA)
1.7       takayama 1476:      struct object oA;
1.1       maekawa  1477: {
                   1478:   int *order;
                   1479:   int n,c,l, oasize;
                   1480:   extern struct ring *CurrentRingp;
                   1481:   extern int AvoidTheSameRing;
                   1482:   /* n,c,l must be set in the CurrentRing */
                   1483:   if (AvoidTheSameRing) {
                   1484:     errorKan1("%s\n","KsetOrderByObjArray(): You cannot change the order matrix when AvoidTheSameRing == 1.");
                   1485:   }
                   1486:   n = CurrentRingp->n;
                   1487:   c = CurrentRingp->c;
                   1488:   l = CurrentRingp->l;
                   1489:   if (oA.tag != Sarray) {
                   1490:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1491:     return(-1);
                   1492:   }
                   1493:   oasize = getoaSize(oA);
                   1494:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1495:   if (order == (int *)NULL) errorKan1("%s\n","KsetOrderByObjArray(): No memory.");
                   1496:   if (objArrayToOrderMatrix(oA,order,n,oasize) == -1) {
                   1497:     return(-1);
                   1498:   }
                   1499:   setOrderByMatrix(order,n,c,l,oasize); /* Set order to the current ring. */
                   1500:   return(0);
                   1501: }
                   1502:
                   1503: static int checkRelations(c,l,m,n,cc,ll,mm,nn)
1.7       takayama 1504:      int c,l,m,n,cc,ll,mm,nn;
1.1       maekawa  1505: {
                   1506:   if (!(1<=c && c<=l && l<=m && m<=n)) return(1);
                   1507:   if (!(cc<=ll && ll<=mm && mm<=nn && nn <= n)) return(1);
                   1508:   if (!(cc<c || ll < l || mm < m || nn < n)) {
                   1509:     if (WarningNoVectorVariable) {
1.4       takayama 1510:       warningKanNoStrictMode("Ring definition: there is no variable to represent vectors.\n");
1.1       maekawa  1511:     }
                   1512:   }
                   1513:   if (!(cc<=c && ll <= l && mm <= m && nn <= n)) return(1);
                   1514:   return(0);
                   1515: }
                   1516:
                   1517: struct object KgetOrderMatrixOfCurrentRing()
                   1518: {
                   1519:   extern struct ring *CurrentRingp;
                   1520:   return(oGetOrderMatrix(CurrentRingp));
                   1521: }
                   1522:
                   1523:
                   1524: int KsetUpRing(ob1,ob2,ob3,ob4,ob5)
1.7       takayama 1525:      struct object ob1,ob2,ob3,ob4,ob5;
                   1526:      /* ob1 = [x(0), ..., x(n-1)];
                   1527:         ob2 = [D(0), ..., D(n-1)];
                   1528:         ob3 = [p,c,l,m,n,cc,ll,mm,nn,next];
                   1529:         ob4 = Order matrix
                   1530:         ob5 = [(keyword) value (keyword) value ....]
                   1531:      */
1.41      takayama 1532: #define RP_LIMIT 5000
1.1       maekawa  1533: {
                   1534:   int i;
1.43    ! takayama 1535:   struct object ob = OINIT;
1.1       maekawa  1536:   int c,l,m,n;
                   1537:   int cc,ll,mm,nn;
                   1538:   int p;
                   1539:   char **xvars;
                   1540:   char **dvars;
                   1541:   int *outputVars;
                   1542:   int *order;
                   1543:   static int rp = 0;
                   1544:   static struct ring *rstack[RP_LIMIT];
                   1545:
                   1546:   extern struct ring *CurrentRingp;
                   1547:   struct ring *newRingp;
                   1548:   int ob3Size;
                   1549:   struct ring *nextRing;
                   1550:   int oasize;
                   1551:   static int ringSerial = 0;
                   1552:   char *ringName = NULL;
                   1553:   int aa;
                   1554:   extern int AvoidTheSameRing;
                   1555:   extern char *F_mpMult;
                   1556:   char *fmp_mult_saved;
                   1557:   char *mpMultName = NULL;
1.43    ! takayama 1558:   struct object rob = OINIT;
1.1       maekawa  1559:   struct ring *savedCurrentRingp;
                   1560:
                   1561:   /* To get the ring structure. */
                   1562:   if (ob1.tag == Snull) {
                   1563:     rob = newObjectArray(rp);
                   1564:     for (i=0; i<rp; i++) {
                   1565:       putoa(rob,i,KpoRingp(rstack[i]));
                   1566:     }
                   1567:     KSpush(rob);
                   1568:     return(0);
                   1569:   }
                   1570:
                   1571:   if (ob3.tag != Sarray) errorKan1("%s\n","Error in the 3rd argument. You need to give 4 arguments.");
                   1572:   ob3Size = getoaSize(ob3);
                   1573:   if (ob3Size != 9 && ob3Size != 10)
                   1574:     errorKan1("%s\n","Error in the 3rd argument.");
                   1575:   for (i=0; i<9; i++) {
                   1576:     ob = getoa(ob3,i);
                   1577:     if (ob.tag != Sinteger) errorKan1("%s\n","The 3rd argument should be a list of integers.");
                   1578:   }
                   1579:   if (ob3Size == 10) {
                   1580:     ob = getoa(ob3,9);
                   1581:     if (ob.tag != Sring)
                   1582:       errorKan1("%s\n","The last arguments of the 3rd argument must be a pointer to a ring.");
                   1583:     nextRing = KopRingp(ob);
                   1584:   } else {
                   1585:     nextRing = (struct ring *)NULL;
                   1586:   }
                   1587:
                   1588:   p = getoa(ob3,0).lc.ival;
                   1589:   c = getoa(ob3,1).lc.ival;  l = getoa(ob3,2).lc.ival;
                   1590:   m = getoa(ob3,3).lc.ival;  n = getoa(ob3,4).lc.ival;
                   1591:   cc = getoa(ob3,5).lc.ival;  ll = getoa(ob3,6).lc.ival;
                   1592:   mm = getoa(ob3,7).lc.ival;  nn = getoa(ob3,8).lc.ival;
                   1593:   if (checkRelations(c,l,m,n,cc,ll,mm,nn,n)) {
                   1594:     errorKan1("%s\n","1<=c<=l<=m<=n and cc<=c<=ll<=l<=mm<=m<=nn<=n \nand (cc<c or ll < l or mm < m or nn < n)  must be satisfied.");
                   1595:   }
                   1596:   if (getoaSize(ob2) != n || getoaSize(ob1) != n) {
                   1597:     errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1598:   }
                   1599:   for (i=0; i<n; i++) {
                   1600:     if (getoa(ob1,i).tag != Sdollar || getoa(ob2,i).tag != Sdollar) {
                   1601:       errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1602:     }
                   1603:   }
                   1604:   xvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1605:   dvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1606:   if (xvars == (char **)NULL || dvars == (char **)NULL) {
                   1607:     fprintf(stderr,"No more memory.\n");
                   1608:     exit(15);
                   1609:   }
                   1610:   for (i=0; i<n; i++) {
                   1611:     xvars[i] = getoa(ob1,i).lc.str;
                   1612:     dvars[i] = getoa(ob2,i).lc.str;
                   1613:   }
                   1614:   checkDuplicateName(xvars,dvars,n);
                   1615:
                   1616:   outputVars = (int *)sGC_malloc(sizeof(int)*n*2);
                   1617:   if (outputVars == NULL) {
                   1618:     fprintf(stderr,"No more memory.\n");
                   1619:     exit(15);
                   1620:   }
                   1621:   if (ReverseOutputOrder) {
                   1622:     for (i=0; i<n; i++) outputVars[i] = n-i-1;
                   1623:     for (i=0; i<n; i++) outputVars[n+i] = 2*n-i-1;
                   1624:   }else{
                   1625:     for (i=0; i<2*n; i++) {
                   1626:       outputVars[i] = i;
                   1627:     }
                   1628:   }
1.28      takayama 1629:
1.29      takayama 1630:   ob4 = Kto_int32(ob4); /* order matrix */
1.1       maekawa  1631:   oasize = getoaSize(ob4);
                   1632:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1633:   if (order == (int *)NULL) errorKan1("%s\n","No memory.");
                   1634:   if (objArrayToOrderMatrix(ob4,order,n,oasize) == -1) {
                   1635:     errorKan1("%s\n","Errors in the 4th matrix (order matrix).");
                   1636:   }
                   1637:   /* It's better to check the consistency of the order matrix here. */
                   1638:   savedCurrentRingp = CurrentRingp;
                   1639:
                   1640:   newRingp = (struct ring *)sGC_malloc(sizeof(struct ring));
                   1641:   if (newRingp == NULL) errorKan1("%s\n","No more memory.");
                   1642:   /* Generate the new ring before calling setOrder...(). */
                   1643:   *newRingp = *CurrentRingp;
                   1644:   CurrentRingp = newRingp;  /* Push the current ring. */
                   1645:   setOrderByMatrix(order,n,c,l,oasize); /* set order to the CurrentRing. */
                   1646:   CurrentRingp = savedCurrentRingp; /* recover it. */
                   1647:
                   1648:
                   1649:   /* Set the default name of the ring */
                   1650:   ringName = (char *)sGC_malloc(16);
                   1651:   sprintf(ringName,"ring%05d",ringSerial);
                   1652:   ringSerial++;
                   1653:
                   1654:   /* Set the current ring */
                   1655:   newRingp->n = n; newRingp->m = m; newRingp->l = l; newRingp->c = c;
                   1656:   newRingp->nn = nn; newRingp->mm = mm; newRingp->ll = ll;
                   1657:   newRingp->cc = cc;
                   1658:   newRingp->x = xvars;
                   1659:   newRingp->D = dvars;
                   1660:   /* You don't need to set order and orderMatrixSize here.
