[BACK]Return to kanExport0.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport0.c, Revision 1.45

1.45    ! ohara       1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport0.c,v 1.44 2005/06/16 06:21:21 takayama Exp $  */
1.1       maekawa     2: #include <stdio.h>
1.45    ! ohara       3: #include <stdlib.h>
        !             4: #include <string.h>
1.1       maekawa     5: #include "datatype.h"
                      6: #include "stackm.h"
                      7: #include "extern.h"
                      8: #include "extern2.h"
                      9: #include "lookup.h"
                     10: #include "matrix.h"
                     11: #include "gradedset.h"
                     12: #include "kclass.h"
                     13:
                     14: #define universalToPoly(un,rp) (isZero(un)?ZERO:coeffToPoly(un,rp))
                     15:
                     16: static void checkDuplicateName(char *xvars[],char *dvars[],int n);
                     17:
                     18: static void yet() { fprintf(stderr,"Not implemented."); }
                     19:
                     20: int SerialCurrent = -1;  /* Current Serial number of the recieved packet as server. */
                     21:
                     22: int ReverseOutputOrder = 1;
                     23: int WarningNoVectorVariable = 1;
1.19      takayama   24: extern int QuoteMode;
1.1       maekawa    25:
                     26: /** :arithmetic **/
                     27: struct object KooAdd(ob1,ob2)
1.7       takayama   28:      struct object ob1,ob2;
1.1       maekawa    29: {
                     30:   extern struct ring *CurrentRingp;
                     31:   struct object rob = NullObject;
                     32:   POLY r;
                     33:   int s,i;
                     34:   objectp f1,f2,g1,g2;
1.43      takayama   35:   struct object nn = OINIT;
                     36:   struct object dd = OINIT;
1.1       maekawa    37:
                     38:   switch (Lookup[ob1.tag][ob2.tag]) {
                     39:   case SintegerSinteger:
                     40:     return(KpoInteger(ob1.lc.ival + ob2.lc.ival));
                     41:     break;
                     42:   case SpolySpoly:
                     43:     r = ppAdd(ob1.lc.poly,ob2.lc.poly);
                     44:     rob.tag = Spoly; rob.lc.poly = r;
                     45:     return(rob);
                     46:     break;
                     47:   case SarraySarray:
                     48:     s = getoaSize(ob1);
                     49:     if (s != getoaSize(ob2)) {
                     50:       errorKan1("%s\n","Two arrays must have a same size.");
                     51:     }
                     52:     rob = newObjectArray(s);
                     53:     for (i=0; i<s; i++) {
                     54:       putoa(rob,i,KooAdd(getoa(ob1,i),getoa(ob2,i)));
                     55:     }
                     56:     return(rob);
                     57:     break;
                     58:   case SuniversalNumberSuniversalNumber:
                     59:     rob.tag = SuniversalNumber;
                     60:     rob.lc.universalNumber = newUniversalNumber(0);
                     61:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                     62:     return(rob);
                     63:     break;
                     64:   case SuniversalNumberSpoly:
                     65:     rob.tag = Spoly;
                     66:     r = ob2.lc.poly;
                     67:     if (r ISZERO) {
                     68:       /*warningKan("KooAdd(universalNumber,0 polynomial) cannot determine the ring for the result. Assume the current ring.");
                     69:         rob.lc.poly = universalToPoly(ob1.lc.universalNumber,CurrentRingp);*/
                     70:       rob = ob1;
                     71:       return(rob); /* returns universal number. */
                     72:     }
                     73:     rob.lc.poly = ppAdd(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                     74:     return(rob);
                     75:     break;
                     76:   case SpolySuniversalNumber:
                     77:     return(KooAdd(ob2,ob1));
                     78:     break;
                     79:   case SuniversalNumberSinteger:
                     80:     rob.tag = SuniversalNumber;
                     81:     rob.lc.universalNumber = newUniversalNumber(0);
                     82:     nn.tag = SuniversalNumber;
                     83:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                     84:     Cadd(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                     85:     return(rob);
                     86:     break;
                     87:   case SintegerSuniversalNumber:
                     88:     rob.tag = SuniversalNumber;
                     89:     rob.lc.universalNumber = newUniversalNumber(0);
                     90:     nn.tag = SuniversalNumber;
                     91:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                     92:     Cadd(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                     93:     return(rob);
                     94:     break;
                     95:
                     96:   case SrationalFunctionSrationalFunction:
                     97:     f1 = Knumerator(ob1);
                     98:     f2 = Kdenominator(ob1);
                     99:     g1 = Knumerator(ob2);
                    100:     g2 = Kdenominator(ob2);
                    101:     nn = KooAdd(KooMult(*g2,*f1),KooMult(*f2,*g1));
                    102:     dd = KooMult(*f2,*g2);
                    103:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    104:     KisInvalidRational(&rob);
                    105:     return(rob);
                    106:     break;
                    107:   case SpolySrationalFunction:  /* f1 + g1/g2 = (g2 f1 + g1)/g2 */
                    108:   case SuniversalNumberSrationalFunction:
                    109:     g1 = Knumerator(ob2);
                    110:     g2 = Kdenominator(ob2);
                    111:     nn = KooAdd(KooMult(*g2,ob1),*g1);
                    112:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    113:     KisInvalidRational(&rob);
                    114:     return(rob);
                    115:     break;
                    116:   case SrationalFunctionSpoly:
                    117:   case SrationalFunctionSuniversalNumber:
                    118:     return(KooAdd(ob2,ob1));
                    119:     break;
                    120:   case SdoubleSdouble:
                    121:     return(KpoDouble( KopDouble(ob1) + KopDouble(ob2) ));
                    122:     break;
                    123:   case SdoubleSinteger:
                    124:   case SdoubleSuniversalNumber:
                    125:   case SdoubleSrationalFunction:
                    126:     return(KpoDouble( KopDouble(ob1) + toDouble0(ob2) ) );
                    127:     break;
                    128:   case SintegerSdouble:
                    129:   case SuniversalNumberSdouble:
                    130:   case SrationalFunctionSdouble:
                    131:     return(KpoDouble( toDouble0(ob1) + KopDouble(ob2) ) );
                    132:     break;
                    133:   case SclassSclass:
                    134:   case SclassSinteger:
                    135:   case SclassSpoly:
                    136:   case SclassSuniversalNumber:
                    137:   case SclassSrationalFunction:
                    138:   case SclassSdouble:
                    139:   case SpolySclass:
                    140:   case SintegerSclass:
                    141:   case SuniversalNumberSclass:
                    142:   case SrationalFunctionSclass:
                    143:   case SdoubleSclass:
                    144:     return(Kclass_ooAdd(ob1,ob2));
                    145:     break;
                    146:
                    147:
                    148:   default:
1.19      takayama  149:     if (QuoteMode) {
1.22      takayama  150:       rob = addTree(ob1,ob2);
1.19      takayama  151:     }else{
                    152:       warningKan("KooAdd() has not supported yet these objects.\n");
                    153:     }
1.1       maekawa   154:     break;
                    155:   }
                    156:   return(rob);
                    157: }
                    158:
                    159: struct object KooSub(ob1,ob2)
1.7       takayama  160:      struct object ob1,ob2;
1.1       maekawa   161: {
                    162:   struct object rob = NullObject;
                    163:   POLY r;
                    164:   int s,i;
                    165:   objectp f1,f2,g1,g2;
                    166:   extern struct coeff *UniversalZero;
1.43      takayama  167:   struct object nn = OINIT;
                    168:   struct object dd = OINIT;
1.1       maekawa   169:
                    170:   switch (Lookup[ob1.tag][ob2.tag]) {
                    171:   case SintegerSinteger:
                    172:     return(KpoInteger(ob1.lc.ival - ob2.lc.ival));
                    173:     break;
                    174:   case SpolySpoly:
                    175:     r = ppSub(ob1.lc.poly,ob2.lc.poly);
                    176:     rob.tag = Spoly; rob.lc.poly = r;
                    177:     return(rob);
                    178:     break;
                    179:   case SarraySarray:
                    180:     s = getoaSize(ob1);
                    181:     if (s != getoaSize(ob2)) {
                    182:       errorKan1("%s\n","Two arrays must have a same size.");
                    183:     }
                    184:     rob = newObjectArray(s);
                    185:     for (i=0; i<s; i++) {
                    186:       putoa(rob,i,KooSub(getoa(ob1,i),getoa(ob2,i)));
                    187:     }
                    188:     return(rob);
                    189:     break;
                    190:   case SuniversalNumberSuniversalNumber:
                    191:     rob.tag = SuniversalNumber;
                    192:     rob.lc.universalNumber = newUniversalNumber(0);
                    193:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    194:     return(rob);
                    195:     break;
                    196:
                    197:   case SuniversalNumberSpoly:
                    198:     rob.tag = Spoly;
                    199:     r = ob2.lc.poly;
                    200:     if (r ISZERO) {
                    201:       rob = ob1;
                    202:       return(rob); /* returns universal number. */
                    203:     }
                    204:     rob.lc.poly = ppSub(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    205:     return(rob);
                    206:     break;
                    207:   case SpolySuniversalNumber:
                    208:     rob.tag = Spoly;
                    209:     r = ob1.lc.poly;
                    210:     if (r ISZERO) {
                    211:       rob.tag = SuniversalNumber;
                    212:       rob.lc.universalNumber = newUniversalNumber(0);
                    213:       Csub(rob.lc.universalNumber,UniversalZero,ob2.lc.universalNumber);
                    214:       return(rob); /* returns universal number. */
                    215:     }
                    216:     rob.lc.poly = ppSub(r,universalToPoly(ob2.lc.universalNumber,r->m->ringp));
                    217:     return(rob);
                    218:     break;
                    219:
                    220:   case SuniversalNumberSinteger:
                    221:     rob.tag = SuniversalNumber;
                    222:     rob.lc.universalNumber = newUniversalNumber(0);
                    223:     nn.tag = SuniversalNumber;
                    224:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    225:     Csub(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    226:     return(rob);
                    227:     break;
                    228:   case SintegerSuniversalNumber:
                    229:     rob.tag = SuniversalNumber;
                    230:     rob.lc.universalNumber = newUniversalNumber(0);
                    231:     nn.tag = SuniversalNumber;
                    232:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    233:     Csub(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    234:     return(rob);
                    235:     break;
                    236:
                    237:   case SrationalFunctionSrationalFunction:
                    238:     f1 = Knumerator(ob1);
                    239:     f2 = Kdenominator(ob1);
                    240:     g1 = Knumerator(ob2);
                    241:     g2 = Kdenominator(ob2);
                    242:     nn = KooSub(KooMult(*g2,*f1),KooMult(*f2,*g1));
                    243:     dd = KooMult(*f2,*g2);
                    244:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    245:     KisInvalidRational(&rob);
                    246:     return(rob);
                    247:     break;
                    248:   case SpolySrationalFunction:  /* f1 - g1/g2 = (g2 f1 - g1)/g2 */
                    249:   case SuniversalNumberSrationalFunction:
                    250:     g1 = Knumerator(ob2);
                    251:     g2 = Kdenominator(ob2);
                    252:     nn = KooSub(KooMult(*g2,ob1),*g1);