                   1661:      It was set by setOrder(). */
                   1662:   setFromTo(newRingp);
                   1663:
                   1664:   newRingp->p = p;
                   1665:   newRingp->next = nextRing;
                   1666:   newRingp->multiplication = mpMult;
                   1667:   /* These values  should will be reset if the optional value is given. */
                   1668:   newRingp->schreyer = 0;
                   1669:   newRingp->gbListTower = NULL;
                   1670:   newRingp->outputOrder = outputVars;
1.9       takayama 1671:   newRingp->weightedHomogenization = 0;
1.11      takayama 1672:   newRingp->degreeShiftSize = 0;
1.12      takayama 1673:   newRingp->degreeShiftN = 0;
                   1674:   newRingp->degreeShift = NULL;
1.34      takayama 1675:   newRingp->partialEcart = 0;
                   1676:   newRingp->partialEcartGlobalVarX = NULL;
1.1       maekawa  1677:
                   1678:   if (ob5.tag != Sarray || (getoaSize(ob5) % 2) != 0) {
                   1679:     errorKan1("%s\n","[(keyword) value (keyword) value ....] should be given.");
                   1680:   }
                   1681:   for (i=0; i < getoaSize(ob5); i += 2) {
                   1682:     if (getoa(ob5,i).tag == Sdollar) {
                   1683:       if (strcmp(KopString(getoa(ob5,i)),"mpMult") == 0) {
1.7       takayama 1684:         if (getoa(ob5,i+1).tag != Sdollar) {
                   1685:           errorKan1("%s\n","A keyword should be given. (mpMult)");
                   1686:         }
                   1687:         fmp_mult_saved = F_mpMult;
                   1688:         mpMultName = KopString(getoa(ob5,i+1));
                   1689:         switch_function("mpMult",mpMultName);
                   1690:         /* Note that this cause a global effect. It will be done again. */
                   1691:         newRingp->multiplication = mpMult;
                   1692:         switch_function("mpMult",fmp_mult_saved);
1.1       maekawa  1693:       } else if (strcmp(KopString(getoa(ob5,i)),"coefficient ring") == 0) {
1.7       takayama 1694:         if (getoa(ob5,i+1).tag != Sring) {
                   1695:           errorKan1("%s\n","The pointer to a ring should be given. (coefficient ring)");
                   1696:         }
                   1697:         nextRing = KopRingp(getoa(ob5,i+1));
                   1698:         newRingp->next = nextRing;
1.1       maekawa  1699:       } else if (strcmp(KopString(getoa(ob5,i)),"valuation") == 0) {
1.7       takayama 1700:         errorKan1("%s\n","Not implemented. (valuation)");
1.1       maekawa  1701:       } else if (strcmp(KopString(getoa(ob5,i)),"characteristic") == 0) {
1.7       takayama 1702:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1703:           errorKan1("%s\n","A integer should be given. (characteristic)");
                   1704:         }
                   1705:         p = KopInteger(getoa(ob5,i+1));
                   1706:         newRingp->p = p;
1.1       maekawa  1707:       } else if (strcmp(KopString(getoa(ob5,i)),"schreyer") == 0) {
1.7       takayama 1708:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1709:           errorKan1("%s\n","A integer should be given. (schreyer)");
                   1710:         }
                   1711:         newRingp->schreyer = KopInteger(getoa(ob5,i+1));
1.1       maekawa  1712:       } else if (strcmp(KopString(getoa(ob5,i)),"gbListTower") == 0) {
1.7       takayama 1713:         if (getoa(ob5,i+1).tag != Slist) {
                   1714:           errorKan1("%s\n","A list should be given (gbListTower).");
                   1715:         }
                   1716:         newRingp->gbListTower = newObject();
                   1717:         *((struct object *)(newRingp->gbListTower)) = getoa(ob5,i+1);
1.1       maekawa  1718:       } else if (strcmp(KopString(getoa(ob5,i)),"ringName") == 0) {
1.7       takayama 1719:         if (getoa(ob5,i+1).tag != Sdollar) {
                   1720:           errorKan1("%s\n","A name should be given. (ringName)");
                   1721:         }
                   1722:         ringName = KopString(getoa(ob5,i+1));
1.9       takayama 1723:       } else if (strcmp(KopString(getoa(ob5,i)),"weightedHomogenization") == 0) {
                   1724:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1725:           errorKan1("%s\n","A integer should be given. (weightedHomogenization)");
                   1726:         }
1.11      takayama 1727:         newRingp->weightedHomogenization = KopInteger(getoa(ob5,i+1));
                   1728:       } else if (strcmp(KopString(getoa(ob5,i)),"degreeShift") == 0) {
                   1729:         if (getoa(ob5,i+1).tag != Sarray) {
1.12      takayama 1730:           errorKan1("%s\n","An array of array should be given. (degreeShift)");
1.11      takayama 1731:         }
                   1732:         {
1.43    ! takayama 1733:           struct object ods = OINIT;
        !          1734:           struct object ods2 = OINIT;
1.12      takayama 1735:           int dssize,k,j,nn;
1.11      takayama 1736:           ods=getoa(ob5,i+1);
1.12      takayama 1737:           if ((getoaSize(ods) < 1) || (getoa(ods,0).tag != Sarray)) {
                   1738:             errorKan1("%s\n", "An array of array should be given. (degreeShift)");
                   1739:           }
                   1740:           nn = getoaSize(ods);
                   1741:           dssize = getoaSize(getoa(ods,0));
1.11      takayama 1742:           newRingp->degreeShiftSize = dssize;
1.12      takayama 1743:           newRingp->degreeShiftN = nn;
                   1744:           newRingp->degreeShift = (int *) sGC_malloc(sizeof(int)*(dssize*nn+1));
1.11      takayama 1745:           if (newRingp->degreeShift == NULL) errorKan1("%s\n","No more memory.");
1.12      takayama 1746:           for (j=0; j<nn; j++) {
                   1747:             ods2 = getoa(ods,j);
                   1748:             for (k=0; k<dssize; k++) {
                   1749:               if (getoa(ods2,k).tag == SuniversalNumber) {
                   1750:                 (newRingp->degreeShift)[j*dssize+k] = coeffToInt(getoa(ods2,k).lc.universalNumber);
                   1751:               }else{
                   1752:                 (newRingp->degreeShift)[j*dssize+k] = KopInteger(getoa(ods2,k));
                   1753:               }
1.11      takayama 1754:             }
                   1755:           }
                   1756:         }
1.34      takayama 1757:       } else if (strcmp(KopString(getoa(ob5,i)),"partialEcartGlobalVarX") == 0) {
                   1758:         if (getoa(ob5,i+1).tag != Sarray) {
                   1759:           errorKan1("%s\n","An array of array should be given. (partialEcart)");
                   1760:         }
                   1761:         {
1.43    ! takayama 1762:           struct object odv = OINIT;
        !          1763:           struct object ovv = OINIT;
1.34      takayama 1764:           int k,j,nn;
                   1765:           char *vname;
                   1766:           odv=getoa(ob5,i+1);
                   1767:           nn = getoaSize(odv);
                   1768:           newRingp->partialEcart = nn;
                   1769:           newRingp->partialEcartGlobalVarX = (int *) sGC_malloc(sizeof(int)*nn+1);
                   1770:           if (newRingp->partialEcartGlobalVarX == NULL) errorKan1("%s\n","No more memory.");
                   1771:           for (j=0; j<nn; j++)
                   1772:             (newRingp->partialEcartGlobalVarX)[j] = -1;
                   1773:           for (j=0; j<nn; j++) {
                   1774:             ovv = getoa(odv,j);
                   1775:             if (ovv.tag != Sdollar) errorKan1("%s\n","partialEcartGlobalVarX: string is expected.");
                   1776:             vname = KopString(ovv);
                   1777:             for (k=0; k<n; k++) {
                   1778:               if (strcmp(vname,xvars[k]) == 0) {
                   1779:                 (newRingp->partialEcartGlobalVarX)[j] = k; break;
                   1780:               }else{
                   1781:                 if (k == n-1) errorKan1("%s\n","partialEcartGlobalVarX: no such variable.");
                   1782:               }
                   1783:             }
                   1784:           }
                   1785:         }
                   1786:
1.22      takayama 1787:         switch_function("grade","module1v");
                   1788:         /* Warning: grading is changed to module1v!! */
1.1       maekawa  1789:       } else {
1.7       takayama 1790:         errorKan1("%s\n","Unknown keyword to set_up_ring@");
1.1       maekawa  1791:       }
                   1792:     }else{
                   1793:       errorKan1("%s\n","A keyword enclosed by braces have to be given.");
                   1794:     }
                   1795:   }
                   1796:
                   1797:   newRingp->name = ringName;
                   1798:
                   1799:
                   1800:   if (AvoidTheSameRing) {
                   1801:     aa = isTheSameRing(rstack,rp,newRingp);
                   1802:     if (aa < 0) {
                   1803:       /* This ring has never been defined. */
                   1804:       CurrentRingp = newRingp;
                   1805:       /* Install it to the RingStack */
                   1806:       if (rp <RP_LIMIT) {
1.7       takayama 1807:         rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
1.1       maekawa  1808:       }else{
1.7       takayama 1809:         rp = 0;
                   1810:         errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
1.1       maekawa  1811:       }
                   1812:     }else{
                   1813:       /* This ring has been defined. */
                   1814:       /* Discard the newRingp */
                   1815:       CurrentRingp = rstack[aa];
                   1816:       ringSerial--;
                   1817:     }
                   1818:   }else{
                   1819:     CurrentRingp = newRingp;
                   1820:     /* Install it to the RingStack */
                   1821:     if (rp <RP_LIMIT) {
                   1822:       rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
                   1823:     }else{
                   1824:       rp = 0;
                   1825:       errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
                   1826:     }
                   1827:   }
                   1828:   if (mpMultName != NULL) {
                   1829:     switch_function("mpMult",mpMultName);
                   1830:   }
                   1831:
                   1832:   initSyzRingp();
                   1833:
                   1834:   return(0);
                   1835: }
                   1836:
                   1837:
                   1838: struct object KsetVariableNames(struct object ob,struct ring *rp)
                   1839: {
                   1840:   int n,i;
1.43    ! takayama 1841:   struct object ox = OINIT;
        !          1842:   struct object otmp = OINIT;
1.1       maekawa  1843:   char **xvars;
                   1844:   char **dvars;
                   1845:   if (ob.tag  != Sarray) {
                   1846:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...]");
                   1847:   }
                   1848:   n = rp->n;
                   1849:   ox = ob;
                   1850:   if (getoaSize(ox) != 2*n) {
                   1851:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...] and the length of [(x) (y) (z) ...] must be equal to the number of x and D variables.");
                   1852:   }
                   1853:   xvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1854:   dvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1855:   if (xvars == NULL || dvars == NULL) {
                   1856:     errorKan1("%s\n","KsetVariableNames(): no more memory.");
                   1857:   }
                   1858:   for (i=0; i<2*n; i++) {
                   1859:     otmp = getoa(ox,i);
                   1860:     if(otmp.tag != Sdollar) {
                   1861:       errorKan1("%s\n","KsetVariableNames(): elements must be strings.");
                   1862:     }
                   1863:     if (i < n) {
                   1864:       xvars[i] = KopString(otmp);
                   1865:     }else{
                   1866:       dvars[i-n] = KopString(otmp);
                   1867:     }
                   1868:   }
                   1869:   checkDuplicateName(xvars,dvars,n);
                   1870:   rp->x = xvars;
                   1871:   rp->D = dvars;
                   1872:   return(ob);
                   1873: }
                   1874:
                   1875:
                   1876:
                   1877: void KshowRing(ringp)
1.7       takayama 1878:      struct ring *ringp;
1.1       maekawa  1879: {
                   1880:   showRing(1,ringp);
                   1881: }
                   1882:
                   1883: struct object KswitchFunction(ob1,ob2)
1.7       takayama 1884:      struct object ob1,ob2;
1.1       maekawa  1885: {
                   1886:   char *ans ;
1.43    ! takayama 1887:   struct object rob = OINIT;
1.1       maekawa  1888:   int needWarningForAvoidTheSameRing = 0;
                   1889:   extern int AvoidTheSameRing;
                   1890:   if ((ob1.tag != Sdollar) || (ob2.tag != Sdollar)) {
                   1891:     errorKan1("%s\n","$function$ $name$ switch_function\n");
                   1892:   }
                   1893:   if (AvoidTheSameRing && needWarningForAvoidTheSameRing) {
                   1894:     if (strcmp(KopString(ob1),"mmLarger") == 0 ||
                   1895:         strcmp(KopString(ob1),"mpMult") == 0 ||
                   1896:         strcmp(KopString(ob1),"monomialAdd") == 0 ||
                   1897:         strcmp(KopString(ob1),"isSameComponent") == 0) {
                   1898:       fprintf(stderr,",switch_function ==> %s ",KopString(ob1));
                   1899:       warningKan("switch_function might cause a trouble under AvoidTheSameRing == 1.\n");
                   1900:     }
                   1901:   }
                   1902:   if (AvoidTheSameRing) {
                   1903:     if (strcmp(KopString(ob1),"mmLarger") == 0 &&
1.7       takayama 1904:         strcmp(KopString(ob2),"matrix") != 0) {
1.1       maekawa  1905:       fprintf(stderr,"mmLarger = %s",KopString(ob2));
                   1906:       errorKan1("%s\n","mmLarger can set only to matrix under AvoidTheSameRing == 1.");
                   1907:     }
                   1908:   }
                   1909:
                   1910:   ans = switch_function(ob1.lc.str,ob2.lc.str);
                   1911:   if (ans == NULL) {
                   1912:     rob = NullObject;
                   1913:   }else{
                   1914:     rob = KpoString(ans);
                   1915:   }
                   1916:   return(rob);
                   1917:
                   1918: }
                   1919:
                   1920: void KprintSwitchStatus(void)
                   1921: {
                   1922:   print_switch_status();
                   1923: }
                   1924:
                   1925: struct object KoReplace(of,rule)
1.7       takayama 1926:      struct object of;
                   1927:      struct object rule;
1.1       maekawa  1928: {
1.43    ! takayama 1929:   struct object rob = OINIT;
1.1       maekawa  1930:   POLY f;
                   1931:   POLY lRule[N0*2];
                   1932:   POLY rRule[N0*2];
                   1933:   POLY r;
                   1934:   int i;
                   1935:   int n;
1.43    ! takayama 1936:   struct object trule = OINIT;
1.1       maekawa  1937:
                   1938:
                   1939:   if (rule.tag != Sarray) {
                   1940:     errorKan1("%s\n"," KoReplace(): The second argument must be array.");
                   1941:   }
                   1942:   n = getoaSize(rule);
                   1943:
1.6       takayama 1944:   if (of.tag == Spoly) {
                   1945:   }else if (of.tag ==Sclass && ectag(of) == CLASSNAME_recursivePolynomial) {
1.7       takayama 1946:     return(KreplaceRecursivePolynomial(of,rule));
1.6       takayama 1947:   }else{
1.1       maekawa  1948:     errorKan1("%s\n"," KoReplace(): The first argument must be a polynomial.");
                   1949:   }
                   1950:   f = KopPOLY(of);
                   1951:
                   1952:   if (f ISZERO) {
                   1953:   }else{
                   1954:     if (n >= 2*(f->m->ringp->n)) {
                   1955:       errorKan1("%s\n"," KoReplace(): too many rules for replacement. ");
                   1956:     }
                   1957:   }
                   1958:
                   1959:   for (i=0; i<n; i++) {
                   1960:     trule = getoa(rule,i);
                   1961:     if (trule.tag != Sarray) {
                   1962:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1963:     }
                   1964:     if (getoaSize(trule) != 2) {
                   1965:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1966:     }
                   1967:
                   1968:     if (getoa(trule,0).tag != Spoly) {
                   1969:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1970:     }
                   1971:     if (getoa(trule,1).tag != Spoly) {
                   1972:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1973:     }
                   1974:
                   1975:     lRule[i] = KopPOLY(getoa(trule,0));
                   1976:     rRule[i] = KopPOLY(getoa(trule,1));
                   1977:   }
                   1978:
                   1979:   r = replace(f,lRule,rRule,n);
                   1980:   rob.tag = Spoly; rob.lc.poly = r;
                   1981:
                   1982:   return(rob);
                   1983: }
                   1984:
                   1985:
                   1986: struct object Kparts(f,v)
1.7       takayama 1987:      struct object f;
                   1988:      struct object v;
1.1       maekawa  1989: {
                   1990:   POLY ff;
                   1991:   POLY vv;
1.43    ! takayama 1992:   struct object obj = OINIT;
1.1       maekawa  1993:   struct matrixOfPOLY *co;
                   1994:   /* check the data type */
                   1995:   if (f.tag != Spoly || v.tag != Spoly)
                   1996:     errorKan1("%s\n","arguments of Kparts() must have polynomial as arguments.");
                   1997:
                   1998:   co = parts(KopPOLY(f),KopPOLY(v));
                   1999:   obj = matrixOfPOLYToArray(co);
                   2000:   return(obj);
                   2001: }
                   2002:
                   2003: struct object Kparts2(f,v)
1.7       takayama 2004:      struct object f;
                   2005:      struct object v;
1.1       maekawa  2006: {
                   2007:   POLY ff;
                   2008:   POLY vv;
1.43    ! takayama 2009:   struct object obj = OINIT;
1.1       maekawa  2010:   struct matrixOfPOLY *co;
                   2011:   /* check the data type */
                   2012:   if (f.tag != Spoly || v.tag != Spoly)
                   2013:     errorKan1("%s\n","arguments of Kparts2() must have polynomial as arguments.");
                   2014:
                   2015:   obj = parts2(KopPOLY(f),KopPOLY(v));
                   2016:   return(obj);
                   2017: }
                   2018:
                   2019:
                   2020: struct object Kdegree(ob1,ob2)
1.7       takayama 2021:      struct object ob1,ob2;
1.1       maekawa  2022: {
                   2023:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   2024:     errorKan1("%s\n","The arguments must be polynomials.");
                   2025:
                   2026:   return(KpoInteger(pDegreeWrtV(KopPOLY(ob1),KopPOLY(ob2))));
                   2027: }
                   2028:
                   2029: struct object KringMap(obj)
1.7       takayama 2030:      struct object obj;
1.1       maekawa  2031: {
                   2032:   extern struct ring *CurrentRingp;
                   2033:   extern struct ring *SyzRingp;
                   2034:   POLY f;
                   2035:   POLY r;
                   2036:   if (obj.tag != Spoly)
                   2037:     errorKan1("%s\n","The argments must be polynomial.");
                   2038:   f = KopPOLY(obj);
                   2039:   if (f ISZERO) return(obj);
                   2040:   if (f->m->ringp == CurrentRingp) return(obj);
                   2041:   if (f->m->ringp == CurrentRingp->next) {
                   2042:     r = newCell(newCoeff(),newMonomial(CurrentRingp));
                   2043:     r->coeffp->tag = POLY_COEFF;
                   2044:     r->coeffp->val.f = f;
                   2045:     return(KpoPOLY(r));
                   2046:   }else if (f->m->ringp == SyzRingp) {
                   2047:     return(KpoPOLY(f->coeffp->val.f));
                   2048:   }
                   2049:   errorKan1("%s\n","The ring map is not defined in this case.");
                   2050: }
                   2051:
                   2052:
                   2053: struct object Ksp(ob1,ob2)
1.7       takayama 2054:      struct object ob1,ob2;
1.1       maekawa  2055: {
                   2056:   struct spValue sv;
1.43    ! takayama 2057:   struct object rob = OINIT;
        !          2058:   struct object cob = OINIT;
1.1       maekawa  2059:   POLY f;
                   2060:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   2061:     errorKan1("%s\n","Ksp(): The arguments must be polynomials.");
                   2062:   sv = (*sp)(ob1.lc.poly,ob2.lc.poly);
                   2063:   f = ppAddv(ppMult(sv.a,KopPOLY(ob1)),
1.7       takayama 2064:              ppMult(sv.b,KopPOLY(ob2)));
1.1       maekawa  2065:   rob = newObjectArray(2);
                   2066:   cob = newObjectArray(2);
                   2067:   putoa(rob,1,KpoPOLY(f));
                   2068:   putoa(cob,0,KpoPOLY(sv.a));
                   2069:   putoa(cob,1,KpoPOLY(sv.b));
                   2070:   putoa(rob,0,cob);
                   2071:   return(rob);
                   2072: }
                   2073:
                   2074: struct object Khead(ob)
1.7       takayama 2075:      struct object ob;
1.1       maekawa  2076: {
                   2077:   if (ob.tag != Spoly) errorKan1("%s\n","Khead(): The argument should be a polynomial.");
                   2078:   return(KpoPOLY(head( KopPOLY(ob))));
                   2079: }
                   2080:
                   2081:
                   2082: /* :eval */
                   2083: struct object Keval(obj)
1.7       takayama 2084:      struct object obj;
1.1       maekawa  2085: {
                   2086:   char *key;
                   2087:   int size;
1.43    ! takayama 2088:   struct object rob = OINIT;
1.1       maekawa  2089:   rob = NullObject;
                   2090:
                   2091:   if (obj.tag != Sarray)
                   2092:     errorKan1("%s\n","[$key$ arguments] eval");
                   2093:   if (getoaSize(obj) < 1)
                   2094:     errorKan1("%s\n","[$key$ arguments] eval");
                   2095:   if (getoa(obj,0).tag != Sdollar)
                   2096:     errorKan1("%s\n","[$key$ arguments] eval");
                   2097:   key = getoa(obj,0).lc.str;
                   2098:   size = getoaSize(obj);
                   2099:
                   2100:
                   2101:   return(rob);
                   2102: }
                   2103:
                   2104: /* :Utilities */
                   2105: char *KremoveSpace(str)
1.7       takayama 2106:      char str[];
1.1       maekawa  2107: {
                   2108:   int size;
                   2109:   int start;
                   2110:   int end;
                   2111:   char *s;
                   2112:   int i;
                   2113:
                   2114:   size = strlen(str);
                   2115:   for (start = 0; start <= size; start++) {
                   2116:     if (str[start] > ' ') break;
                   2117:   }
                   2118:   for (end = size-1; end >= 0; end--) {
                   2119:     if (str[end] > ' ') break;
                   2120:   }
                   2121:   if (start > end) return((char *) NULL);
                   2122:   s = (char *) sGC_malloc(sizeof(char)*(end-start+2));
                   2123:   if (s == (char *)NULL) errorKan1("%s\n","removeSpace(): No more memory.");
                   2124:   for (i=0; i< end-start+1; i++)
                   2125:     s[i] = str[i+start];
                   2126:   s[end-start+1] = '\0';
                   2127:   return(s);
                   2128: }
                   2129:
                   2130: struct object KtoRecords(ob)
1.7       takayama 2131:      struct object ob;
1.1       maekawa  2132: {
1.43    ! takayama 2133:   struct object obj = OINIT;
        !          2134:   struct object tmp = OINIT;
1.1       maekawa  2135:   int i;
                   2136:   int size;
                   2137:   char **argv;
                   2138:
                   2139:   obj = NullObject;
                   2140:   switch(ob.tag) {
                   2141:   case Sdollar: break;
                   2142:   default:
                   2143:     errorKan1("%s","Argument of KtoRecords() must be a string enclosed by dollars.\n");
                   2144:     break;
                   2145:   }
                   2146:   size = strlen(ob.lc.str)+3;
                   2147:   argv = (char **) sGC_malloc((size+1)*sizeof(char *));
                   2148:   if (argv == (char **)NULL)
                   2149:     errorKan1("%s","No more memory.\n");
                   2150:   size = KtoArgvbyCurryBrace(ob.lc.str,argv,size);
                   2151:   if (size < 0)
                   2152:     errorKan1("%s"," KtoRecords(): You have an error in the argument.\n");
                   2153:
                   2154:   obj = newObjectArray(size);
                   2155:   for (i=0; i<size; i++) {
                   2156:     tmp.tag = Sdollar;
                   2157:     tmp.lc.str = argv[i];
                   2158:     (obj.rc.op)[i] = tmp;
                   2159:   }
                   2160:   return(obj);
                   2161: }
                   2162:
                   2163: int KtoArgvbyCurryBrace(str,argv,limit)
1.7       takayama 2164:      char *str;
                   2165:      char *argv[];
                   2166:      int limit;
                   2167:      /* This function returns argc */
                   2168:      /* decompose into tokens by the separators
1.1       maekawa  2169:    { }, [ ], and characters of which code is less than SPACE.