                    253:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    254:     KisInvalidRational(&rob);
                    255:     return(rob);
                    256:     break;
                    257:   case SrationalFunctionSpoly:
                    258:   case SrationalFunctionSuniversalNumber: /* f1/f2 - ob2= (f1 - f2*ob2)/f2 */
                    259:     f1 = Knumerator(ob1);
                    260:     f2 = Kdenominator(ob1);
                    261:     nn = KooSub(*f1,KooMult(*f2,ob2));
                    262:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    263:     KisInvalidRational(&rob);
                    264:     return(rob);
                    265:     break;
                    266:
                    267:   case SdoubleSdouble:
                    268:     return(KpoDouble( KopDouble(ob1) - KopDouble(ob2) ));
                    269:     break;
                    270:   case SdoubleSinteger:
                    271:   case SdoubleSuniversalNumber:
                    272:   case SdoubleSrationalFunction:
                    273:     return(KpoDouble( KopDouble(ob1) - toDouble0(ob2) ) );
                    274:     break;
                    275:   case SintegerSdouble:
                    276:   case SuniversalNumberSdouble:
                    277:   case SrationalFunctionSdouble:
                    278:     return(KpoDouble( toDouble0(ob1) - KopDouble(ob2) ) );
                    279:     break;
                    280:
                    281:   default:
1.20      takayama  282:     if (QuoteMode) {
                    283:       rob = minusTree(ob1,ob2);
                    284:     }else{
                    285:       warningKan("KooSub() has not supported yet these objects.\n");
                    286:     }
1.1       maekawa   287:     break;
                    288:   }
                    289:   return(rob);
                    290: }
                    291:
                    292: struct object KooMult(ob1,ob2)
1.7       takayama  293:      struct object ob1,ob2;
1.1       maekawa   294: {
                    295:   struct object rob = NullObject;
                    296:   POLY r;
                    297:   int i,s;
                    298:   objectp f1,f2,g1,g2;
1.43      takayama  299:   struct object dd = OINIT;
                    300:   struct object nn = OINIT;
1.1       maekawa   301:
                    302:
                    303:   switch (Lookup[ob1.tag][ob2.tag]) {
                    304:   case SintegerSinteger:
                    305:     return(KpoInteger(ob1.lc.ival * ob2.lc.ival));
                    306:     break;
                    307:   case SpolySpoly:
                    308:     r = ppMult(ob1.lc.poly,ob2.lc.poly);
                    309:     rob.tag = Spoly; rob.lc.poly = r;
                    310:     return(rob);
                    311:     break;
                    312:   case SarraySarray:
                    313:     return(KaoMult(ob1,ob2));
                    314:     break;
                    315:   case SpolySarray:
                    316:   case SuniversalNumberSarray:
                    317:   case SrationalFunctionSarray:
                    318:   case SintegerSarray:
                    319:     s = getoaSize(ob2);
                    320:     rob = newObjectArray(s);
                    321:     for (i=0; i<s; i++) {
                    322:       putoa(rob,i,KooMult(ob1,getoa(ob2,i)));
                    323:     }
                    324:     return(rob);
                    325:     break;
                    326:
                    327:   case SarraySpoly:
                    328:   case SarraySuniversalNumber:
                    329:   case SarraySrationalFunction:
                    330:   case SarraySinteger:
                    331:     s = getoaSize(ob1);
                    332:     rob = newObjectArray(s);
                    333:     for (i=0; i<s; i++) {
                    334:       putoa(rob,i,KooMult(getoa(ob1,i),ob2));
                    335:     }
                    336:     return(rob);
                    337:     break;
                    338:
                    339:
                    340:   case SuniversalNumberSuniversalNumber:
                    341:     rob.tag = SuniversalNumber;
                    342:     rob.lc.universalNumber = newUniversalNumber(0);
                    343:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,ob2.lc.universalNumber);
                    344:     return(rob);
                    345:     break;
                    346:
                    347:   case SuniversalNumberSpoly:
                    348:     r = ob2.lc.poly;
                    349:     if (r ISZERO) {
                    350:       rob.tag = SuniversalNumber;
                    351:       rob.lc.universalNumber = newUniversalNumber(0);
                    352:       return(rob); /* returns universal number. */
                    353:     }
                    354:     if (isZero(ob1.lc.universalNumber)) {
                    355:       rob.tag = Spoly;
                    356:       rob.lc.poly = ZERO;
                    357:       return(rob);
                    358:     }
                    359:     rob.tag = Spoly;
                    360:     rob.lc.poly = ppMult(universalToPoly(ob1.lc.universalNumber,r->m->ringp),r);
                    361:     return(rob);
                    362:     break;
                    363:   case SpolySuniversalNumber:
                    364:     return(KooMult(ob2,ob1));
                    365:     break;
                    366:
                    367:   case SuniversalNumberSinteger:
                    368:     rob.tag = SuniversalNumber;
                    369:     rob.lc.universalNumber = newUniversalNumber(0);
                    370:     nn.tag = SuniversalNumber;
                    371:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob2));
                    372:     Cmult(rob.lc.universalNumber,ob1.lc.universalNumber,nn.lc.universalNumber);
                    373:     return(rob);
                    374:     break;
                    375:   case SintegerSuniversalNumber:
                    376:     rob.tag = SuniversalNumber;
                    377:     rob.lc.universalNumber = newUniversalNumber(0);
                    378:     nn.tag = SuniversalNumber;
                    379:     nn.lc.universalNumber = newUniversalNumber(KopInteger(ob1));
                    380:     Cmult(rob.lc.universalNumber,nn.lc.universalNumber,ob2.lc.universalNumber);
                    381:     return(rob);
                    382:     break;
                    383:
                    384:   case SrationalFunctionSrationalFunction:
                    385:     f1 = Knumerator(ob1);
                    386:     f2 = Kdenominator(ob1);
                    387:     g1 = Knumerator(ob2);
                    388:     g2 = Kdenominator(ob2);
                    389:     nn = KooMult(*f1,*g1);
                    390:     dd = KooMult(*f2,*g2);
                    391:     rob = KnewRationalFunction0(copyObjectp(&nn),copyObjectp(&dd));
                    392:     KisInvalidRational(&rob);
                    393:     return(rob);
                    394:     break;
                    395:   case SpolySrationalFunction:  /* ob1 g1/g2 */
                    396:   case SuniversalNumberSrationalFunction:
                    397:     g1 = Knumerator(ob2);
                    398:     g2 = Kdenominator(ob2);
                    399:     nn = KooMult(ob1,*g1);
                    400:     rob = KnewRationalFunction0(copyObjectp(&nn),g2);
                    401:     KisInvalidRational(&rob);
                    402:     return(rob);
                    403:     break;
                    404:   case SrationalFunctionSpoly:
                    405:   case SrationalFunctionSuniversalNumber: /* f1*ob2/f2 */
                    406:     f1 = Knumerator(ob1);
                    407:     f2 = Kdenominator(ob1);
                    408:     nn = KooMult(*f1,ob2);
                    409:     rob = KnewRationalFunction0(copyObjectp(&nn),f2);
                    410:     KisInvalidRational(&rob);
                    411:     return(rob);
                    412:     break;
                    413:
                    414:   case SdoubleSdouble:
                    415:     return(KpoDouble( KopDouble(ob1) * KopDouble(ob2) ));
                    416:     break;
                    417:   case SdoubleSinteger:
                    418:   case SdoubleSuniversalNumber:
                    419:   case SdoubleSrationalFunction:
                    420:     return(KpoDouble( KopDouble(ob1) * toDouble0(ob2) ) );
                    421:     break;
                    422:   case SintegerSdouble:
                    423:   case SuniversalNumberSdouble:
                    424:   case SrationalFunctionSdouble:
                    425:     return(KpoDouble( toDouble0(ob1) * KopDouble(ob2) ) );
                    426:     break;
                    427:
                    428:   default:
1.20      takayama  429:     if (QuoteMode) {
1.22      takayama  430:       rob = timesTree(ob1,ob2);
1.20      takayama  431:     }else{
                    432:       warningKan("KooMult() has not supported yet these objects.\n");
                    433:     }
1.1       maekawa   434:     break;
                    435:   }
                    436:   return(rob);
                    437: }
                    438:
                    439:
                    440:
                    441: struct object KoNegate(obj)
1.7       takayama  442:      struct object obj;
1.1       maekawa   443: {
                    444:   struct object rob = NullObject;
                    445:   extern struct ring SmallRing;
1.43      takayama  446:   struct object tob = OINIT;
1.1       maekawa   447:   switch(obj.tag) {
                    448:   case Sinteger:
                    449:     rob = obj;
                    450:     rob.lc.ival = -rob.lc.ival;
                    451:     break;
                    452:   case Spoly:
                    453:     rob.tag = Spoly;
                    454:     rob.lc.poly = ppSub(ZERO,obj.lc.poly);
                    455:     break;
                    456:   case SuniversalNumber:
                    457:     rob.tag = SuniversalNumber;
                    458:     rob.lc.universalNumber = coeffNeg(obj.lc.universalNumber,&SmallRing);
                    459:     break;
                    460:   case SrationalFunction:
                    461:     rob.tag = SrationalFunction;
                    462:     tob = KoNegate(*(Knumerator(obj)));
                    463:     Knumerator(rob) = copyObjectp( &tob);
                    464:     Kdenominator(rob) = Kdenominator(obj);
                    465:     break;
                    466:
                    467:   case Sdouble:
                    468:     rob = KpoDouble( - toDouble0(obj) );
                    469:     break;
                    470:
                    471:   default:
1.20      takayama  472:     if (QuoteMode) {
                    473:       rob = unaryminusTree(obj);
                    474:     }else{
                    475:       warningKan("KoNegate() has not supported yet these objects.\n");
                    476:     }
1.1       maekawa   477:     break;
                    478:   }
                    479:   return(rob);
                    480: }
                    481:
                    482: struct object KoInverse(obj)
1.7       takayama  483:      struct object obj;
1.1       maekawa   484: {
                    485:   struct object rob = NullObject;
                    486:   extern struct coeff *UniversalOne;
                    487:   objectp onep;
1.43      takayama  488:   struct object tob = OINIT;
1.1       maekawa   489:   switch(obj.tag) {
                    490:   case Spoly:
                    491:     tob.tag = SuniversalNumber;
                    492:     tob.lc.universalNumber = UniversalOne;
                    493:     onep = copyObjectp(& tob);
                    494:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    495:     KisInvalidRational(&rob);
                    496:     break;
                    497:   case SuniversalNumber:
                    498:     tob.tag = SuniversalNumber;
                    499:     tob.lc.universalNumber = UniversalOne;
                    500:     onep = copyObjectp(& tob);
                    501:     rob = KnewRationalFunction0(onep,copyObjectp(&obj));
                    502:     KisInvalidRational(&rob);
                    503:     break;
                    504:   case SrationalFunction:
                    505:     rob = obj;
                    506:     Knumerator(rob) = Kdenominator(obj);
                    507:     Kdenominator(rob) = Knumerator(obj);
                    508:     KisInvalidRational(&rob);
                    509:     break;
                    510:   default:
                    511:     warningKan("KoInverse() has not supported yet these objects.\n");
                    512:     break;
                    513:   }
                    514:   return(rob);
                    515: }
                    516:
                    517:
                    518: static int isVector(ob)
1.7       takayama  519:      struct object ob;
1.1       maekawa   520: {