                   2170:    Example.   { }  ---> nothing            (argc=0)
                   2171:               {x}----> x                   (argc=1)
                   2172:               {x,y} --> x   y              (argc=2)
1.7       takayama 2173:           {ab, y, z } --> ab   y   z   (argc=3)
1.1       maekawa  2174:               [[ab],c,d]  --> [ab] c   d
                   2175: */
                   2176: {
                   2177:   int argc;
                   2178:   int n;
                   2179:   int i;
                   2180:   int k;
                   2181:   char *a;
                   2182:   char *ident;
                   2183:   int level = 0;
                   2184:   int comma;
                   2185:
                   2186:   if (str == (char *)NULL) {
                   2187:     fprintf(stderr,"You use NULL string to toArgvbyCurryBrace()\n");
                   2188:     return(0);
                   2189:   }
                   2190:
                   2191:   n = strlen(str);
                   2192:   a = (char *) sGC_malloc(sizeof(char)*(n+3));
                   2193:   a[0]=' ';
                   2194:   strcpy(&(a[1]),str);
                   2195:   n = strlen(a); a[0] = '\0';
                   2196:   comma = -1;
                   2197:   for (i=1; i<n; i++) {
                   2198:     if (a[i] == '{' || a[i] == '[') level++;
                   2199:     if (level <= 1 && ( a[i] == ',')) {a[i] = '\0'; ++comma;}
                   2200:     if (level <= 1 && (a[i]=='{' || a[i]=='}' || a[i]=='[' || a[i]==']'))
                   2201:       a[i] = '\0';
                   2202:     if (a[i] == '}' || a[i] == ']') level--;
                   2203:     if ((level <= 1) && (comma == -1) && ( a[i] > ' ')) comma = 0;
                   2204:   }
                   2205:
                   2206:   if (comma == -1) return(0);
                   2207:
                   2208:   argc=0;
                   2209:   for (i=0; i<n; i++) {
                   2210:     if ((a[i] == '\0') && (a[i+1] != '\0')) ++argc;
                   2211:   }
                   2212:   if (argc > limit) return(-argc);
                   2213:
                   2214:   k = 0;
                   2215:   for (i=0; i<n; i++) {
                   2216:     if ((a[i] == '\0') && (a[i+1] != '\0')) {
                   2217:       ident = (char *) sGC_malloc(sizeof(char)*( strlen(&(a[i+1])) + 3));
                   2218:       strcpy(ident,&(a[i+1]));
                   2219:       argv[k] = KremoveSpace(ident);
                   2220:       if (argv[k] != (char *)NULL) k++;
                   2221:       if (k >= limit) errorKan1("%s\n","KtoArgvbyCurryBraces(): k>=limit.");
                   2222:     }
                   2223:   }
                   2224:   argc = k;
                   2225:   /*for (i=0; i<argc; i++) fprintf(stderr,"%d %s\n",i,argv[i]);*/
                   2226:   return(argc);
                   2227: }
                   2228:
1.14      takayama 2229: struct object KstringToArgv(struct object ob) {
1.43    ! takayama 2230:   struct object rob = OINIT;
1.14      takayama 2231:   char *s;
                   2232:   int n,wc,i,inblank;
                   2233:   char **argv;
                   2234:   if (ob.tag != Sdollar)
1.22      takayama 2235:     errorKan1("%s\n","KstringToArgv(): the argument must be a string.");
1.14      takayama 2236:   n = strlen(KopString(ob));
                   2237:   s = (char *) sGC_malloc(sizeof(char)*(n+2));
                   2238:   if (s == NULL) errorKan1("%s\n","KstringToArgv(): No memory.");
                   2239:   strcpy(s,KopString(ob));
                   2240:   inblank = 1;  wc = 0;
                   2241:   for (i=0; i<n; i++) {
1.22      takayama 2242:     if (inblank && (s[i] > ' ')) {
                   2243:       wc++; inblank = 0;
                   2244:     }else if ((!inblank) && (s[i] <= ' ')) {
                   2245:       inblank = 1;
                   2246:     }
1.14      takayama 2247:   }
                   2248:   argv = (char **) sGC_malloc(sizeof(char *)*(wc+2));
                   2249:   argv[0] = NULL;
                   2250:   inblank = 1;  wc = 0;
                   2251:   for (i=0; i<n; i++) {
1.22      takayama 2252:     if (inblank && (s[i] > ' ')) {
                   2253:       argv[wc] = &(s[i]); argv[wc+1]=NULL;
                   2254:       wc++; inblank = 0;
                   2255:     }else if ((inblank == 0) && (s[i] <= ' ')) {
                   2256:       inblank = 1; s[i] = 0;
                   2257:     }else if (inblank && (s[i] <= ' ')) {
                   2258:       s[i] = 0;
                   2259:     }
1.14      takayama 2260:   }
                   2261:
                   2262:   rob = newObjectArray(wc);
                   2263:   for (i=0; i<wc; i++) {
1.22      takayama 2264:     putoa(rob,i,KpoString(argv[i]));
                   2265:     /* printf("%s\n",argv[i]); */
1.14      takayama 2266:   }
                   2267:   return(rob);
                   2268: }
1.1       maekawa  2269:
                   2270: static void checkDuplicateName(xvars,dvars,n)
1.7       takayama 2271:      char *xvars[];
                   2272:      char *dvars[];
                   2273:      int n;
1.1       maekawa  2274: {
                   2275:   int i,j;
                   2276:   char *names[N0*2];
                   2277:   for (i=0; i<n; i++) {
                   2278:     names[i] = xvars[i]; names[i+n] = dvars[i];
                   2279:   }
                   2280:   n = 2*n;
                   2281:   for (i=0; i<n; i++) {
                   2282:     for (j=i+1; j<n; j++) {
                   2283:       if (strcmp(names[i],names[j]) == 0) {
1.7       takayama 2284:         fprintf(stderr,"\n%d=%s, %d=%s\n",i,names[i],j,names[j]);
                   2285:         errorKan1("%s\n","Duplicate definition of the name above in SetUpRing().");
1.1       maekawa  2286:       }
                   2287:     }
                   2288:   }
                   2289: }
                   2290:
1.20      takayama 2291: struct object KooPower(struct object ob1,struct object ob2) {
1.43    ! takayama 2292:   struct object rob = OINIT;
1.20      takayama 2293:   /* Bug. It has not yet been implemented. */
                   2294:   if (QuoteMode) {
1.22      takayama 2295:     rob = powerTree(ob1,ob2);
1.20      takayama 2296:   }else{
1.22      takayama 2297:     warningKan("KooDiv2() has not supported yet these objects.\n");
1.20      takayama 2298:   }
                   2299:   return(rob);
                   2300: }
1.1       maekawa  2301:
                   2302:
                   2303:
                   2304: struct object KooDiv2(ob1,ob2)
1.7       takayama 2305:      struct object ob1,ob2;
1.1       maekawa  2306: {
                   2307:   struct object rob = NullObject;
                   2308:   POLY f;
                   2309:   extern struct ring *CurrentRingp;
                   2310:   int s,i;
                   2311:   double d;
                   2312:
                   2313:   switch (Lookup[ob1.tag][ob2.tag]) {
                   2314:   case SpolySpoly:
                   2315:   case SuniversalNumberSuniversalNumber:
                   2316:   case SuniversalNumberSpoly:
                   2317:   case SpolySuniversalNumber:
                   2318:     rob = KnewRationalFunction0(copyObjectp(&ob1),copyObjectp(&ob2));
                   2319:     KisInvalidRational(&rob);
                   2320:     return(rob);
                   2321:     break;
                   2322:   case SarraySpoly:
                   2323:   case SarraySuniversalNumber:
                   2324:   case SarraySrationalFunction:
                   2325:     s = getoaSize(ob1);
                   2326:     rob = newObjectArray(s);
                   2327:     for (i=0; i<s; i++) {
                   2328:       putoa(rob,i,KooDiv2(getoa(ob1,i),ob2));
                   2329:     }
                   2330:     return(rob);
                   2331:     break;
                   2332:   case SpolySrationalFunction:
                   2333:   case SrationalFunctionSpoly:
                   2334:   case SrationalFunctionSrationalFunction:
                   2335:   case SuniversalNumberSrationalFunction:
                   2336:   case SrationalFunctionSuniversalNumber:
                   2337:     rob = KoInverse(ob2);
                   2338:     rob = KooMult(ob1,rob);
                   2339:     return(rob);
                   2340:     break;
                   2341:
                   2342:   case SdoubleSdouble:
                   2343:     d = KopDouble(ob2);
                   2344:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2345:     return(KpoDouble( KopDouble(ob1) / d ));
                   2346:     break;
                   2347:   case SdoubleSinteger:
                   2348:   case SdoubleSuniversalNumber:
                   2349:   case SdoubleSrationalFunction:
                   2350:     d = toDouble0(ob2);
                   2351:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2352:     return(KpoDouble( KopDouble(ob1) / d) );
                   2353:     break;
                   2354:   case SintegerSdouble:
                   2355:   case SuniversalNumberSdouble:
                   2356:   case SrationalFunctionSdouble:
                   2357:     d = KopDouble(ob2);
                   2358:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2359:     return(KpoDouble( toDouble0(ob1) / d ) );
                   2360:     break;
                   2361:
                   2362:   default:
1.20      takayama 2363:     if (QuoteMode) {
                   2364:       rob = divideTree(ob1,ob2);
                   2365:     }else{
                   2366:       warningKan("KooDiv2() has not supported yet these objects.\n");
                   2367:     }
1.1       maekawa  2368:     break;
                   2369:   }
                   2370:   return(rob);
                   2371: }
                   2372: /* Template
                   2373:   case SrationalFunctionSrationalFunction:
                   2374:     warningKan("Koo() has not supported yet these objects.\n");
                   2375:     return(rob);
                   2376:     break;
                   2377:   case SpolySrationalFunction:
                   2378:     warningKan("Koo() has not supported yet these objects.\n");
                   2379:     return(rob);
                   2380:     break;
                   2381:   case SrationalFunctionSpoly:
                   2382:     warningKan("Koo() has not supported yet these objects.\n");
                   2383:     return(rob);
                   2384:     break;
                   2385:   case SuniversalNumberSrationalFunction:
                   2386:     warningKan("Koo() has not supported yet these objects.\n");
                   2387:     return(rob);
                   2388:     break;
                   2389:   case SrationalFunctionSuniversalNumber:
                   2390:     warningKan("Koo() has not supported yet these objects.\n");
                   2391:     return(rob);
                   2392:     break;
                   2393: */
                   2394:
                   2395: int KisInvalidRational(op)
1.7       takayama 2396:      objectp op;
1.1       maekawa  2397: {
                   2398:   extern struct coeff *UniversalZero;
                   2399:   if (op->tag != SrationalFunction) return(0);
                   2400:   if (KisZeroObject(Kdenominator(*op))) {
                   2401:     errorKan1("%s\n","KisInvalidRational(): zero division. You have f/0.");
                   2402:   }
                   2403:   if (KisZeroObject(Knumerator(*op))) {
                   2404:     op->tag = SuniversalNumber;
                   2405:     op->lc.universalNumber = UniversalZero;
                   2406:   }
                   2407:   return(0);
                   2408: }
                   2409:
                   2410: struct object KgbExtension(struct object obj)
                   2411: {
                   2412:   char *key;
                   2413:   int size;
1.43    ! takayama 2414:   struct object keyo = OINIT;
1.1       maekawa  2415:   struct object rob = NullObject;
1.43    ! takayama 2416:   struct object obj1 = OINIT;
        !          2417:   struct object obj2 = OINIT;
        !          2418:   struct object obj3 = OINIT;