                    521:   int i,n;
                    522:   n = getoaSize(ob);
                    523:   for (i=0; i<n; i++) {
                    524:     if (getoa(ob,i).tag == Sarray) return(0);
                    525:   }
                    526:   return(1);
                    527: }
                    528:
                    529: static int isMatrix(ob,m,n)
1.7       takayama  530:      struct object ob;
                    531:      int m,n;
1.1       maekawa   532: {
                    533:   int i,j;
                    534:   for (i=0; i<m; i++) {
                    535:     if (getoa(ob,i).tag != Sarray) return(0);
                    536:     if (getoaSize(getoa(ob,i)) != n) return(0);
                    537:     for (j=0; j<n; j++) {
                    538:       if (getoa(getoa(ob,i),j).tag != Spoly) return(-1);
                    539:     }
                    540:   }
                    541:   return(1);
                    542: }
                    543:
                    544:
                    545: struct object KaoMult(aa,bb)
1.7       takayama  546:      struct object aa,bb;
                    547:      /* aa and bb is assumed to be array. */
1.1       maekawa   548: {
                    549:   int m,n,m2,n2;
                    550:   int i,j,k;
                    551:   POLY tmp;
                    552:   POLY fik;
                    553:   POLY gkj;
1.43      takayama  554:   struct object rob = OINIT;
1.1       maekawa   555:   int r1,r2;
                    556:   int rsize;
1.43      takayama  557:   struct object tob = OINIT;
                    558:   struct object ob1 = OINIT;
1.1       maekawa   559:   extern struct ring SmallRing;
                    560:
                    561:   m = getoaSize(aa); m2 = getoaSize(bb);
                    562:   if (m == 0 || m2 == 0) errorKan1("%s\n","KaoMult(). Invalid matrix size.");
                    563:
                    564:   /*  new code for vector x vector,... etc */
                    565:   r1 = isVector(aa); r2 = isVector(bb);
                    566:   if (r1 && r2 ) { /* vector X vector ---> scalar.*/
                    567:     rsize = getoaSize(aa);
                    568:     if (rsize != getoaSize(bb)) {
                    569:       errorKan1("%s\n","KaoMult(vector,vector). The size of the vectors must be the same.");
                    570:     }
                    571:     if (r1 != 0) {
                    572:       ob1 = getoa(aa,0);
                    573:       if (ob1.tag == Spoly) {
1.7       takayama  574:         rob.tag = Spoly; rob.lc.poly = ZERO;
1.1       maekawa   575:       }else if (ob1.tag == Sinteger) {
1.7       takayama  576:         rob.tag = Sinteger; rob.lc.ival = 0;
1.1       maekawa   577:       }else {
1.7       takayama  578:         rob.tag = SuniversalNumber;
                    579:         rob.lc.universalNumber = intToCoeff(0,&SmallRing);
1.1       maekawa   580:       }
                    581:     }else{
                    582:       rob.tag = Spoly; rob.lc.poly = ZERO;
                    583:     }
                    584:     for (i=0; i<rsize; i++) {
                    585:       rob = KooAdd(rob,KooMult(getoa(aa,i),getoa(bb,i)));
                    586:     }
                    587:     return(rob);
                    588:   } else if (r1 == 0 && r2 ) { /* matrix X vector ---> vector */
1.7       takayama  589:     /* (m n) (m2=n) */
1.1       maekawa   590:     n = getoaSize(getoa(aa,0));
                    591:     if (isMatrix(aa,m,n) == 0) {
                    592:       errorKan1("%s\n","KaoMult(matrix,vector). The left object is not matrix.");
                    593:     }else if (n != m2) {
                    594:       errorKan1("%s\n","KaoMult(). Invalid matrix and vector sizes for mult.");
                    595:     } else ;
                    596:     rob = newObjectArray(m);
                    597:     for (i=0; i<m; i++) {
                    598:       getoa(rob,i) = KooMult(getoa(aa,i),bb);
                    599:     }
                    600:     return(rob);
                    601:   }else if (r1 && r2 == 0) { /* vector X matrix ---> vector */
                    602:     tob = newObjectArray(1);
                    603:     getoa(tob,0) = aa;  /* [aa] * bb and strip [ ] */
                    604:     tob = KooMult(tob,bb);
                    605:     return(getoa(tob,0));
                    606:   } else ; /* continue: matrix X matrix case. */
                    607:   /* end of new code */
                    608:
                    609:   if (getoa(aa,0).tag != Sarray || getoa(bb,0).tag != Sarray) {
                    610:     errorKan1("%s\n","KaoMult(). Matrix must be given.");
                    611:   }
                    612:   n = getoaSize(getoa(aa,0));
                    613:   n2 = getoaSize(getoa(bb,0));
                    614:   if (n != m2) errorKan1("%s\n","KaoMult(). Invalid matrix size for mult. ((p,q)X(q,r)");
                    615:   r1 = isMatrix(aa,m,n); r2 = isMatrix(bb,m2,n2);
                    616:   if (r1 == -1 || r2 == -1) {
                    617:     /* Object multiplication. Elements are not polynomials. */
1.43      takayama  618:     struct object ofik = OINIT;
                    619:        struct object ogkj = OINIT;
                    620:        struct object otmp = OINIT;
1.1       maekawa   621:     rob = newObjectArray(m);
                    622:     for (i=0; i<m; i++) {
                    623:       getoa(rob,i) = newObjectArray(n2);
                    624:     }
                    625:     for (i=0; i<m; i++) {
                    626:       for (j=0; j<n2; j++) {
1.7       takayama  627:         ofik = getoa(getoa(aa,i),0);
                    628:         ogkj = getoa(getoa(bb,0),j);
                    629:         otmp = KooMult( ofik, ogkj);
                    630:         for (k=1; k<n; k++) {
                    631:           ofik = getoa(getoa(aa,i),k);
                    632:           ogkj = getoa(getoa(bb,k),j);
                    633:           otmp = KooAdd(otmp, KooMult( ofik, ogkj));
                    634:         }
                    635:         getoa(getoa(rob,i),j) = otmp;
1.1       maekawa   636:       }
                    637:     }
                    638:     return(rob);
                    639:     /*errorKan1("%s\n","KaoMult().Elements of the matrix must be polynomials.");*/
                    640:   }
                    641:   if (r1 == 0 || r2 == 0)
                    642:     errorKan1("%s\n","KaoMult(). Invalid matrix form for mult.");
                    643:
                    644:   rob = newObjectArray(m);
                    645:   for (i=0; i<m; i++) {
                    646:     getoa(rob,i) = newObjectArray(n2);
                    647:   }
                    648:   for (i=0; i<m; i++) {
                    649:     for (j=0; j<n2; j++) {
                    650:       tmp = ZERO;
                    651:       for (k=0; k<n; k++) {
1.7       takayama  652:         fik = KopPOLY(getoa(getoa(aa,i),k));
                    653:         gkj = KopPOLY(getoa(getoa(bb,k),j));
                    654:         tmp = ppAdd(tmp, ppMult( fik, gkj));
1.1       maekawa   655:       }
                    656:       getoa(getoa(rob,i),j) = KpoPOLY(tmp);
                    657:     }
                    658:   }
                    659:   return(rob);
                    660: }
                    661:
                    662: struct object KooDiv(ob1,ob2)
1.7       takayama  663:      struct object ob1,ob2;
1.1       maekawa   664: {
                    665:   struct object rob = NullObject;
                    666:   switch (Lookup[ob1.tag][ob2.tag]) {
                    667:   case SintegerSinteger:
                    668:     return(KpoInteger((ob1.lc.ival) / (ob2.lc.ival)));
                    669:     break;
                    670:   case SuniversalNumberSuniversalNumber:
                    671:     rob.tag = SuniversalNumber;
                    672:     rob.lc.universalNumber = newUniversalNumber(0);
                    673:     universalNumberDiv(rob.lc.universalNumber,ob1.lc.universalNumber,
1.7       takayama  674:                        ob2.lc.universalNumber);
1.1       maekawa   675:     return(rob);
                    676:     break;
                    677:
                    678:
                    679:   default:
1.20      takayama  680:     if (QuoteMode) {
                    681:       rob = divideTree(ob1,ob2);
                    682:     }else{
                    683:       warningKan("KooDiv() has not supported yet these objects.\n");
                    684:     }
1.1       maekawa   685:     break;
                    686:   }
                    687:   return(rob);
                    688: }
                    689:
                    690: /* :relation */
                    691: KooEqualQ(obj1,obj2)
1.7       takayama  692:      struct object obj1;
                    693:      struct object obj2;
1.1       maekawa   694: {
1.43      takayama  695:   struct object ob = OINIT;
1.1       maekawa   696:   int i;
1.35      takayama  697:   extern int Verbose;
1.1       maekawa   698:   if (obj1.tag != obj2.tag) {
                    699:     warningKan("KooEqualQ(ob1,ob2): the datatypes of ob1 and ob2  are not same. Returns false (0).\n");
1.35      takayama  700:        if (Verbose & 0x10) {
1.36      takayama  701:          fprintf(stderr,"obj1(tag:%d)=",obj1.tag);
1.35      takayama  702:          printObject(obj1,0,stderr);
1.36      takayama  703:          fprintf(stderr,", obj2(tag:%d)=",obj2.tag);
1.35      takayama  704:          printObject(obj2,0,stderr);
                    705:          fprintf(stderr,"\n"); fflush(stderr);
                    706:        }
1.1       maekawa   707:     return(0);
                    708:   }
                    709:   switch(obj1.tag) {
1.7       takayama  710:   case 0:
                    711:     return(1); /* case of NullObject */
                    712:     break;
                    713:   case Sinteger:
                    714:     if (obj1.lc.ival == obj2.lc.ival) return(1);
                    715:     else return(0);
                    716:     break;
                    717:   case Sstring:
                    718:   case Sdollar:
                    719:     if (strcmp(obj1.lc.str, obj2.lc.str)==0) return(1);
                    720:     else return(0);
                    721:     break;
                    722:   case Spoly:
                    723:     ob = KooSub(obj1,obj2);
                    724:     if (KopPOLY(ob) == ZERO) return(1);
                    725:     else return(0);
                    726:   case Sarray:
                    727:     if (getoaSize(obj1) != getoaSize(obj2)) return(0);
                    728:     for (i=0; i< getoaSize(obj1); i++) {
                    729:       if (KooEqualQ(getoa(obj1,i),getoa(obj2,i))) { ; }
                    730:       else { return(0); }
                    731:     }
                    732:     return(1);
                    733:   case Slist:
                    734:     if (KooEqualQ(*(obj1.lc.op),*(obj2.lc.op))) {
                    735:       if (isNullList(obj1.rc.op)) {
                    736:         if (isNullList(obj2.rc.op)) return(1);
                    737:         else return(0);
1.1       maekawa   738:       }else{
1.7       takayama  739:         if (isNullList(obj2.rc.op)) return(0);
                    740:         return(KooEqualQ(*(obj1.rc.op),*(obj2.rc.op)));
1.1       maekawa   741:       }
1.7       takayama  742:     }else{
                    743:       return(0);
1.1       maekawa   744:     }
1.7       takayama  745:     break;
                    746:   case SuniversalNumber:
                    747:     return(coeffEqual(obj1.lc.universalNumber,obj2.lc.universalNumber));
                    748:     break;
                    749:   case Sring:
                    750:     return(KopRingp(obj1) == KopRingp(obj2));
                    751:     break;
                    752:   case Sclass:
                    753:     return(KclassEqualQ(obj1,obj2));
                    754:     break;
                    755:   case Sdouble:
                    756:     return(KopDouble(obj1) == KopDouble(obj2));
                    757:     break;
                    758:   default:
                    759:     errorKan1("%s\n","KooEqualQ() has not supported these objects yet.");
                    760:     break;
                    761:   }
1.1       maekawa   762: }
                    763:
                    764:
                    765: struct object KoIsPositive(ob1)
1.7       takayama  766:      struct object ob1;
1.1       maekawa   767: {
                    768:   struct object rob = NullObject;
                    769:   switch (ob1.tag) {
                    770:   case Sinteger:
                    771:     return(KpoInteger(ob1.lc.ival > 0));
                    772:     break;
                    773:   default:
                    774:     warningKan("KoIsPositive() has not supported yet these objects.\n");
                    775:     break;
                    776:   }
                    777:   return(rob);
                    778: }
                    779:
                    780: struct object KooGreater(obj1,obj2)
1.7       takayama  781:      struct object obj1;
                    782:      struct object obj2;
1.1       maekawa   783: {
1.43      takayama  784:   struct object ob = OINIT;
1.1       maekawa   785:   int tt;
                    786:   if (obj1.tag != obj2.tag) {
                    787:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    788:   }
                    789:   switch(obj1.tag) {
1.7       takayama  790:   case 0:
                    791:     return(KpoInteger(1)); /* case of NullObject */
                    792:     break;
                    793:   case Sinteger:
                    794:     if (obj1.lc.ival > obj2.lc.ival) return(KpoInteger(1));
                    795:     else return(KpoInteger(0));
                    796:     break;
                    797:   case Sstring:
                    798:   case Sdollar:
                    799:     if (strcmp(obj1.lc.str, obj2.lc.str)>0) return(KpoInteger(1));
                    800:     else return(KpoInteger(0));
                    801:     break;
                    802:   case Spoly:
                    803:     if ((*mmLarger)(obj1.lc.poly,obj2.lc.poly) == 1) return(KpoInteger(1));
                    804:     else return(KpoInteger(0));
                    805:     break;
                    806:   case SuniversalNumber:
                    807:     tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    808:     if (tt > 0) return(KpoInteger(1));
                    809:     else return(KpoInteger(0));
                    810:     break;
                    811:   case Sdouble:
                    812:     if ( KopDouble(obj1) > KopDouble(obj2) ) return(KpoInteger(1));
                    813:     else return(KpoInteger(0));
                    814:     break;
1.26      takayama  815:   case Sarray:
                    816:   {
                    817:     int i,m1,m2;
1.43      takayama  818:     struct object rr = OINIT;
1.26      takayama  819:     m1 = getoaSize(obj1); m2 = getoaSize(obj2);
                    820:     for (i=0; i< (m1>m2?m2:m1); i++) {
                    821:       rr=KooGreater(getoa(obj1,i),getoa(obj2,i));
                    822:       if (KopInteger(rr) == 1) return rr;
                    823:       rr=KooGreater(getoa(obj2,i),getoa(obj1,i));
                    824:       if (KopInteger(rr) == 1) return KpoInteger(0);
                    825:     }
                    826:     if (m1 > m2) return KpoInteger(1);
                    827:     else return KpoInteger(0);
                    828:   }
                    829:   break;
1.7       takayama  830:   default:
                    831:     errorKan1("%s\n","KooGreater() has not supported these objects yet.");
                    832:     break;
                    833:   }
1.1       maekawa   834: }
                    835:
                    836: struct object KooLess(obj1,obj2)
1.7       takayama  837:      struct object obj1;
                    838:      struct object obj2;
1.1       maekawa   839: {
                    840:   struct object ob;
                    841:   int tt;
                    842:   if (obj1.tag != obj2.tag) {
                    843:     errorKan1("%s\n","You cannot compare different kinds of objects.");
                    844:   }
                    845:   switch(obj1.tag) {
1.7       takayama  846:   case 0:
                    847:     return(KpoInteger(1)); /* case of NullObject */
                    848:     break;
                    849:   case Sinteger:
                    850:     if (obj1.lc.ival < obj2.lc.ival) return(KpoInteger(1));
                    851:     else return(KpoInteger(0));
                    852:     break;
                    853:   case Sstring:
                    854:   case Sdollar:
                    855:     if (strcmp(obj1.lc.str, obj2.lc.str)<0) return(KpoInteger(1));
                    856:     else return(KpoInteger(0));
                    857:     break;
                    858:   case Spoly:
                    859:     if ((*mmLarger)(obj2.lc.poly,obj1.lc.poly) == 1) return(KpoInteger(1));
                    860:     else return(KpoInteger(0));
                    861:     break;
                    862:   case SuniversalNumber:
                    863:     tt = coeffGreater(obj1.lc.universalNumber,obj2.lc.universalNumber);
                    864:     if (tt < 0) return(KpoInteger(1));
                    865:     else return(KpoInteger(0));
                    866:     break;
                    867:   case Sdouble:
                    868:     if ( KopDouble(obj1) < KopDouble(obj2) ) return(KpoInteger(1));
                    869:     else return(KpoInteger(0));
                    870:     break;
1.26      takayama  871:   case Sarray:
                    872:   {
                    873:     int i,m1,m2;
1.43      takayama  874:     struct object rr = OINIT;
1.26      takayama  875:     m1 = getoaSize(obj1); m2 = getoaSize(obj2);
                    876:     for (i=0; i< (m1>m2?m2:m1); i++) {
                    877:       rr=KooLess(getoa(obj1,i),getoa(obj2,i));
                    878:       if (KopInteger(rr) == 1) return rr;
                    879:       rr=KooLess(getoa(obj2,i),getoa(obj1,i));
                    880:       if (KopInteger(rr) == 1) return KpoInteger(0);
                    881:     }
                    882:     if (m1 < m2) return KpoInteger(1);
                    883:     else return KpoInteger(0);
                    884:   }
                    885:   break;
1.7       takayama  886:   default:
                    887:     errorKan1("%s\n","KooLess() has not supported these objects yet.");
                    888:     break;
                    889:   }
1.1       maekawa   890: }
                    891:
                    892: /* :conversion */
                    893:
                    894: struct object KdataConversion(obj,key)
1.7       takayama  895:      struct object obj;
                    896:      char *key;
1.1       maekawa   897: {
                    898:   char tmps[128]; /* Assume that double is not more than 128 digits */
                    899:   char intstr[100]; /* Assume that int is not more than 100 digits */
1.43      takayama  900:   struct object rob = OINIT;
1.1       maekawa   901:   extern struct ring *CurrentRingp;
                    902:   extern struct ring SmallRing;
                    903:   int flag;
1.43      takayama  904:   struct object rob1 = OINIT;
                    905:   struct object rob2 = OINIT;
1.1       maekawa   906:   char *s;
                    907:   int i;
1.2       takayama  908:   double f;
                    909:   double f2;
1.1       maekawa   910:   /* reports the data type */
                    911:   if (key[0] == 't' || key[0] =='e') {
                    912:     if (strcmp(key,"type?")==0) {
                    913:       rob = KpoInteger(obj.tag);
                    914:       return(rob);
                    915:     }else if (strcmp(key,"type??")==0) {
                    916:       if (obj.tag != Sclass) {
1.7       takayama  917:         rob = KpoInteger(obj.tag);
1.1       maekawa   918:       }else {
1.7       takayama  919:         rob = KpoInteger(ectag(obj));
1.1       maekawa   920:       }
                    921:       return(rob);
                    922:     }else if (strcmp(key,"error")==0) {
                    923:       rob = KnewErrorPacketObj(obj);
                    924:       return(rob);
                    925:     }
                    926:   }
                    927:   switch(obj.tag) {
                    928:   case Snull:
                    929:     if (strcmp(key,"integer") == 0) {
                    930:       rob = KpoInteger(0);
                    931:       return(rob);
                    932:     }else if (strcmp(key,"universalNumber") == 0) {
                    933:       rob.tag = SuniversalNumber;
                    934:       rob.lc.universalNumber = intToCoeff(obj.lc.ival,&SmallRing);
                    935:       return(rob);
                    936:     }else if (strcmp(key,"poly") == 0) {
                    937:       rob = KpoPOLY(ZERO);
1.32      takayama  938:       return rob;
                    939:     }else if (strcmp(key,"array") == 0) {
                    940:       rob = newObjectArray(0);
                    941:       return rob;
1.1       maekawa   942:     }else{
                    943:       warningKan("Sorry. The data conversion from null to this data type has not supported yet.\n");
                    944:     }
                    945:     break;
                    946:   case Sinteger:
                    947:     if (strcmp(key,"string") == 0) { /* ascii code */
                    948:       rob.tag = Sdollar;
                    949:       rob.lc.str = (char *)sGC_malloc(2);
                    950:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    951:       (rob.lc.str)[0] = obj.lc.ival; (rob.lc.str)[1] = '\0';
                    952:       return(rob);
                    953:     }else if (strcmp(key,"integer")==0) {
                    954:       return(obj);
                    955:     }else if (strcmp(key,"poly") == 0) {
                    956:       rob.tag = Spoly;
                    957:       rob.lc.poly = cxx(obj.lc.ival,0,0,CurrentRingp);
                    958:       return(rob);
                    959:     }else if (strcmp(key,"dollar") == 0) {
                    960:       rob.tag = Sdollar;
                    961:       sprintf(intstr,"%d",obj.lc.ival);
                    962:       rob.lc.str = (char *)sGC_malloc(strlen(intstr)+2);
                    963:       if (rob.lc.str == (char *)NULL) errorKan1("%s","No more memory.\n");
                    964:       strcpy(rob.lc.str,intstr);
                    965:       return(rob);
                    966:     }else if (strcmp(key,"universalNumber")==0) {
1.25      takayama  967:       rob = KintToUniversalNumber(obj.lc.ival);
1.1       maekawa   968:       return(rob);
                    969:     }else if (strcmp(key,"double") == 0) {
                    970:       rob = KpoDouble((double) (obj.lc.ival));
                    971:       return(rob);
                    972:     }else if (strcmp(key,"null") == 0) {
                    973:       rob = NullObject;
                    974:       return(rob);
                    975:     }else{
                    976:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                    977:     }
                    978:     break;
                    979:   case Sdollar:
                    980:     if (strcmp(key,"dollar") == 0 || strcmp(key,"string")==0) {
                    981:       rob = obj;
                    982:       return(rob);
                    983:     }else if (strcmp(key,"literal") == 0) {
                    984:       rob.tag = Sstring;
                    985:       s = (char *) sGC_malloc(sizeof(char)*(strlen(obj.lc.str)+3));
                    986:       if (s == (char *) NULL)   {
1.7       takayama  987:         errorKan1("%s\n","No memory.");
1.1       maekawa   988:       }
                    989:       s[0] = '/';
                    990:       strcpy(&(s[1]),obj.lc.str);
                    991:       rob.lc.str = &(s[1]);
                    992:       /* set the hashing value. */
                    993:       rob2 = lookupLiteralString(s);
                    994:       rob.rc.op = rob2.lc.op;
                    995:       return(rob);
                    996:     }else if (strcmp(key,"poly")==0) {
                    997:       rob.tag = Spoly;
                    998:       rob.lc.poly = stringToPOLY(obj.lc.str,CurrentRingp);
                    999:       return(rob);
                   1000:     }else if (strcmp(key,"array")==0) {
                   1001:       rob = newObjectArray(strlen(obj.lc.str));
                   1002:       for (i=0; i<strlen(obj.lc.str); i++) {
1.7       takayama 1003:         putoa(rob,i,KpoInteger((obj.lc.str)[i]));
1.1       maekawa  1004:       }
                   1005:       return(rob);
                   1006:     }else if (strcmp(key,"universalNumber") == 0) {
                   1007:       rob.tag = SuniversalNumber;
                   1008:       rob.lc.universalNumber = stringToUniversalNumber(obj.lc.str,&flag);
                   1009:       if (flag == -1) errorKan1("KdataConversion(): %s",
1.7       takayama 1010:                                 "It's not number.\n");
1.2       takayama 1011:       return(rob);
                   1012:     }else if (strcmp(key,"double") == 0) {
                   1013:       /* Check the format.  2.3432 e2 is not allowed. It should be 2.3232e2.*/
                   1014:       flag = 0;
                   1015:       for (i=0; (obj.lc.str)[i] != '\0'; i++) {
1.7       takayama 1016:         if ((obj.lc.str)[i] > ' ' && flag == 0) flag=1;
                   1017:         else if ((obj.lc.str)[i] <= ' ' && flag == 1) flag = 2;
                   1018:         else if ((obj.lc.str)[i] > ' ' && flag == 2) flag=3;
1.2       takayama 1019:       }
                   1020:       if (flag == 3) errorKan1("KdataConversion(): %s","The data for the double contains blanck(s)");
                   1021:       /* Read the double. */
                   1022:       if (sscanf(obj.lc.str,"%lf",&f) <= 0) {
1.7       takayama 1023:         errorKan1("KdataConversion(): %s","It cannot be translated to double.");