1.1       maekawa  2419:   POLY f1;
                   2420:   POLY f2;
                   2421:   POLY f3;
                   2422:   POLY f;
                   2423:   int m,i;
                   2424:   struct pairOfPOLY pf;
1.16      takayama 2425:   struct coeff *cont;
1.1       maekawa  2426:
                   2427:   if (obj.tag != Sarray) errorKan1("%s\n","KgbExtension(): The argument must be an array.");
                   2428:   size = getoaSize(obj);
                   2429:   if (size < 1) errorKan1("%s\n","KgbExtension(): Empty array.");
                   2430:   keyo = getoa(obj,0);
                   2431:   if (keyo.tag != Sdollar) errorKan1("%s\n","KgbExtension(): No key word.");
                   2432:   key = KopString(keyo);
                   2433:
                   2434:   /* branch by the key word. */
                   2435:   if (strcmp(key,"isReducible")==0) {
                   2436:     if (size != 3) errorKan1("%s\n","[(isReducible)  poly1 poly2] gbext.");
                   2437:     obj1 = getoa(obj,1);
                   2438:     obj2 = getoa(obj,2);
                   2439:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2440:       errorKan1("%s\n","[(isReducible)  poly1 poly2] gb.");
                   2441:     f1 = KopPOLY(obj1);
                   2442:     f2 = KopPOLY(obj2);
                   2443:     rob = KpoInteger((*isReducible)(f1,f2));
                   2444:   }else if (strcmp(key,"lcm") == 0) {
                   2445:     if (size != 3) errorKan1("%s\n","[(lcm)  poly1 poly2] gb.");
                   2446:     obj1 = getoa(obj,1);
                   2447:     obj2 = getoa(obj,2);
                   2448:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2449:       errorKan1("%s\n","[(lcm)  poly1 poly2] gbext.");
                   2450:     f1 = KopPOLY(obj1);
                   2451:     f2 = KopPOLY(obj2);
                   2452:     rob = KpoPOLY((*lcm)(f1,f2));
                   2453:   }else if (strcmp(key,"grade")==0) {
                   2454:     if (size != 2) errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2455:     obj1 = getoa(obj,1);
                   2456:     if (obj1.tag != Spoly)
                   2457:       errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2458:     f1 = KopPOLY(obj1);
                   2459:     rob = KpoInteger((*grade)(f1));
                   2460:   }else if (strcmp(key,"mod")==0) {
                   2461:     if (size != 3) errorKan1("%s\n","[(mod) poly num] gbext");
                   2462:     obj1 = getoa(obj,1);
                   2463:     obj2 = getoa(obj,2);
                   2464:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2465:       errorKan1("%s\n","The datatype of the argument mismatch: [(mod) polynomial  universalNumber] gbext");
                   2466:     }
                   2467:     rob = KpoPOLY( modulopZ(KopPOLY(obj1),KopUniversalNumber(obj2)) );
                   2468:   }else if (strcmp(key,"tomodp")==0) {
                   2469:     /* The ring must be a ring of characteristic p. */
                   2470:     if (size != 3) errorKan1("%s\n","[(tomod) poly ring] gbext");
                   2471:     obj1 = getoa(obj,1);
                   2472:     obj2 = getoa(obj,2);
                   2473:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2474:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod) polynomial  ring] gbext");
                   2475:     }
                   2476:     rob = KpoPOLY( modulop(KopPOLY(obj1),KopRingp(obj2)) );
                   2477:   }else if (strcmp(key,"tomod0")==0) {
                   2478:     /* Ring must be a ring of characteristic 0. */
                   2479:     if (size != 3) errorKan1("%s\n","[(tomod0) poly ring] gbext");
                   2480:     obj1 = getoa(obj,1);
                   2481:     obj2 = getoa(obj,2);
                   2482:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2483:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod0) polynomial  ring] gbext");
                   2484:     }
                   2485:     errorKan1("%s\n","It has not been implemented.");
                   2486:     rob = KpoPOLY( POLYNULL );
                   2487:   }else if (strcmp(key,"divByN")==0) {
                   2488:     if (size != 3) errorKan1("%s\n","[(divByN) poly num] gbext");
                   2489:     obj1 = getoa(obj,1);
                   2490:     obj2 = getoa(obj,2);
                   2491:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2492:       errorKan1("%s\n","The datatype of the argument mismatch: [(divByN) polynomial  universalNumber] gbext");
                   2493:     }
                   2494:     pf =  quotientByNumber(KopPOLY(obj1),KopUniversalNumber(obj2));
                   2495:     rob  = newObjectArray(2);
                   2496:     putoa(rob,0,KpoPOLY(pf.first));
                   2497:     putoa(rob,1,KpoPOLY(pf.second));
                   2498:   }else if (strcmp(key,"isConstant")==0) {
                   2499:     if (size != 2) errorKan1("%s\n","[(isConstant) poly ] gbext bool");
                   2500:     obj1 = getoa(obj,1);
                   2501:     if (obj1.tag != Spoly) {
                   2502:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstant) polynomial] gbext");
                   2503:     }
                   2504:     return(KpoInteger(isConstant(KopPOLY(obj1))));
1.18      takayama 2505:   }else if (strcmp(key,"isConstantAll")==0) {
                   2506:     if (size != 2) errorKan1("%s\n","[(isConstantAll) poly ] gbext bool");
                   2507:     obj1 = getoa(obj,1);
                   2508:     if (obj1.tag != Spoly) {
                   2509:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstantAll) polynomial] gbext");
                   2510:     }
                   2511:     return(KpoInteger(isConstantAll(KopPOLY(obj1))));
1.1       maekawa  2512:   }else if (strcmp(key,"schreyerSkelton") == 0) {
                   2513:     if (size != 2) errorKan1("%s\n","[(schreyerSkelton) array_of_poly ] gbext array");
                   2514:     obj1 = getoa(obj,1);
                   2515:     return(KschreyerSkelton(obj1));
                   2516:   }else if (strcmp(key,"lcoeff") == 0) {
                   2517:     if (size != 2) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2518:     obj1 = getoa(obj,1);
                   2519:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2520:     f = KopPOLY(obj1);
                   2521:     if (f == POLYNULL) return(KpoPOLY(f));
                   2522:     return(KpoPOLY( newCell(coeffCopy(f->coeffp),newMonomial(f->m->ringp))));
                   2523:   }else if (strcmp(key,"lmonom") == 0) {
                   2524:     if (size != 2) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2525:     obj1 = getoa(obj,1);
                   2526:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2527:     f = KopPOLY(obj1);
                   2528:     if (f == POLYNULL) return(KpoPOLY(f));
                   2529:     return(KpoPOLY( newCell(intToCoeff(1,f->m->ringp),monomialCopy(f->m))));
                   2530:   }else if (strcmp(key,"toes") == 0) {
                   2531:     if (size != 2) errorKan1("%s\n","[(toes) array] gbext poly");
                   2532:     obj1 = getoa(obj,1);
                   2533:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toes) array] gbext poly");
                   2534:     return(KvectorToSchreyer_es(obj1));
1.3       takayama 2535:   }else if (strcmp(key,"toe_") == 0) {
                   2536:     if (size != 2) errorKan1("%s\n","[(toe_) array] gbext poly");
                   2537:     obj1 = getoa(obj,1);
                   2538:     if (obj1.tag == Spoly) return(obj1);
                   2539:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toe_) array] gbext poly");
                   2540:     return(KpoPOLY(arrayToPOLY(obj1)));
1.1       maekawa  2541:   }else if (strcmp(key,"isOrdered") == 0) {
                   2542:     if (size != 2) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2543:     obj1 = getoa(obj,1);
                   2544:     if (obj1.tag != Spoly) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2545:     return(KisOrdered(obj1));
1.16      takayama 2546:   }else if (strcmp(key,"reduceContent")==0) {
                   2547:     if (size != 2) errorKan1("%s\n","[(reduceContent)  poly1 ] gbext.");
                   2548:     obj1 = getoa(obj,1);
                   2549:     if (obj1.tag != Spoly)
                   2550:       errorKan1("%s\n","[(reduceContent)  poly1 ] gbext.");
                   2551:     f1 = KopPOLY(obj1);
1.22      takayama 2552:     rob = newObjectArray(2);
                   2553:     f1 = reduceContentOfPoly(f1,&cont);
                   2554:     putoa(rob,0,KpoPOLY(f1));
                   2555:     if (f1 == POLYNULL) {
                   2556:       putoa(rob,1,KpoPOLY(f1));
                   2557:     }else{
                   2558:       putoa(rob,1,KpoPOLY(newCell(cont,newMonomial(f1->m->ringp))));
                   2559:     }
1.17      takayama 2560:   }else if (strcmp(key,"ord_ws_all")==0) {
                   2561:     if (size != 3) errorKan1("%s\n","[(ord_ws_all) fv wv] gbext");
                   2562:     obj1 = getoa(obj,1);
                   2563:     obj2 = getoa(obj,2);
                   2564:     rob  = KordWsAll(obj1,obj2);
1.23      takayama 2565:   }else if (strcmp(key,"exponents")==0) {
                   2566:     if (size == 3) {
                   2567:       obj1 = getoa(obj,1);
                   2568:       obj2 = getoa(obj,2);
                   2569:       rob  = KgetExponents(obj1,obj2);
                   2570:     }else if (size == 2) {
                   2571:       obj1 = getoa(obj,1);
                   2572:       obj2 = KpoInteger(2);
                   2573:       rob  = KgetExponents(obj1,obj2);
                   2574:     }else{
                   2575:       errorKan1("%s\n","[(exponents) f type] gbext");
                   2576:     }
1.1       maekawa  2577:   }else {
                   2578:     errorKan1("%s\n","gbext : unknown tag.");
                   2579:   }
                   2580:   return(rob);
                   2581: }
                   2582:
                   2583: struct object KmpzExtension(struct object obj)
                   2584: {
                   2585:   char *key;
                   2586:   int size;
1.43    ! takayama 2587:   struct object keyo = OINIT;
1.1       maekawa  2588:   struct object rob = NullObject;
1.43    ! takayama 2589:   struct object obj0 = OINIT;
        !          2590:   struct object obj1 = OINIT;
        !          2591:   struct object obj2 = OINIT;
        !          2592:   struct object obj3 = OINIT;
1.1       maekawa  2593:   MP_INT *f;
                   2594:   MP_INT *g;
                   2595:   MP_INT *h;
                   2596:   MP_INT *r0;
                   2597:   MP_INT *r1;
                   2598:   MP_INT *r2;
                   2599:   int gi;
                   2600:   extern struct ring *SmallRingp;
                   2601:
                   2602:
                   2603:   if (obj.tag != Sarray) errorKan1("%s\n","KmpzExtension(): The argument must be an array.");
                   2604:   size = getoaSize(obj);
                   2605:   if (size < 1) errorKan1("%s\n","KmpzExtension(): Empty array.");
                   2606:   keyo = getoa(obj,0);
                   2607:   if (keyo.tag != Sdollar) errorKan1("%s\n","KmpzExtension(): No key word.");
                   2608:   key = KopString(keyo);
                   2609:
                   2610:   /* branch by the key word. */
                   2611:   if (strcmp(key,"gcd")==0) {
                   2612:     if (size != 3) errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2613:     obj1 = getoa(obj,1);
                   2614:     obj2 = getoa(obj,2);
1.24      takayama 2615:     if (obj1.tag != SuniversalNumber) {
                   2616:       obj1 = KdataConversion(obj1,"universalNumber");
                   2617:        }
                   2618:     if (obj2.tag != SuniversalNumber) {
                   2619:       obj2 = KdataConversion(obj2,"universalNumber");
                   2620:        }