1.2       takayama 1024:       }
                   1025:       rob = KpoDouble(f);
1.1       maekawa  1026:       return(rob);
                   1027:     }else if (strcmp(key,"null") == 0) {
                   1028:       rob = NullObject;
                   1029:       return(rob);
                   1030:     }else{
                   1031:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1032:     }
                   1033:     break;
                   1034:   case Sarray:
                   1035:     if (strcmp(key,"array") == 0) {
                   1036:       return(rob);
                   1037:     }else if (strcmp(key,"list") == 0) {
1.32      takayama 1038:       rob = KarrayToList(obj);
1.1       maekawa  1039:       return(rob);
                   1040:     }else if (strcmp(key,"arrayOfPOLY")==0) {
                   1041:       rob = KpoArrayOfPOLY(arrayToArrayOfPOLY(obj));
                   1042:       return(rob);
                   1043:     }else if (strcmp(key,"matrixOfPOLY")==0) {
                   1044:       rob = KpoMatrixOfPOLY(arrayToMatrixOfPOLY(obj));
                   1045:       return(rob);
                   1046:     }else if (strcmp(key,"gradedPolySet")==0) {
                   1047:       rob = KpoGradedPolySet(arrayToGradedPolySet(obj));
                   1048:       return(rob);
                   1049:     }else if (strcmp(key,"null") == 0) {
                   1050:       rob = NullObject;
                   1051:       return(rob);
1.38      takayama 1052:     }else if (strcmp(key,"byteArray") == 0) {
                   1053:       rob = newByteArray(getoaSize(obj),obj);
                   1054:       return(rob);
1.1       maekawa  1055:     }else {
1.23      takayama 1056:          { /* Automatically maps the elements. */
                   1057:                int n,i;
                   1058:                n = getoaSize(obj);
                   1059:                rob = newObjectArray(n);
                   1060:                for (i=0; i<n; i++) {
                   1061:                  putoa(rob,i,KdataConversion(getoa(obj,i),key));
                   1062:                }
                   1063:                return(rob);
                   1064:          }
1.1       maekawa  1065:     }
                   1066:     break;
                   1067:   case Spoly:
1.15      takayama 1068:     if ((strcmp(key,"poly")==0) || (strcmp(key,"numerator")==0)) {
1.5       takayama 1069:       rob = obj;
1.1       maekawa  1070:       return(rob);
                   1071:     }else if (strcmp(key,"integer")==0) {
                   1072:       if (obj.lc.poly == ZERO) return(KpoInteger(0));
                   1073:       else {
1.7       takayama 1074:         return(KpoInteger(coeffToInt(obj.lc.poly->coeffp)));
1.1       maekawa  1075:       }
                   1076:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1077:       rob.tag = Sdollar;
                   1078:       rob.lc.str = KPOLYToString(KopPOLY(obj));
                   1079:       return(rob);
                   1080:     }else if (strcmp(key,"array") == 0) {
                   1081:       return( POLYToArray(KopPOLY(obj)));
                   1082:     }else if (strcmp(key,"map")==0) {
                   1083:       return(KringMap(obj));
                   1084:     }else if (strcmp(key,"universalNumber")==0) {
                   1085:       if (obj.lc.poly == ZERO) {
1.7       takayama 1086:         rob.tag = SuniversalNumber;
                   1087:         rob.lc.universalNumber = newUniversalNumber(0);
1.1       maekawa  1088:       } else {
1.7       takayama 1089:         if (obj.lc.poly->coeffp->tag == MP_INTEGER) {
                   1090:           rob.tag = SuniversalNumber;
                   1091:           rob.lc.universalNumber = newUniversalNumber2(obj.lc.poly->coeffp->val.bigp);
                   1092:         }else {
                   1093:           rob = NullObject;
                   1094:           warningKan("Coefficient is not MP_INT.");
                   1095:         }
1.1       maekawa  1096:       }
                   1097:       return(rob);
                   1098:     }else if (strcmp(key,"ring")==0) {
                   1099:       if (obj.lc.poly ISZERO) {
1.7       takayama 1100:         warningKan("Zero polynomial does not have the ring structure field.\n");
1.1       maekawa  1101:       }else{
1.7       takayama 1102:         rob.tag = Sring;
                   1103:         rob.lc.ringp = (obj.lc.poly)->m->ringp;
                   1104:         return(rob);
1.1       maekawa  1105:       }
                   1106:     }else if (strcmp(key,"null") == 0) {
                   1107:       rob = NullObject;
                   1108:       return(rob);
                   1109:     }else{
                   1110:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1111:     }
                   1112:     break;
                   1113:   case SarrayOfPOLY:
                   1114:     if (strcmp(key,"array")==0) {
                   1115:       rob = arrayOfPOLYToArray(KopArrayOfPOLYp(obj));
                   1116:       return(rob);
                   1117:     }else{
                   1118:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1119:     }
                   1120:     break;
                   1121:   case SmatrixOfPOLY:
                   1122:     if (strcmp(key,"array")==0) {
                   1123:       rob = matrixOfPOLYToArray(KopMatrixOfPOLYp(obj));
                   1124:       return(rob);
                   1125:     }else if (strcmp(key,"null") == 0) {
                   1126:       rob = NullObject;
                   1127:       return(rob);
                   1128:     }else{
                   1129:       warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1130:     }
                   1131:     break;
                   1132:   case Slist:
                   1133:     if (strcmp(key,"array") == 0) {
1.32      takayama 1134:       rob = KlistToArray(obj);
1.1       maekawa  1135:       return(rob);
                   1136:     }
                   1137:     break;
                   1138:   case SuniversalNumber:
1.15      takayama 1139:     if ((strcmp(key,"universalNumber")==0) || (strcmp(key,"numerator")==0)) {
1.27      takayama 1140:       rob = obj;
1.1       maekawa  1141:       return(rob);
                   1142:     }else if (strcmp(key,"integer")==0) {
                   1143:       rob = KpoInteger(coeffToInt(obj.lc.universalNumber));
                   1144:       return(rob);
                   1145:     }else if (strcmp(key,"poly")==0) {
                   1146:       rob = KpoPOLY(universalToPoly(obj.lc.universalNumber,CurrentRingp));
                   1147:       return(rob);
                   1148:     }else if (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1149:       rob.tag = Sdollar;
                   1150:       rob.lc.str = coeffToString(obj.lc.universalNumber);
                   1151:       return(rob);
                   1152:     }else if (strcmp(key,"null") == 0) {
                   1153:       rob = NullObject;
                   1154:       return(rob);
                   1155:     }else if (strcmp(key,"double") == 0) {
                   1156:       rob = KpoDouble( toDouble0(obj) );
                   1157:       return(rob);
1.25      takayama 1158:     }else if (strcmp(key,"denominator") == 0) {
                   1159:       rob = KintToUniversalNumber(1);
                   1160:       return(rob);
1.1       maekawa  1161:     }else{
                   1162:       warningKan("Sorry. This type of data conversion of universalNumber has not supported yet.\n");
                   1163:     }
                   1164:     break;
                   1165:   case SrationalFunction:
                   1166:     if (strcmp(key,"rationalFunction")==0) {
                   1167:       return(rob);
                   1168:     } if (strcmp(key,"numerator")==0) {
                   1169:       rob = *(Knumerator(obj));
                   1170:       return(rob);
                   1171:     }else if  (strcmp(key,"denominator")==0) {
                   1172:       rob = *(Kdenominator(obj));
                   1173:       return(rob);
                   1174:     }else if  (strcmp(key,"string")==0 || strcmp(key,"dollar")==0) {
                   1175:       rob1 = KdataConversion(*(Knumerator(obj)),"string");
                   1176:       rob2 = KdataConversion(*(Kdenominator(obj)),"string");
                   1177:       s = sGC_malloc(sizeof(char)*( strlen(rob1.lc.str) + strlen(rob2.lc.str) + 10));
                   1178:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1179:       sprintf(s,"(%s)/(%s)",rob1.lc.str,rob2.lc.str);
                   1180:       rob.tag = Sdollar;
                   1181:       rob.lc.str = s;
                   1182:       return(rob);
                   1183:     }else if  (strcmp(key,"cancel")==0) {
                   1184:       warningKan("Sorry. Data conversion <<cancel>> of rationalFunction has not supported yet.\n");
                   1185:       return(obj);
                   1186:     }else if (strcmp(key,"null") == 0) {
                   1187:       rob = NullObject;
                   1188:       return(rob);
                   1189:     }else if (strcmp(key,"double") == 0) {
                   1190:       rob = KpoDouble( toDouble0(obj) );
                   1191:       return(rob);
                   1192:     }else{
                   1193:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1194:     }
                   1195:     break;
                   1196:   case Sdouble:
                   1197:     if (strcmp(key,"integer") == 0) {
                   1198:       rob = KpoInteger( (int) KopDouble(obj));
                   1199:       return(rob);
                   1200:     } else if (strcmp(key,"universalNumber") == 0) {
                   1201:       rob.tag = SuniversalNumber;
                   1202:       rob.lc.universalNumber = intToCoeff((int) KopDouble(obj),&SmallRing);
                   1203:       return(rob);
                   1204:     }else if ((strcmp(key,"string") == 0) || (strcmp(key,"dollar") == 0)) {
                   1205:       sprintf(tmps,"%f",KopDouble(obj));
                   1206:       s = sGC_malloc(strlen(tmps)+2);
                   1207:       if (s == (char *)NULL) errorKan1("%s\n","KdataConversion(): No memory");
                   1208:       strcpy(s,tmps);
                   1209:       rob.tag = Sdollar;
                   1210:       rob.lc.str = s;
                   1211:       return(rob);
                   1212:     }else if (strcmp(key,"double")==0) {
                   1213:       return(obj);
                   1214:     }else if (strcmp(key,"null") == 0) {
                   1215:       rob = NullObject;
                   1216:       return(rob);
                   1217:     }else {
                   1218:       warningKan("Sorry. This type of data conversion of rationalFunction has not supported yet.\n");
                   1219:     }
                   1220:     break;
                   1221:   case Sring:
                   1222:     if (strcmp(key,"orderMatrix")==0) {
                   1223:       rob = oGetOrderMatrix(KopRingp(obj));
                   1224:       return(rob);
1.22      takayama 1225:     }else if (strcmp(key,"oxRingStructure")==0) {
                   1226:       rob = oRingToOXringStructure(KopRingp(obj));
                   1227:       return(rob);
1.1       maekawa  1228:     }else{
                   1229:       warningKan("Sorryl This type of data conversion of ringp has not supported yet.\n");
                   1230:     }
                   1231:     break;
1.38      takayama 1232:   case SbyteArray:
                   1233:     if (strcmp(key,"array") == 0) {
                   1234:       rob = byteArrayToArray(obj);
                   1235:       return(rob);
                   1236:     } else {
                   1237:       warningKan("Sorryl This type of data conversion of ringp has not supported yet.\n");
                   1238:     }
                   1239:     break;
1.1       maekawa  1240:   default:
                   1241:     warningKan("Sorry. This type of data conversion has not supported yet.\n");
                   1242:   }
                   1243:   return(NullObject);
                   1244: }
1.28      takayama 1245:
1.29      takayama 1246: /* cf. macro to_int32 */
                   1247: struct object Kto_int32(struct object ob) {
1.28      takayama 1248:   int n,i;
1.43      takayama 1249:   struct object otmp = OINIT;
                   1250:   struct object rob = OINIT;
1.28      takayama 1251:   if (ob.tag == SuniversalNumber) return KdataConversion(ob,"integer");
                   1252:   if (ob.tag == Sarray) {
                   1253:        n = getoaSize(ob);
                   1254:        rob = newObjectArray(n);
                   1255:        for (i=0; i<n; i++) {
1.29      takayama 1256:          otmp = Kto_int32(getoa(ob,i));
1.28      takayama 1257:          putoa(rob,i,otmp);
                   1258:        }
                   1259:        return rob;
                   1260:   }
                   1261:   return ob;
                   1262: }
1.1       maekawa  1263: /* conversion functions between primitive data and objects.