1.1       maekawa  2621:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2622:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2623:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2624:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2625:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2626:     }
                   2627:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2628:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2629:     r1 = newMP_INT();
                   2630:     mpz_gcd(r1,f,g);
                   2631:     rob.tag = SuniversalNumber;
                   2632:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2633:   }else if (strcmp(key,"tdiv_qr")==0) {
                   2634:     if (size != 3) errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2635:     obj1 = getoa(obj,1);
                   2636:     obj2 = getoa(obj,2);
1.24      takayama 2637:     if (obj1.tag != SuniversalNumber) {
                   2638:       obj1 = KdataConversion(obj1,"universalNumber");
                   2639:        }
                   2640:     if (obj2.tag != SuniversalNumber) {
                   2641:       obj2 = KdataConversion(obj2,"universalNumber");
                   2642:        }
1.1       maekawa  2643:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2644:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2645:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2646:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2647:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2648:     }
                   2649:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2650:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2651:     r1 = newMP_INT();
                   2652:     r2 = newMP_INT();
                   2653:     mpz_tdiv_qr(r1,r2,f,g);
                   2654:     obj1.tag = SuniversalNumber;
                   2655:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2656:     obj2.tag = SuniversalNumber;
                   2657:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2658:     rob = newObjectArray(2);
                   2659:     putoa(rob,0,obj1); putoa(rob,1,obj2);
                   2660:   } else if (strcmp(key,"cancel")==0) {
                   2661:     if (size != 2) {
                   2662:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2663:     }
                   2664:     obj0 = getoa(obj,1);
                   2665:     if (obj0.tag == SuniversalNumber) return(obj0);
                   2666:     if (obj0.tag != SrationalFunction) {
                   2667:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2668:       return(obj0);
                   2669:     }
                   2670:     obj1 = *(Knumerator(obj0));
                   2671:     obj2 = *(Kdenominator(obj0));
                   2672:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber) {
                   2673:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2674:       return(obj0);
                   2675:     }
                   2676:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2677:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2678:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2679:     }
                   2680:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2681:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2682:
                   2683:     r0 = newMP_INT();
                   2684:     r1 = newMP_INT();
                   2685:     r2 = newMP_INT();
                   2686:     mpz_gcd(r0,f,g);
                   2687:     mpz_divexact(r1,f,r0);
                   2688:     mpz_divexact(r2,g,r0);
                   2689:     obj1.tag = SuniversalNumber;
                   2690:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2691:     obj2.tag = SuniversalNumber;
                   2692:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2693:
                   2694:     rob = KnewRationalFunction0(copyObjectp(&obj1),copyObjectp(&obj2));
                   2695:     KisInvalidRational(&rob);
                   2696:   }else if (strcmp(key,"sqrt")==0 ||
1.7       takayama 2697:             strcmp(key,"com")==0) {
1.1       maekawa  2698:     /*  One arg functions  */
                   2699:     if (size != 2) errorKan1("%s\n","[key num] mpzext");
                   2700:     obj1 = getoa(obj,1);
1.24      takayama 2701:     if (obj1.tag != SuniversalNumber) {
                   2702:       obj1 = KdataConversion(obj1,"universalNumber");
                   2703:        }
1.1       maekawa  2704:     if (obj1.tag != SuniversalNumber)
                   2705:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2706:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber))
                   2707:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2708:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2709:     if (strcmp(key,"sqrt")==0) {
                   2710:       r1 = newMP_INT();
                   2711:       mpz_sqrt(r1,f);
                   2712:     }else if (strcmp(key,"com")==0) {
                   2713:       r1 = newMP_INT();
                   2714:       mpz_com(r1,f);
                   2715:     }
                   2716:     rob.tag = SuniversalNumber;
                   2717:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2718:   }else if (strcmp(key,"probab_prime_p")==0 ||
1.7       takayama 2719:             strcmp(key,"and") == 0 ||
                   2720:             strcmp(key,"ior")==0) {
1.1       maekawa  2721:     /* Two args functions */
                   2722:     if (size != 3) errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2723:     obj1 = getoa(obj,1);
                   2724:     obj2 = getoa(obj,2);
1.24      takayama 2725:     if (obj1.tag != SuniversalNumber) {
                   2726:       obj1 = KdataConversion(obj1,"universalNumber");
                   2727:        }
                   2728:     if (obj2.tag != SuniversalNumber) {
                   2729:       obj2 = KdataConversion(obj2,"universalNumber");
                   2730:        }
1.1       maekawa  2731:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2732:       errorKan1("%s\n","[key num1 num2] mpzext.");
                   2733:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2734:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2735:       errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2736:     }
                   2737:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2738:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2739:     if (strcmp(key,"probab_prime_p")==0) {
                   2740:       gi = (int) mpz_get_si(g);
                   2741:       if (mpz_probab_prime_p(f,gi)) {
1.7       takayama 2742:         rob = KpoInteger(1);
1.1       maekawa  2743:       }else {
1.7       takayama 2744:         rob = KpoInteger(0);
1.1       maekawa  2745:       }
                   2746:     }else if (strcmp(key,"and")==0) {
                   2747:       r1 = newMP_INT();
                   2748:       mpz_and(r1,f,g);
                   2749:       rob.tag = SuniversalNumber;
                   2750:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2751:     }else if (strcmp(key,"ior")==0) {
                   2752:       r1 = newMP_INT();
                   2753:       mpz_ior(r1,f,g);
                   2754:       rob.tag = SuniversalNumber;
                   2755:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2756:     }
                   2757:
                   2758:   }else if (strcmp(key,"powm")==0) {
                   2759:     /* three args */
                   2760:     if (size != 4) errorKan1("%s\n","[key num1 num2 num3] mpzext");
                   2761:     obj1 = getoa(obj,1); obj2 = getoa(obj,2); obj3 = getoa(obj,3);
1.24      takayama 2762:     if (obj1.tag != SuniversalNumber) {
                   2763:       obj1 = KdataConversion(obj1,"universalNumber");
                   2764:        }
                   2765:     if (obj2.tag != SuniversalNumber) {
                   2766:       obj2 = KdataConversion(obj2,"universalNumber");
                   2767:        }
                   2768:     if (obj3.tag != SuniversalNumber) {
                   2769:       obj3 = KdataConversion(obj3,"universalNumber");
                   2770:        }
1.1       maekawa  2771:     if (obj1.tag != SuniversalNumber ||
                   2772:         obj2.tag != SuniversalNumber ||
                   2773:         obj3.tag != SuniversalNumber ) {
                   2774:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2775:     }
                   2776:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2777:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber) ||
                   2778:         ! is_this_coeff_MP_INT(obj3.lc.universalNumber)) {
1.1       maekawa  2779:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2780:     }
                   2781:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2782:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2783:     h = coeff_to_MP_INT(obj3.lc.universalNumber);
                   2784:     if (mpz_sgn(g) < 0) errorKan1("%s\n","[(powm) base exp mod] mpzext : exp must not be negative.");
                   2785:     r1 = newMP_INT();
                   2786:     mpz_powm(r1,f,g,h);
                   2787:     rob.tag = SuniversalNumber;
                   2788:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
1.24      takayama 2789:   } else if (strcmp(key,"lcm")==0) {
                   2790:     if (size != 3) errorKan1("%s\n","[(lcm)  universalNumber universalNumber] mpzext.");
                   2791:     obj1 = getoa(obj,1);
                   2792:     obj2 = getoa(obj,2);
                   2793:     if (obj1.tag != SuniversalNumber) {
                   2794:       obj1 = KdataConversion(obj1,"universalNumber");
                   2795:        }
                   2796:     if (obj2.tag != SuniversalNumber) {
                   2797:       obj2 = KdataConversion(obj2,"universalNumber");
                   2798:        }
                   2799:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2800:       errorKan1("%s\n","[lcm num1 num2] mpzext.");
                   2801:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
                   2802:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
                   2803:       errorKan1("%s\n","[(lcm)  universalNumber universalNumber] mpzext.");
                   2804:     }
                   2805:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2806:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2807:     r1 = newMP_INT();
                   2808:     mpz_lcm(r1,f,g);
                   2809:     rob.tag = SuniversalNumber;
                   2810:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
1.1       maekawa  2811:   }else {
                   2812:     errorKan1("%s\n","mpzExtension(): Unknown tag.");
                   2813:   }
                   2814:   return(rob);
                   2815: }
                   2816:
                   2817:
                   2818: /** : context   */
                   2819: struct object KnewContext(struct object superObj,char *name) {
                   2820:   struct context *cp;
1.43    ! takayama 2821:   struct object ob = OINIT;
1.1       maekawa  2822:   if (superObj.tag != Sclass) {
                   2823:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2824:   }
                   2825:   if (superObj.lc.ival != CLASSNAME_CONTEXT) {
                   2826:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2827:   }
                   2828:   cp = newContext0((struct context *)(superObj.rc.voidp),name);
                   2829:   ob.tag = Sclass;
                   2830:   ob.lc.ival = CLASSNAME_CONTEXT;
                   2831:   ob.rc.voidp = cp;
                   2832:   return(ob);
                   2833: }
                   2834:
                   2835: struct object KcreateClassIncetance(struct object ob1,
1.7       takayama 2836:                                     struct object ob2,
                   2837:                                     struct object ob3)
1.1       maekawa  2838: {
                   2839:   /* [class-tag super-obj] size [class-tag]  cclass */
1.43    ! takayama 2840:   struct object ob4 = OINIT;
1.1       maekawa  2841:   int size,size2,i;
1.43    ! takayama 2842:   struct object ob5 = OINIT;
        !          2843:   struct object rob = OINIT;
1.1       maekawa  2844:
                   2845:   if (ob1.tag != Sarray)