                   1264:    If it's not time critical, it is recommended to use these functions */
                   1265: struct object KpoInteger(k)
1.7       takayama 1266:      int k;
1.1       maekawa  1267: {
1.43      takayama 1268:   struct object obj = OINIT;
1.1       maekawa  1269:   obj.tag = Sinteger;
                   1270:   obj.lc.ival = k; obj.rc.ival = 0;
                   1271:   return(obj);
                   1272: }
                   1273: struct object KpoString(s)
1.7       takayama 1274:      char *s;
1.1       maekawa  1275: {
1.43      takayama 1276:   struct object obj = OINIT;
1.1       maekawa  1277:   obj.tag = Sdollar;
                   1278:   obj.lc.str = s; obj.rc.ival = 0;
                   1279:   return(obj);
                   1280: }
                   1281: struct object KpoPOLY(f)
1.7       takayama 1282:      POLY f;
1.1       maekawa  1283: {
1.43      takayama 1284:   struct object obj = OINIT;
1.1       maekawa  1285:   obj.tag = Spoly;
                   1286:   obj.lc.poly = f; obj.rc.ival = 0;
                   1287:   return(obj);
                   1288: }
                   1289: struct object KpoArrayOfPOLY(ap)
1.7       takayama 1290:      struct arrayOfPOLY *ap ;
1.1       maekawa  1291: {
1.43      takayama 1292:   struct object obj = OINIT;
1.1       maekawa  1293:   obj.tag = SarrayOfPOLY;
                   1294:   obj.lc.arrayp = ap; obj.rc.ival = 0;
                   1295:   return(obj);
                   1296: }
                   1297:
                   1298: struct object KpoMatrixOfPOLY(mp)
1.7       takayama 1299:      struct matrixOfPOLY *mp ;
1.1       maekawa  1300: {
1.43      takayama 1301:   struct object obj = OINIT;
1.1       maekawa  1302:   obj.tag = SmatrixOfPOLY;
                   1303:   obj.lc.matrixp = mp; obj.rc.ival = 0;
                   1304:   return(obj);
                   1305: }
                   1306:
                   1307: struct object KpoRingp(ringp)
1.7       takayama 1308:      struct ring *ringp;
1.1       maekawa  1309: {
1.43      takayama 1310:   struct object obj = OINIT;
1.1       maekawa  1311:   obj.tag = Sring;
                   1312:   obj.lc.ringp = ringp;
                   1313:   return(obj);
                   1314: }
                   1315:
1.22      takayama 1316: struct object KpoUniversalNumber(u)
                   1317:      struct coeff *u;
                   1318: {
1.43      takayama 1319:   struct object obj = OINIT;
1.22      takayama 1320:   obj.tag = SuniversalNumber;
                   1321:   obj.lc.universalNumber = u;
                   1322:   return(obj);
                   1323: }
1.25      takayama 1324: struct object KintToUniversalNumber(n)
                   1325:         int n;
                   1326: {
1.43      takayama 1327:   struct object rob = OINIT;
1.25      takayama 1328:   extern struct ring SmallRing;
                   1329:   rob.tag = SuniversalNumber;
                   1330:   rob.lc.universalNumber = intToCoeff(n,&SmallRing);
                   1331:   return(rob);
                   1332: }
                   1333:
1.1       maekawa  1334: /*** conversion 2. Data conversions on arrays and matrices. ****/
                   1335: struct object arrayOfPOLYToArray(aa)
1.7       takayama 1336:      struct arrayOfPOLY *aa;
1.1       maekawa  1337: {
                   1338:   POLY *a;
                   1339:   int size;
1.43      takayama 1340:   struct object r = OINIT;
1.1       maekawa  1341:   int j;
1.43      takayama 1342:   struct object tmp = OINIT;
1.1       maekawa  1343:
                   1344:   size = aa->n; a = aa->array;
                   1345:   r = newObjectArray(size);
                   1346:   for (j=0; j<size; j++) {
                   1347:     tmp.tag = Spoly;
                   1348:     tmp.lc.poly= a[j];
                   1349:     putoa(r,j,tmp);
                   1350:   }
                   1351:   return( r );
                   1352: }
                   1353:
                   1354: struct object matrixOfPOLYToArray(pmat)
1.7       takayama 1355:      struct matrixOfPOLY *pmat;
1.1       maekawa  1356: {
1.43      takayama 1357:   struct object r = OINIT;
                   1358:   struct object tmp = OINIT;
1.1       maekawa  1359:   int i,j;
                   1360:   int m,n;
                   1361:   POLY *mat;
                   1362:   struct arrayOfPOLY ap;
                   1363:
                   1364:   m = pmat->m; n = pmat->n; mat = pmat->mat;
                   1365:   r = newObjectArray(m);
                   1366:   for (i=0; i<m; i++) {
                   1367:     ap.n = n; ap.array = &(mat[ind(i,0)]);
                   1368:     tmp = arrayOfPOLYToArray(&ap);
                   1369:     /* ind() is the macro defined in matrix.h. */
                   1370:     putoa(r,i,tmp);
                   1371:   }
                   1372:   return(r);
                   1373: }
                   1374:
                   1375: struct arrayOfPOLY *arrayToArrayOfPOLY(oa)
1.7       takayama 1376:      struct object oa;
1.1       maekawa  1377: {
                   1378:   POLY *a;
                   1379:   int size;
                   1380:   int i;
1.43      takayama 1381:   struct object tmp = OINIT;
1.1       maekawa  1382:   struct arrayOfPOLY *ap;
                   1383:
                   1384:   if (oa.tag != Sarray) errorKan1("KarrayToArrayOfPOLY(): %s",
1.7       takayama 1385:                                   "Argument is not array\n");
1.1       maekawa  1386:   size = getoaSize(oa);
                   1387:   a = (POLY *)sGC_malloc(sizeof(POLY)*size);
                   1388:   for (i=0; i<size; i++) {
                   1389:     tmp = getoa(oa,i);
                   1390:     if (tmp.tag != Spoly) errorKan1("KarrayToArrayOfPOLY():%s ",
1.7       takayama 1391:                                     "element must be polynomial.\n");
1.1       maekawa  1392:     a[i] = tmp.lc.poly;
                   1393:   }
                   1394:   ap = (struct arrayOfPOLY *)sGC_malloc(sizeof(struct arrayOfPOLY));
                   1395:   ap->n = size;
                   1396:   ap->array = a;
                   1397:   return(ap);
                   1398: }
                   1399:
                   1400: struct matrixOfPOLY *arrayToMatrixOfPOLY(oa)
1.7       takayama 1401:      struct object oa;
1.1       maekawa  1402: {
                   1403:   POLY *a;
                   1404:   int m;
                   1405:   int n;
                   1406:   int i,j;
                   1407:   struct matrixOfPOLY *ma;
                   1408:
1.43      takayama 1409:   struct object tmp = OINIT;
                   1410:   struct object tmp2 = OINIT;
1.1       maekawa  1411:   if (oa.tag != Sarray) errorKan1("KarrayToMatrixOfPOLY(): %s",
1.7       takayama 1412:                                   "Argument is not array\n");
1.1       maekawa  1413:   m = getoaSize(oa);
                   1414:   tmp = getoa(oa,0);
                   1415:   if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY():%s ",
1.7       takayama 1416:                                    "Argument is not array\n");
1.1       maekawa  1417:   n = getoaSize(tmp);
                   1418:   a = (POLY *)sGC_malloc(sizeof(POLY)*(m*n));
                   1419:   for (i=0; i<m; i++) {
                   1420:     tmp = getoa(oa,i);
                   1421:     if (tmp.tag != Sarray) errorKan1("arrayToMatrixOfPOLY(): %s",
1.7       takayama 1422:                                      "element must be array.\n");
1.1       maekawa  1423:     for (j=0; j<n; j++) {
                   1424:       tmp2 = getoa(tmp,j);
                   1425:       if (tmp2.tag != Spoly) errorKan1("arrayToMatrixOfPOLY(): %s",
1.7       takayama 1426:                                        "element must be a polynomial.\n");
1.1       maekawa  1427:       a[ind(i,j)] = tmp2.lc.poly;
                   1428:       /* we use the macro ind here.  Be careful of using m and n. */
                   1429:     }
                   1430:   }
                   1431:   ma = (struct matrixOfPOLY *)sGC_malloc(sizeof(struct matrixOfPOLY));
                   1432:   ma->m = m; ma->n = n;
                   1433:   ma->mat = a;
                   1434:   return(ma);
                   1435: }
                   1436:
                   1437: /* :misc */
                   1438:
                   1439: /* :ring    :kan */
                   1440: int objArrayToOrderMatrix(oA,order,n,oasize)
1.7       takayama 1441:      struct object oA;
                   1442:      int order[];
                   1443:      int n;
                   1444:      int oasize;
1.1       maekawa  1445: {
                   1446:   int size;
                   1447:   int k,j;
1.43      takayama 1448:   struct object tmpOa = OINIT;
                   1449:   struct object obj = OINIT;
1.1       maekawa  1450:   if (oA.tag != Sarray) {
                   1451:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1452:     return(-1);
                   1453:   }
                   1454:   size = getoaSize(oA);
                   1455:   if (size != oasize) {
                   1456:     warningKan("The row size of the array is wrong.");
                   1457:     return(-1);
                   1458:   }
                   1459:   for (k=0; k<size; k++) {
                   1460:     tmpOa = getoa(oA,k);
                   1461:     if (tmpOa.tag != Sarray) {
                   1462:       warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1463:       return(-1);
                   1464:     }
                   1465:     if (getoaSize(tmpOa) != 2*n) {
                   1466:       warningKan("The column size of the array is wrong.");
                   1467:       return(-1);
                   1468:     }
                   1469:     for (j=0; j<2*n; j++) {
                   1470:       obj = getoa(tmpOa,j);
                   1471:       order[k*2*n+j] = obj.lc.ival;
                   1472:     }
                   1473:   }
                   1474:   return(0);
                   1475: }
                   1476:
                   1477: int KsetOrderByObjArray(oA)
1.7       takayama 1478:      struct object oA;
1.1       maekawa  1479: {
                   1480:   int *order;
                   1481:   int n,c,l, oasize;
                   1482:   extern struct ring *CurrentRingp;
                   1483:   extern int AvoidTheSameRing;
                   1484:   /* n,c,l must be set in the CurrentRing */
                   1485:   if (AvoidTheSameRing) {
                   1486:     errorKan1("%s\n","KsetOrderByObjArray(): You cannot change the order matrix when AvoidTheSameRing == 1.");
                   1487:   }
                   1488:   n = CurrentRingp->n;
                   1489:   c = CurrentRingp->c;
                   1490:   l = CurrentRingp->l;
                   1491:   if (oA.tag != Sarray) {
                   1492:     warningKan("The argument should be of the form [ [...] [...] ... [...]].");
                   1493:     return(-1);
                   1494:   }
                   1495:   oasize = getoaSize(oA);
                   1496:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1497:   if (order == (int *)NULL) errorKan1("%s\n","KsetOrderByObjArray(): No memory.");
                   1498:   if (objArrayToOrderMatrix(oA,order,n,oasize) == -1) {
                   1499:     return(-1);
                   1500:   }
                   1501:   setOrderByMatrix(order,n,c,l,oasize); /* Set order to the current ring. */
                   1502:   return(0);
                   1503: }
                   1504:
                   1505: static int checkRelations(c,l,m,n,cc,ll,mm,nn)
1.7       takayama 1506:      int c,l,m,n,cc,ll,mm,nn;
1.1       maekawa  1507: {
                   1508:   if (!(1<=c && c<=l && l<=m && m<=n)) return(1);
                   1509:   if (!(cc<=ll && ll<=mm && mm<=nn && nn <= n)) return(1);
                   1510:   if (!(cc<c || ll < l || mm < m || nn < n)) {
                   1511:     if (WarningNoVectorVariable) {
1.4       takayama 1512:       warningKanNoStrictMode("Ring definition: there is no variable to represent vectors.\n");
1.1       maekawa  1513:     }
                   1514:   }
                   1515:   if (!(cc<=c && ll <= l && mm <= m && nn <= n)) return(1);
                   1516:   return(0);
                   1517: }
                   1518:
                   1519: struct object KgetOrderMatrixOfCurrentRing()
                   1520: {
                   1521:   extern struct ring *CurrentRingp;
                   1522:   return(oGetOrderMatrix(CurrentRingp));
                   1523: }
                   1524:
                   1525:
                   1526: int KsetUpRing(ob1,ob2,ob3,ob4,ob5)
1.7       takayama 1527:      struct object ob1,ob2,ob3,ob4,ob5;
                   1528:      /* ob1 = [x(0), ..., x(n-1)];
                   1529:         ob2 = [D(0), ..., D(n-1)];
                   1530:         ob3 = [p,c,l,m,n,cc,ll,mm,nn,next];
                   1531:         ob4 = Order matrix
                   1532:         ob5 = [(keyword) value (keyword) value ....]