                   2846:     errorKan1("%s\n","cclass: The first argument must be an array.");
                   2847:   if (getoaSize(ob1) < 1)
                   2848:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2849:   ob4 = getoa(ob1,0);
                   2850:   if (ectag(ob4) != CLASSNAME_CONTEXT)
                   2851:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2852:
                   2853:   if (ob2.tag != Sinteger)
                   2854:     errorKan1("%s\n","cclass: The second argument must be an integer.");
                   2855:   size = KopInteger(ob2);
                   2856:   if (size < 1)
                   2857:     errorKan1("%s\n","cclass: The size must be > 0.");
                   2858:
                   2859:   if (ob3.tag != Sarray)
                   2860:     errorKan1("%s\n","cclass: The third argument must be an array.");
                   2861:   if (getoaSize(ob3) < 1)
                   2862:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
                   2863:   ob5 = getoa(ob3,0);
                   2864:   if (ectag(ob5) != CLASSNAME_CONTEXT)
                   2865:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
1.7       takayama 2866:
1.1       maekawa  2867:   rob = newObjectArray(size);
                   2868:   putoa(rob,0,ob5);
                   2869:   if (getoaSize(ob1) < size) size2 = getoaSize(ob1);
                   2870:   else size2 = size;
                   2871:   for (i=1; i<size2; i++) {
                   2872:     putoa(rob,i,getoa(ob1,i));
                   2873:   }
                   2874:   for (i=size2; i<size; i++) {
                   2875:     putoa(rob,i,NullObject);
                   2876:   }
                   2877:   return(rob);
                   2878: }
                   2879:
                   2880:
                   2881: struct object KpoDouble(double a) {
                   2882:   struct object rob;
                   2883:   rob.tag = Sdouble;
                   2884:   /* rob.lc.dbl = (double *)sGC_malloc_atomic(sizeof(double)); */
                   2885:   rob.lc.dbl = (double *)sGC_malloc(sizeof(double));
                   2886:   if (rob.lc.dbl == (double *)NULL) {
                   2887:     fprintf(stderr,"No memory.\n"); exit(10);
                   2888:   }
                   2889:   *(rob.lc.dbl) = a;
                   2890:   return(rob);
                   2891: }
                   2892:
                   2893: double toDouble0(struct object ob) {
                   2894:   double r;
                   2895:   int r3;
1.43    ! takayama 2896:   struct object ob2 = OINIT;
        !          2897:   struct object ob3 = OINIT;
1.1       maekawa  2898:   switch(ob.tag) {
                   2899:   case Sinteger:
                   2900:     return( (double) (KopInteger(ob)) );
                   2901:   case SuniversalNumber:
                   2902:     return((double) coeffToInt(ob.lc.universalNumber));
                   2903:   case SrationalFunction:
                   2904:     /* The argument is assumed to be a rational number. */
                   2905:     ob2 = newObjectArray(2);  ob3 = KpoString("cancel");
                   2906:     putoa(ob2,0,ob3); putoa(ob2,1,ob);
                   2907:     ob = KmpzExtension(ob2);
                   2908:     ob2 = *Knumerator(ob);  ob3 = *Kdenominator(ob);
                   2909:     r3 =  coeffToInt(ob3.lc.universalNumber);
                   2910:     if (r3  == 0) {
                   2911:       errorKan1("%s\n","toDouble0(): Division by zero.");
                   2912:       break;
                   2913:     }
                   2914:     r = ((double) coeffToInt(ob2.lc.universalNumber)) / ((double)r3);
                   2915:     return(r);
                   2916:   case Sdouble:
                   2917:     return( KopDouble(ob) );
                   2918:   default:
                   2919:     errorKan1("%s\n","toDouble0(): This type of conversion is not supported.");
                   2920:     break;
                   2921:   }
                   2922:   return(0.0);
                   2923: }
                   2924:
                   2925: struct object KpoGradedPolySet(struct gradedPolySet *grD) {
1.43    ! takayama 2926:   struct object rob = OINIT;
1.1       maekawa  2927:   rob.tag = Sclass;
                   2928:   rob.lc.ival = CLASSNAME_GradedPolySet;
                   2929:   rob.rc.voidp = (void *) grD;
                   2930:   return(rob);
                   2931: }
                   2932:
                   2933: static char *getspace0(int a) {
                   2934:   char *s;
                   2935:   a = (a > 0? a:-a);
                   2936:   s = (char *) sGC_malloc(a+1);
                   2937:   if (s == (char *)NULL) {
                   2938:     errorKan1("%s\n","no more memory.");
                   2939:   }
                   2940:   return(s);
                   2941: }
                   2942: struct object KdefaultPolyRing(struct object ob) {
1.43    ! takayama 2943:   struct object rob = OINIT;
1.1       maekawa  2944:   int i,j,k,n;
1.43    ! takayama 2945:   struct object ob1 = OINIT;
        !          2946:   struct object ob2 = OINIT;
        !          2947:   struct object ob3 = OINIT;
        !          2948:   struct object ob4 = OINIT;
        !          2949:   struct object ob5 = OINIT;
        !          2950:   struct object t1 = OINIT;
1.1       maekawa  2951:   char *s1;
                   2952:   extern struct ring *CurrentRingp;
                   2953:   static struct ring *a[N0];
                   2954:
                   2955:   rob = NullObject;
                   2956:   if (ob.tag != Sinteger) {
                   2957:     errorKan1("%s\n","KdefaultPolyRing(): the argument must be integer.");
                   2958:   }
                   2959:   n = KopInteger(ob);
                   2960:   if (n <= 0) {
                   2961:     /* initializing */
                   2962:     for (i=0; i<N0; i++) {
                   2963:       a[i] = (struct ring*) NULL;
                   2964:     }
                   2965:     return(rob);
                   2966:   }
                   2967:
                   2968:   if ( a[n] != (struct ring*)NULL) return(KpoRingp(a[n]));
                   2969:
                   2970:   /* Let's construct ring of polynomials of 2n variables  */
                   2971:   /* x variables */
                   2972:   ob1 = newObjectArray(n);
                   2973:   for (i=0; i<n; i++) {
                   2974:     s1 = getspace0(1+ ((n-i)/10) + 1);
                   2975:     sprintf(s1,"x%d",n-i);
                   2976:     putoa(ob1,i,KpoString(s1));
                   2977:   }
                   2978:   ob2 = newObjectArray(n);
                   2979:   s1 = getspace0(1);
                   2980:   sprintf(s1,"h");
                   2981:   putoa(ob2,0,KpoString(s1));
                   2982:   for (i=1; i<n; i++) {
                   2983:     s1 = getspace0(1+((n+n-i)/10)+1);
                   2984:     sprintf(s1,"x%d",n+n-i);
                   2985:     putoa(ob2,i,KpoString(s1));
                   2986:   }
                   2987:
                   2988:   ob3 = newObjectArray(9);
                   2989:   putoa(ob3,0,KpoInteger(0));
                   2990:   for (i=1; i<9; i++) {
                   2991:     putoa(ob3,i,KpoInteger(n));
                   2992:   }
                   2993:
                   2994:   ob4 = newObjectArray(2*n);
                   2995:   t1 = newObjectArray(2*n);
                   2996:   for (i=0; i<2*n; i++) {
                   2997:     putoa(t1,i,KpoInteger(1));
                   2998:   }
                   2999:   putoa(ob4,0,t1);
                   3000:   for (i=1; i<2*n; i++) {
                   3001:     t1 = newObjectArray(2*n);
                   3002:     for (j=0; j<2*n; j++) {
                   3003:       putoa(t1,j,KpoInteger(0));
                   3004:       if (j == (2*n-i)) {
1.7       takayama 3005:         putoa(t1,j,KpoInteger(-1));
1.1       maekawa  3006:       }
                   3007:     }
                   3008:     putoa(ob4,i,t1);
                   3009:   }
                   3010:
                   3011:   ob5 = newObjectArray(2);
                   3012:   putoa(ob5,0,KpoString("mpMult"));
                   3013:   putoa(ob5,1,KpoString("poly"));
                   3014:
                   3015:   KsetUpRing(ob1,ob2,ob3,ob4,ob5);
                   3016:   a[n] = CurrentRingp;
                   3017:   return(KpoRingp(a[n]));
                   3018: }
                   3019:
                   3020:
1.31      takayama 3021: struct object Krest(struct object ob) {
                   3022:   struct object rob;
                   3023:   struct object *op;
                   3024:   int n,i;
                   3025:   if (ob.tag == Sarray) {
                   3026:     n = getoaSize(ob);
                   3027:     if (n == 0) return ob;
                   3028:     rob = newObjectArray(n-1);
                   3029:     for (i=1; i<n; i++) {
                   3030:       putoa(rob,i-1,getoa(ob,i));
                   3031:     }
                   3032:     return rob;
1.32      takayama 3033:   }else if ((ob.tag == Slist) || (ob.tag == Snull)) {
                   3034:     return Kcdr(ob);
1.31      takayama 3035:   }else{
                   3036:     errorKan1("%s\n","Krest(ob): ob must be an array or a list.");
                   3037:   }
                   3038: }
                   3039: struct object Kjoin(struct object ob1, struct object ob2) {
1.43    ! takayama 3040:   struct object rob = OINIT;
1.31      takayama 3041:   int n1,n2,i;
                   3042:   if ((ob1.tag == Sarray) &&  (ob2.tag == Sarray)) {
                   3043:     n1 = getoaSize(ob1); n2 = getoaSize(ob2);
                   3044:     rob = newObjectArray(n1+n2);
                   3045:     for (i=0; i<n1; i++) {
                   3046:       putoa(rob,i,getoa(ob1,i));
                   3047:     }
                   3048:     for (i=n1; i<n1+n2; i++) {
                   3049:       putoa(rob,i,getoa(ob2,i-n1));
                   3050:     }
                   3051:     return rob;
1.32      takayama 3052:   }else if ((ob1.tag == Slist) || (ob1.tag == Snull)) {
                   3053:        if ((ob2.tag == Slist) || (ob2.tag == Snull)) {
                   3054:          return KvJoin(ob1,ob2);
                   3055:        }else{
                   3056:          errorKan1("%s\n","Kjoin: both argument must be a list.");
                   3057:        }
1.31      takayama 3058:   }else{
                   3059:     errorKan1("%s\n","Kjoin: arguments must be arrays.");
                   3060:   }
                   3061: }
1.1       maekawa  3062:
1.33      takayama 3063: struct object Kget(struct object ob1, struct object ob2) {
1.43    ! takayama 3064:   struct object rob = OINIT;
        !          3065:   struct object tob = OINIT;
1.33      takayama 3066:   int i,j,size,n;
                   3067:   if (ob2.tag == Sinteger) {
                   3068:     i =ob2.lc.ival;
                   3069:   }else if (ob2.tag == SuniversalNumber) {
                   3070:     i = KopInteger(KdataConversion(ob2,"integer"));
                   3071:   }else if (ob2.tag == Sarray) {
                   3072:     n = getoaSize(ob2);
                   3073:     if (n == 0) return ob1;
                   3074:     rob = ob1;
                   3075:     for (i=0; i<n; i++) {
                   3076:       rob=Kget(rob,getoa(ob2,i));
                   3077:     }
                   3078:     return rob;
                   3079:   }
                   3080:   if (ob1.tag == Sarray) {
                   3081:     size = getoaSize(ob1);
                   3082:     if ((0 <= i) && (i<size)) {
                   3083:       return(getoa(ob1,i));
                   3084:     }else{
                   3085:       errorKan1("%s\n","Kget: Index is out of bound. (get)\n");
                   3086:     }
                   3087:   }else if (ob1.tag == Slist) {
                   3088:     rob = NullObject;
                   3089:     if (i < 0) errorKan1("%s\n","Kget: Index is negative. (get)");
                   3090:     for (j=0; j<i; j++) {
                   3091:       rob = Kcdr(ob1);
                   3092:       if ((ob1.tag == Snull) && (rob.tag == Snull)) {