                   1533:      */
1.41      takayama 1534: #define RP_LIMIT 5000
1.1       maekawa  1535: {
                   1536:   int i;
1.43      takayama 1537:   struct object ob = OINIT;
1.1       maekawa  1538:   int c,l,m,n;
                   1539:   int cc,ll,mm,nn;
                   1540:   int p;
                   1541:   char **xvars;
                   1542:   char **dvars;
                   1543:   int *outputVars;
                   1544:   int *order;
                   1545:   static int rp = 0;
                   1546:   static struct ring *rstack[RP_LIMIT];
                   1547:
                   1548:   extern struct ring *CurrentRingp;
                   1549:   struct ring *newRingp;
                   1550:   int ob3Size;
                   1551:   struct ring *nextRing;
                   1552:   int oasize;
                   1553:   static int ringSerial = 0;
                   1554:   char *ringName = NULL;
                   1555:   int aa;
                   1556:   extern int AvoidTheSameRing;
                   1557:   extern char *F_mpMult;
                   1558:   char *fmp_mult_saved;
                   1559:   char *mpMultName = NULL;
1.43      takayama 1560:   struct object rob = OINIT;
1.1       maekawa  1561:   struct ring *savedCurrentRingp;
                   1562:
                   1563:   /* To get the ring structure. */
                   1564:   if (ob1.tag == Snull) {
                   1565:     rob = newObjectArray(rp);
                   1566:     for (i=0; i<rp; i++) {
                   1567:       putoa(rob,i,KpoRingp(rstack[i]));
                   1568:     }
                   1569:     KSpush(rob);
                   1570:     return(0);
                   1571:   }
                   1572:
                   1573:   if (ob3.tag != Sarray) errorKan1("%s\n","Error in the 3rd argument. You need to give 4 arguments.");
                   1574:   ob3Size = getoaSize(ob3);
                   1575:   if (ob3Size != 9 && ob3Size != 10)
                   1576:     errorKan1("%s\n","Error in the 3rd argument.");
                   1577:   for (i=0; i<9; i++) {
                   1578:     ob = getoa(ob3,i);
                   1579:     if (ob.tag != Sinteger) errorKan1("%s\n","The 3rd argument should be a list of integers.");
                   1580:   }
                   1581:   if (ob3Size == 10) {
                   1582:     ob = getoa(ob3,9);
                   1583:     if (ob.tag != Sring)
                   1584:       errorKan1("%s\n","The last arguments of the 3rd argument must be a pointer to a ring.");
                   1585:     nextRing = KopRingp(ob);
                   1586:   } else {
                   1587:     nextRing = (struct ring *)NULL;
                   1588:   }
                   1589:
                   1590:   p = getoa(ob3,0).lc.ival;
                   1591:   c = getoa(ob3,1).lc.ival;  l = getoa(ob3,2).lc.ival;
                   1592:   m = getoa(ob3,3).lc.ival;  n = getoa(ob3,4).lc.ival;
                   1593:   cc = getoa(ob3,5).lc.ival;  ll = getoa(ob3,6).lc.ival;
                   1594:   mm = getoa(ob3,7).lc.ival;  nn = getoa(ob3,8).lc.ival;
                   1595:   if (checkRelations(c,l,m,n,cc,ll,mm,nn,n)) {
                   1596:     errorKan1("%s\n","1<=c<=l<=m<=n and cc<=c<=ll<=l<=mm<=m<=nn<=n \nand (cc<c or ll < l or mm < m or nn < n)  must be satisfied.");
                   1597:   }
                   1598:   if (getoaSize(ob2) != n || getoaSize(ob1) != n) {
                   1599:     errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1600:   }
                   1601:   for (i=0; i<n; i++) {
                   1602:     if (getoa(ob1,i).tag != Sdollar || getoa(ob2,i).tag != Sdollar) {
                   1603:       errorKan1("%s\n","Error in the 1st or 2nd arguments.");
                   1604:     }
                   1605:   }
                   1606:   xvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1607:   dvars = (char **) sGC_malloc(sizeof(char *)*n);
                   1608:   if (xvars == (char **)NULL || dvars == (char **)NULL) {
                   1609:     fprintf(stderr,"No more memory.\n");
                   1610:     exit(15);
                   1611:   }
                   1612:   for (i=0; i<n; i++) {
                   1613:     xvars[i] = getoa(ob1,i).lc.str;
                   1614:     dvars[i] = getoa(ob2,i).lc.str;
                   1615:   }
                   1616:   checkDuplicateName(xvars,dvars,n);
                   1617:
                   1618:   outputVars = (int *)sGC_malloc(sizeof(int)*n*2);
                   1619:   if (outputVars == NULL) {
                   1620:     fprintf(stderr,"No more memory.\n");
                   1621:     exit(15);
                   1622:   }
                   1623:   if (ReverseOutputOrder) {
                   1624:     for (i=0; i<n; i++) outputVars[i] = n-i-1;
                   1625:     for (i=0; i<n; i++) outputVars[n+i] = 2*n-i-1;
                   1626:   }else{
                   1627:     for (i=0; i<2*n; i++) {
                   1628:       outputVars[i] = i;
                   1629:     }
                   1630:   }
1.28      takayama 1631:
1.29      takayama 1632:   ob4 = Kto_int32(ob4); /* order matrix */
1.1       maekawa  1633:   oasize = getoaSize(ob4);
                   1634:   order = (int *)sGC_malloc(sizeof(int)*((2*n)*oasize+1));
                   1635:   if (order == (int *)NULL) errorKan1("%s\n","No memory.");
                   1636:   if (objArrayToOrderMatrix(ob4,order,n,oasize) == -1) {
                   1637:     errorKan1("%s\n","Errors in the 4th matrix (order matrix).");
                   1638:   }
                   1639:   /* It's better to check the consistency of the order matrix here. */
                   1640:   savedCurrentRingp = CurrentRingp;
                   1641:
                   1642:   newRingp = (struct ring *)sGC_malloc(sizeof(struct ring));
                   1643:   if (newRingp == NULL) errorKan1("%s\n","No more memory.");
                   1644:   /* Generate the new ring before calling setOrder...(). */
                   1645:   *newRingp = *CurrentRingp;
                   1646:   CurrentRingp = newRingp;  /* Push the current ring. */
                   1647:   setOrderByMatrix(order,n,c,l,oasize); /* set order to the CurrentRing. */
                   1648:   CurrentRingp = savedCurrentRingp; /* recover it. */
                   1649:
                   1650:
                   1651:   /* Set the default name of the ring */
                   1652:   ringName = (char *)sGC_malloc(16);
                   1653:   sprintf(ringName,"ring%05d",ringSerial);
                   1654:   ringSerial++;
                   1655:
                   1656:   /* Set the current ring */
                   1657:   newRingp->n = n; newRingp->m = m; newRingp->l = l; newRingp->c = c;
                   1658:   newRingp->nn = nn; newRingp->mm = mm; newRingp->ll = ll;
                   1659:   newRingp->cc = cc;
                   1660:   newRingp->x = xvars;
                   1661:   newRingp->D = dvars;
                   1662:   /* You don't need to set order and orderMatrixSize here.
                   1663:      It was set by setOrder(). */
                   1664:   setFromTo(newRingp);
                   1665:
                   1666:   newRingp->p = p;
                   1667:   newRingp->next = nextRing;
                   1668:   newRingp->multiplication = mpMult;
                   1669:   /* These values  should will be reset if the optional value is given. */
                   1670:   newRingp->schreyer = 0;
                   1671:   newRingp->gbListTower = NULL;
                   1672:   newRingp->outputOrder = outputVars;
1.9       takayama 1673:   newRingp->weightedHomogenization = 0;
1.11      takayama 1674:   newRingp->degreeShiftSize = 0;
1.12      takayama 1675:   newRingp->degreeShiftN = 0;
                   1676:   newRingp->degreeShift = NULL;
1.34      takayama 1677:   newRingp->partialEcart = 0;
                   1678:   newRingp->partialEcartGlobalVarX = NULL;
1.1       maekawa  1679:
                   1680:   if (ob5.tag != Sarray || (getoaSize(ob5) % 2) != 0) {
                   1681:     errorKan1("%s\n","[(keyword) value (keyword) value ....] should be given.");
                   1682:   }
                   1683:   for (i=0; i < getoaSize(ob5); i += 2) {
                   1684:     if (getoa(ob5,i).tag == Sdollar) {
                   1685:       if (strcmp(KopString(getoa(ob5,i)),"mpMult") == 0) {
1.7       takayama 1686:         if (getoa(ob5,i+1).tag != Sdollar) {
                   1687:           errorKan1("%s\n","A keyword should be given. (mpMult)");
                   1688:         }
                   1689:         fmp_mult_saved = F_mpMult;
                   1690:         mpMultName = KopString(getoa(ob5,i+1));
                   1691:         switch_function("mpMult",mpMultName);
                   1692:         /* Note that this cause a global effect. It will be done again. */
                   1693:         newRingp->multiplication = mpMult;
                   1694:         switch_function("mpMult",fmp_mult_saved);
1.1       maekawa  1695:       } else if (strcmp(KopString(getoa(ob5,i)),"coefficient ring") == 0) {
1.7       takayama 1696:         if (getoa(ob5,i+1).tag != Sring) {
                   1697:           errorKan1("%s\n","The pointer to a ring should be given. (coefficient ring)");
                   1698:         }
                   1699:         nextRing = KopRingp(getoa(ob5,i+1));
                   1700:         newRingp->next = nextRing;
1.1       maekawa  1701:       } else if (strcmp(KopString(getoa(ob5,i)),"valuation") == 0) {
1.7       takayama 1702:         errorKan1("%s\n","Not implemented. (valuation)");
1.1       maekawa  1703:       } else if (strcmp(KopString(getoa(ob5,i)),"characteristic") == 0) {
1.7       takayama 1704:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1705:           errorKan1("%s\n","A integer should be given. (characteristic)");
                   1706:         }
                   1707:         p = KopInteger(getoa(ob5,i+1));
                   1708:         newRingp->p = p;
1.1       maekawa  1709:       } else if (strcmp(KopString(getoa(ob5,i)),"schreyer") == 0) {
1.7       takayama 1710:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1711:           errorKan1("%s\n","A integer should be given. (schreyer)");
                   1712:         }
                   1713:         newRingp->schreyer = KopInteger(getoa(ob5,i+1));
1.1       maekawa  1714:       } else if (strcmp(KopString(getoa(ob5,i)),"gbListTower") == 0) {
1.7       takayama 1715:         if (getoa(ob5,i+1).tag != Slist) {
                   1716:           errorKan1("%s\n","A list should be given (gbListTower).");
                   1717:         }
                   1718:         newRingp->gbListTower = newObject();
                   1719:         *((struct object *)(newRingp->gbListTower)) = getoa(ob5,i+1);
1.1       maekawa  1720:       } else if (strcmp(KopString(getoa(ob5,i)),"ringName") == 0) {
1.7       takayama 1721:         if (getoa(ob5,i+1).tag != Sdollar) {
                   1722:           errorKan1("%s\n","A name should be given. (ringName)");
                   1723:         }
                   1724:         ringName = KopString(getoa(ob5,i+1));
1.9       takayama 1725:       } else if (strcmp(KopString(getoa(ob5,i)),"weightedHomogenization") == 0) {
                   1726:         if (getoa(ob5,i+1).tag != Sinteger) {
                   1727:           errorKan1("%s\n","A integer should be given. (weightedHomogenization)");
                   1728:         }
1.11      takayama 1729:         newRingp->weightedHomogenization = KopInteger(getoa(ob5,i+1));
                   1730:       } else if (strcmp(KopString(getoa(ob5,i)),"degreeShift") == 0) {
                   1731:         if (getoa(ob5,i+1).tag != Sarray) {
1.12      takayama 1732:           errorKan1("%s\n","An array of array should be given. (degreeShift)");
1.11      takayama 1733:         }
                   1734:         {
1.43      takayama 1735:           struct object ods = OINIT;
                   1736:           struct object ods2 = OINIT;
1.12      takayama 1737:           int dssize,k,j,nn;
1.11      takayama 1738:           ods=getoa(ob5,i+1);
1.12      takayama 1739:           if ((getoaSize(ods) < 1) || (getoa(ods,0).tag != Sarray)) {
                   1740:             errorKan1("%s\n", "An array of array should be given. (degreeShift)");
                   1741:           }
                   1742:           nn = getoaSize(ods);
                   1743:           dssize = getoaSize(getoa(ods,0));
1.11      takayama 1744:           newRingp->degreeShiftSize = dssize;
1.12      takayama 1745:           newRingp->degreeShiftN = nn;
                   1746:           newRingp->degreeShift = (int *) sGC_malloc(sizeof(int)*(dssize*nn+1));
1.11      takayama 1747:           if (newRingp->degreeShift == NULL) errorKan1("%s\n","No more memory.");
1.12      takayama 1748:           for (j=0; j<nn; j++) {
                   1749:             ods2 = getoa(ods,j);
                   1750:             for (k=0; k<dssize; k++) {
                   1751:               if (getoa(ods2,k).tag == SuniversalNumber) {
                   1752:                 (newRingp->degreeShift)[j*dssize+k] = coeffToInt(getoa(ods2,k).lc.universalNumber);
                   1753:               }else{
                   1754:                 (newRingp->degreeShift)[j*dssize+k] = KopInteger(getoa(ods2,k));
                   1755:               }
1.11      takayama 1756:             }
                   1757:           }
                   1758:         }
1.34      takayama 1759:       } else if (strcmp(KopString(getoa(ob5,i)),"partialEcartGlobalVarX") == 0) {
                   1760:         if (getoa(ob5,i+1).tag != Sarray) {
                   1761:           errorKan1("%s\n","An array of array should be given. (partialEcart)");
                   1762:         }
                   1763:         {
1.43      takayama 1764:           struct object odv = OINIT;
                   1765:           struct object ovv = OINIT;