                   3093:         errorKan1("%s\n","Kget: Index is out of bound. (get) cdr of null list.\n");
                   3094:       }
                   3095:       ob1 = rob;
                   3096:     }
                   3097:     return Kcar(ob1);
1.38      takayama 3098:   } else if (ob1.tag == SbyteArray) {
                   3099:     size = getByteArraySize(ob1);
                   3100:     if ((0 <= i) && (i<size)) {
                   3101:       return(KpoInteger(KopByteArray(ob1)[i]));
                   3102:     }else{
                   3103:       errorKan1("%s\n","Kget: Index is out of bound. (get)\n");
                   3104:     }
                   3105:   } else if (ob1.tag == Sdollar) {
                   3106:     unsigned char *sss;
                   3107:     sss = (unsigned char *) KopString(ob1);
                   3108:     size = strlen(sss);
                   3109:     if ((0 <= i) && (i<size)) {
                   3110:       return(KpoInteger(sss[i]));
                   3111:     }else{
                   3112:       errorKan1("%s\n","Kget: Index is out of bound. (get)\n");
                   3113:     }
                   3114:
1.33      takayama 3115:   }else errorKan1("%s\n","Kget: argument must be an array or a list.");
1.38      takayama 3116: }
                   3117:
                   3118: /* Constructor of byteArray */
                   3119: struct object newByteArray(int size,struct object obj) {
                   3120:   unsigned char *ba;
                   3121:   unsigned char *ba2;
1.43    ! takayama 3122:   struct object rob = OINIT;
        !          3123:   struct object tob = OINIT;
1.38      takayama 3124:   int i,n;
                   3125:   ba = NULL;
1.39      takayama 3126:   if (size > 0) {
                   3127:     ba = (unsigned char *) sGC_malloc(size);
                   3128:     if (ba == NULL) errorKan1("%s\n","No more memory.");
                   3129:   }
1.38      takayama 3130:   rob.tag = SbyteArray; rob.lc.bytes = ba; rob.rc.ival = size;
                   3131:   if (obj.tag == SbyteArray) {
                   3132:     n = getByteArraySize(obj);
                   3133:     ba2 = KopByteArray(obj);
1.39      takayama 3134:     for (i=0; i<(n<size?n:size); i++) {
1.38      takayama 3135:       ba[i] = ba2[i];
                   3136:     }
                   3137:     for (i=n; i<size; i++) ba[i] = 0;
                   3138:     return rob;
                   3139:   }else if (obj.tag == Sarray) {
                   3140:     n = getoaSize(obj);
                   3141:     for (i=0; i<n; i++) {
                   3142:       tob = getoa(obj,i);
                   3143:       tob = Kto_int32(tob);
                   3144:       if (tob.tag != Sinteger) errorKan1("%s\n","newByteArray: array is not an array of integer or universalNumber.");
                   3145:       ba[i] = (unsigned char) KopInteger(tob);
                   3146:     }
                   3147:     for (i=n; i<size; i++) ba[i] = 0;
                   3148:     return rob;
                   3149:   }else{
                   3150:     for (i=0; i<size; i++) ba[i] = 0;
                   3151:     return rob;
                   3152:   }
1.40      takayama 3153: }
                   3154: struct object newByteArrayFromStr(char *s,int size) {
                   3155:   unsigned char *ba;
1.43    ! takayama 3156:   struct object rob = OINIT;
1.40      takayama 3157:   int i;
                   3158:   ba = NULL;
                   3159:   if (size > 0) {
                   3160:     ba = (unsigned char *) sGC_malloc(size);
                   3161:     if (ba == NULL) errorKan1("%s\n","No more memory.");
                   3162:   }
                   3163:   rob.tag = SbyteArray; rob.lc.bytes = ba; rob.rc.ival = size;
                   3164:   for (i=0; i<size; i++) {
                   3165:        ba[i] = (char) s[i];
                   3166:   }
                   3167:   return(rob);
1.38      takayama 3168: }
1.42      takayama 3169:
1.38      takayama 3170: struct object byteArrayToArray(struct object obj) {
                   3171:   int n,i; unsigned char *ba;
1.43    ! takayama 3172:   struct object rob = OINIT;
1.38      takayama 3173:   if (obj.tag != SbyteArray) errorKan1("%s\n","byteArrayToArray: argument is not an byteArray.");
                   3174:   n = getByteArraySize(obj);
                   3175:   rob = newObjectArray(n);
                   3176:   ba = KopByteArray(obj);
                   3177:   for (i=0; i<n; i++) putoa(rob,i,KpoInteger((int) ba[i]));
                   3178:   return rob;
1.33      takayama 3179: }
1.1       maekawa  3180:
1.42      takayama 3181: struct object KgetAttributeList(struct object ob){
1.43    ! takayama 3182:   struct object rob = OINIT;
1.42      takayama 3183:   if (ob.attr != NULL) rob = *(ob.attr);
                   3184:   else rob = NullObject;
                   3185:   return rob;
                   3186: }
                   3187: struct object  KputAttributeList(struct object ob,struct object attr) {
                   3188:   ob.attr = newObject();
                   3189:   *(ob.attr) = attr;
                   3190:   return ob;
                   3191: }
                   3192: struct object KgetAttribute(struct object ob,struct object key) {
1.43    ! takayama 3193:   struct object rob = OINIT;
        !          3194:   struct object alist = OINIT;
1.42      takayama 3195:   int n,i;
1.43    ! takayama 3196:   struct object tob = OINIT;
1.42      takayama 3197:   char *s;
                   3198:   rob = NullObject;
                   3199:   if (ob.attr == NULL) return rob;
                   3200:   alist = *(ob.attr);
                   3201:   if (alist.tag != Sarray) return rob;
                   3202:   if (key.tag != Sdollar) return rob;
                   3203:   s = KopString(key);
                   3204:   n = getoaSize(alist);
                   3205:   for (i = 0; i < n; i += 2) {
                   3206:     tob = getoa(alist,i);
                   3207:     if (tob.tag == Sdollar) {
                   3208:       if (strcmp(KopString(tob),s) == 0) {
                   3209:         if (i+1 < n) rob = getoa(alist,i+1);
                   3210:         return rob;
                   3211:       }
                   3212:     }
                   3213:   }
                   3214:   return rob;
                   3215: }
                   3216: /*  ob (key) (value) putAttribute /ob set. They are not destructive. */
                   3217: struct object KputAttribute(struct object ob,struct object key,struct object value) {
1.43    ! takayama 3218:   struct object rob = OINIT;
        !          3219:   struct object alist = OINIT;
1.42      takayama 3220:   int n,i;
                   3221:   char *s = "";
1.43    ! takayama 3222:   struct object tob = OINIT;
1.42      takayama 3223:   rob = ob;
                   3224:   if (ob.attr == NULL) {
                   3225:     rob.attr = newObject();
                   3226:     *(rob.attr) = newObjectArray(2);
                   3227:     putoa((*(rob.attr)),0,key);
                   3228:     putoa((*(rob.attr)),1,value);
                   3229:     return rob;
                   3230:   }
                   3231:   alist = *(ob.attr);
                   3232:   if (alist.tag != Sarray) return rob;
                   3233:   if (key.tag != Sdollar) {
                   3234:     s = KopString(key);
                   3235:   }
                   3236:   n = getoaSize(alist);
                   3237:   for (i = 0; i < n; i += 2) {
                   3238:     tob = getoa(alist,i);
                   3239:     if (tob.tag == Sdollar) {
                   3240:       if (strcmp(KopString(tob),s) == 0) {
                   3241:         if (i+1 < n) putoa(alist,i+1,value);
                   3242:         return rob;
                   3243:       }
                   3244:     }
                   3245:   }
                   3246:
                   3247:   rob.attr = newObject();
                   3248:   *(rob.attr) = newObjectArray(n+2);
                   3249:   for (i=0; i<n; i++) {
                   3250:     putoa((*(rob.attr)),i,getoa((*(ob.attr)),i));
                   3251:   }
                   3252:   putoa((*(rob.attr)),n,key);
                   3253:   putoa((*(rob.attr)),n+1,value);
                   3254:   return rob;
                   3255: }
                   3256:
1.1       maekawa  3257: /******************************************************************
1.42      takayama 3258:      Error handler
1.1       maekawa  3259: ******************************************************************/
                   3260:
                   3261: errorKan1(str,message)
1.7       takayama 3262:      char *str;
                   3263:      char *message;
1.1       maekawa  3264: {
                   3265:   extern char *GotoLabel;
                   3266:   extern int GotoP;
                   3267:   extern int ErrorMessageMode;
1.37      takayama 3268:   extern int RestrictedMode, RestrictedMode_saved;
1.1       maekawa  3269:   char tmpc[1024];
1.37      takayama 3270:   RestrictedMode = RestrictedMode_saved;
1.10      takayama 3271:   cancelAlarm();
1.1       maekawa  3272:   if (ErrorMessageMode == 1 || ErrorMessageMode == 2) {
                   3273:     sprintf(tmpc,"\nERROR(kanExport[0|1].c): ");
                   3274:     if (strlen(message) < 900) {
                   3275:       strcat(tmpc,message);
                   3276:     }
                   3277:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   3278:   }
                   3279:   if (ErrorMessageMode != 1) {
                   3280:     fprintf(stderr,"\nERROR(kanExport[0|1].c): ");
                   3281:     fprintf(stderr,str,message);
1.30      takayama 3282:     (void) traceShowStack(); traceClearStack();
1.1       maekawa  3283:   }
                   3284:   /* fprintf(stderr,"Hello "); */
                   3285:   if (GotoP) {
                   3286:     /* fprintf(stderr,"Hello. GOTO "); */
                   3287:     fprintf(Fstack,"The interpreter was looking for the label <<%s>>. It is also aborted.\n",GotoLabel);
                   3288:     GotoP = 0;
                   3289:   }
                   3290:   stdOperandStack(); contextControl(CCRESTORE);
                   3291:   /* fprintf(stderr,"Now. Long jump!\n"); */
1.8       takayama 3292: #if defined(__CYGWIN__)
                   3293:   siglongjmp(EnvOfStackMachine,1);
                   3294: #else
1.1       maekawa  3295:   longjmp(EnvOfStackMachine,1);
1.8       takayama 3296: #endif
1.1       maekawa  3297: }
1.22      takayama 3298:
1.1       maekawa  3299:
                   3300: warningKan(str)
1.7       takayama 3301:      char *str;
1.1       maekawa  3302: {
                   3303:   extern int WarningMessageMode;
                   3304:   extern int Strict;
                   3305:   char tmpc[1024];
                   3306:   if (WarningMessageMode == 1 || WarningMessageMode == 2) {
                   3307:     sprintf(tmpc,"\nWARNING(kanExport[0|1].c): ");
                   3308:     if (strlen(str) < 900) {
                   3309:       strcat(tmpc,str);
                   3310:     }
                   3311:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   3312:   }
                   3313:   if (WarningMessageMode != 1) {
                   3314:     fprintf(stderr,"\nWARNING(kanExport[0|1].c): ");
                   3315:     fprintf(stderr,str);
                   3316:     fprintf(stderr,"\n");
                   3317:   }
                   3318:   /* if (Strict) errorKan1("%s\n"," "); */
                   3319:   if (Strict) errorKan1("%s\n",str);
1.4       takayama 3320:   return(0);
                   3321: }
                   3322:
                   3323: warningKanNoStrictMode(str)
1.7       takayama 3324:      char *str;
1.4       takayama 3325: {
                   3326:   extern int Strict;
                   3327:   int t;
                   3328:   t = Strict;
                   3329:   Strict = 0;
                   3330:   warningKan(str);
                   3331:   Strict = t;
1.1       maekawa  3332:   return(0);
                   3333: }
                   3334:
                   3335:
                   3336:
                   3337:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>