1.34      takayama 1766:           int k,j,nn;
                   1767:           char *vname;
                   1768:           odv=getoa(ob5,i+1);
                   1769:           nn = getoaSize(odv);
                   1770:           newRingp->partialEcart = nn;
                   1771:           newRingp->partialEcartGlobalVarX = (int *) sGC_malloc(sizeof(int)*nn+1);
                   1772:           if (newRingp->partialEcartGlobalVarX == NULL) errorKan1("%s\n","No more memory.");
                   1773:           for (j=0; j<nn; j++)
                   1774:             (newRingp->partialEcartGlobalVarX)[j] = -1;
                   1775:           for (j=0; j<nn; j++) {
                   1776:             ovv = getoa(odv,j);
                   1777:             if (ovv.tag != Sdollar) errorKan1("%s\n","partialEcartGlobalVarX: string is expected.");
                   1778:             vname = KopString(ovv);
                   1779:             for (k=0; k<n; k++) {
                   1780:               if (strcmp(vname,xvars[k]) == 0) {
                   1781:                 (newRingp->partialEcartGlobalVarX)[j] = k; break;
                   1782:               }else{
                   1783:                 if (k == n-1) errorKan1("%s\n","partialEcartGlobalVarX: no such variable.");
                   1784:               }
                   1785:             }
                   1786:           }
                   1787:         }
                   1788:
1.22      takayama 1789:         switch_function("grade","module1v");
                   1790:         /* Warning: grading is changed to module1v!! */
1.1       maekawa  1791:       } else {
1.7       takayama 1792:         errorKan1("%s\n","Unknown keyword to set_up_ring@");
1.1       maekawa  1793:       }
                   1794:     }else{
                   1795:       errorKan1("%s\n","A keyword enclosed by braces have to be given.");
                   1796:     }
                   1797:   }
                   1798:
                   1799:   newRingp->name = ringName;
                   1800:
                   1801:
                   1802:   if (AvoidTheSameRing) {
                   1803:     aa = isTheSameRing(rstack,rp,newRingp);
                   1804:     if (aa < 0) {
                   1805:       /* This ring has never been defined. */
                   1806:       CurrentRingp = newRingp;
                   1807:       /* Install it to the RingStack */
                   1808:       if (rp <RP_LIMIT) {
1.7       takayama 1809:         rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
1.1       maekawa  1810:       }else{
1.7       takayama 1811:         rp = 0;
                   1812:         errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
1.1       maekawa  1813:       }
                   1814:     }else{
                   1815:       /* This ring has been defined. */
                   1816:       /* Discard the newRingp */
                   1817:       CurrentRingp = rstack[aa];
                   1818:       ringSerial--;
                   1819:     }
                   1820:   }else{
                   1821:     CurrentRingp = newRingp;
                   1822:     /* Install it to the RingStack */
                   1823:     if (rp <RP_LIMIT) {
                   1824:       rstack[rp] = CurrentRingp; rp++; /* Save the previous ringp */
                   1825:     }else{
                   1826:       rp = 0;
                   1827:       errorKan1("%s\n","You have defined too many rings. Check the value of RP_LIMIT.");
                   1828:     }
                   1829:   }
                   1830:   if (mpMultName != NULL) {
                   1831:     switch_function("mpMult",mpMultName);
                   1832:   }
                   1833:
                   1834:   initSyzRingp();
                   1835:
                   1836:   return(0);
                   1837: }
                   1838:
                   1839:
                   1840: struct object KsetVariableNames(struct object ob,struct ring *rp)
                   1841: {
                   1842:   int n,i;
1.43      takayama 1843:   struct object ox = OINIT;
                   1844:   struct object otmp = OINIT;
1.1       maekawa  1845:   char **xvars;
                   1846:   char **dvars;
                   1847:   if (ob.tag  != Sarray) {
                   1848:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...]");
                   1849:   }
                   1850:   n = rp->n;
                   1851:   ox = ob;
                   1852:   if (getoaSize(ox) != 2*n) {
                   1853:     errorKan1("%s\n","KsetVariableNames(): the argument must be of the form [(x) (y) (z) ...] and the length of [(x) (y) (z) ...] must be equal to the number of x and D variables.");
                   1854:   }
                   1855:   xvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1856:   dvars = (char **)sGC_malloc(sizeof(char *)*n);
                   1857:   if (xvars == NULL || dvars == NULL) {
                   1858:     errorKan1("%s\n","KsetVariableNames(): no more memory.");
                   1859:   }
                   1860:   for (i=0; i<2*n; i++) {
                   1861:     otmp = getoa(ox,i);
                   1862:     if(otmp.tag != Sdollar) {
                   1863:       errorKan1("%s\n","KsetVariableNames(): elements must be strings.");
                   1864:     }
                   1865:     if (i < n) {
                   1866:       xvars[i] = KopString(otmp);
                   1867:     }else{
                   1868:       dvars[i-n] = KopString(otmp);
                   1869:     }
                   1870:   }
                   1871:   checkDuplicateName(xvars,dvars,n);
                   1872:   rp->x = xvars;
                   1873:   rp->D = dvars;
                   1874:   return(ob);
                   1875: }
                   1876:
                   1877:
                   1878:
                   1879: void KshowRing(ringp)
1.7       takayama 1880:      struct ring *ringp;
1.1       maekawa  1881: {
                   1882:   showRing(1,ringp);
                   1883: }
                   1884:
                   1885: struct object KswitchFunction(ob1,ob2)
1.7       takayama 1886:      struct object ob1,ob2;
1.1       maekawa  1887: {
                   1888:   char *ans ;
1.43      takayama 1889:   struct object rob = OINIT;
1.1       maekawa  1890:   int needWarningForAvoidTheSameRing = 0;
                   1891:   extern int AvoidTheSameRing;
                   1892:   if ((ob1.tag != Sdollar) || (ob2.tag != Sdollar)) {
                   1893:     errorKan1("%s\n","$function$ $name$ switch_function\n");
                   1894:   }
                   1895:   if (AvoidTheSameRing && needWarningForAvoidTheSameRing) {
                   1896:     if (strcmp(KopString(ob1),"mmLarger") == 0 ||
                   1897:         strcmp(KopString(ob1),"mpMult") == 0 ||
                   1898:         strcmp(KopString(ob1),"monomialAdd") == 0 ||
                   1899:         strcmp(KopString(ob1),"isSameComponent") == 0) {
                   1900:       fprintf(stderr,",switch_function ==> %s ",KopString(ob1));
                   1901:       warningKan("switch_function might cause a trouble under AvoidTheSameRing == 1.\n");
                   1902:     }
                   1903:   }
                   1904:   if (AvoidTheSameRing) {
                   1905:     if (strcmp(KopString(ob1),"mmLarger") == 0 &&
1.7       takayama 1906:         strcmp(KopString(ob2),"matrix") != 0) {
1.1       maekawa  1907:       fprintf(stderr,"mmLarger = %s",KopString(ob2));
                   1908:       errorKan1("%s\n","mmLarger can set only to matrix under AvoidTheSameRing == 1.");
                   1909:     }
                   1910:   }
                   1911:
                   1912:   ans = switch_function(ob1.lc.str,ob2.lc.str);
                   1913:   if (ans == NULL) {
                   1914:     rob = NullObject;
                   1915:   }else{
                   1916:     rob = KpoString(ans);
                   1917:   }
                   1918:   return(rob);
                   1919:
                   1920: }
                   1921:
                   1922: void KprintSwitchStatus(void)
                   1923: {
                   1924:   print_switch_status();
                   1925: }
                   1926:
                   1927: struct object KoReplace(of,rule)
1.7       takayama 1928:      struct object of;
                   1929:      struct object rule;
1.1       maekawa  1930: {
1.43      takayama 1931:   struct object rob = OINIT;
1.1       maekawa  1932:   POLY f;
                   1933:   POLY lRule[N0*2];
                   1934:   POLY rRule[N0*2];
                   1935:   POLY r;
                   1936:   int i;
                   1937:   int n;
1.43      takayama 1938:   struct object trule = OINIT;
1.1       maekawa  1939:
                   1940:
                   1941:   if (rule.tag != Sarray) {
                   1942:     errorKan1("%s\n"," KoReplace(): The second argument must be array.");
                   1943:   }
                   1944:   n = getoaSize(rule);
                   1945:
1.6       takayama 1946:   if (of.tag == Spoly) {
                   1947:   }else if (of.tag ==Sclass && ectag(of) == CLASSNAME_recursivePolynomial) {
1.7       takayama 1948:     return(KreplaceRecursivePolynomial(of,rule));
1.6       takayama 1949:   }else{
1.1       maekawa  1950:     errorKan1("%s\n"," KoReplace(): The first argument must be a polynomial.");
                   1951:   }
                   1952:   f = KopPOLY(of);
                   1953:
                   1954:   if (f ISZERO) {
                   1955:   }else{
                   1956:     if (n >= 2*(f->m->ringp->n)) {
                   1957:       errorKan1("%s\n"," KoReplace(): too many rules for replacement. ");
                   1958:     }
                   1959:   }
                   1960:
                   1961:   for (i=0; i<n; i++) {
                   1962:     trule = getoa(rule,i);
                   1963:     if (trule.tag != Sarray) {
                   1964:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1965:     }
                   1966:     if (getoaSize(trule) != 2) {
                   1967:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....].");
                   1968:     }
                   1969:
                   1970:     if (getoa(trule,0).tag != Spoly) {
                   1971:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1972:     }
                   1973:     if (getoa(trule,1).tag != Spoly) {
                   1974:       errorKan1("%s\n"," KoReplace(): The second argument must be of the form [[a b] [c d] ....] where a,b,c,d,... are polynomials.");
                   1975:     }
                   1976:
                   1977:     lRule[i] = KopPOLY(getoa(trule,0));
                   1978:     rRule[i] = KopPOLY(getoa(trule,1));
                   1979:   }
                   1980:
                   1981:   r = replace(f,lRule,rRule,n);
                   1982:   rob.tag = Spoly; rob.lc.poly = r;
                   1983:
                   1984:   return(rob);
                   1985: }
                   1986:
                   1987:
                   1988: struct object Kparts(f,v)
1.7       takayama 1989:      struct object f;
                   1990:      struct object v;
1.1       maekawa  1991: {
                   1992:   POLY ff;
                   1993:   POLY vv;
1.43      takayama 1994:   struct object obj = OINIT;
1.1       maekawa  1995:   struct matrixOfPOLY *co;
                   1996:   /* check the data type */
                   1997:   if (f.tag != Spoly || v.tag != Spoly)
                   1998:     errorKan1("%s\n","arguments of Kparts() must have polynomial as arguments.");
                   1999:
                   2000:   co = parts(KopPOLY(f),KopPOLY(v));
                   2001:   obj = matrixOfPOLYToArray(co);
                   2002:   return(obj);
                   2003: }
                   2004:
                   2005: struct object Kparts2(f,v)
1.7       takayama 2006:      struct object f;
                   2007:      struct object v;
1.1       maekawa  2008: {
                   2009:   POLY ff;
                   2010:   POLY vv;
1.43      takayama 2011:   struct object obj = OINIT;
1.1       maekawa  2012:   struct matrixOfPOLY *co;
                   2013:   /* check the data type */
                   2014:   if (f.tag != Spoly || v.tag != Spoly)
                   2015:     errorKan1("%s\n","arguments of Kparts2() must have polynomial as arguments.");
                   2016:
                   2017:   obj = parts2(KopPOLY(f),KopPOLY(v));
                   2018:   return(obj);
                   2019: }
                   2020:
                   2021:
                   2022: struct object Kdegree(ob1,ob2)
1.7       takayama 2023:      struct object ob1,ob2;
1.1       maekawa  2024: {
                   2025:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   2026:     errorKan1("%s\n","The arguments must be polynomials.");
                   2027:
                   2028:   return(KpoInteger(pDegreeWrtV(KopPOLY(ob1),KopPOLY(ob2))));
                   2029: }
                   2030:
                   2031: struct object KringMap(obj)
1.7       takayama 2032:      struct object obj;
1.1       maekawa  2033: {
                   2034:   extern struct ring *CurrentRingp;
                   2035:   extern struct ring *SyzRingp;
                   2036:   POLY f;
                   2037:   POLY r;
                   2038:   if (obj.tag != Spoly)
                   2039:     errorKan1("%s\n","The argments must be polynomial.");
                   2040:   f = KopPOLY(obj);
                   2041:   if (f ISZERO) return(obj);
                   2042:   if (f->m->ringp == CurrentRingp) return(obj);
                   2043:   if (f->m->ringp == CurrentRingp->next) {
                   2044:     r = newCell(newCoeff(),newMonomial(CurrentRingp));
                   2045:     r->coeffp->tag = POLY_COEFF;
                   2046:     r->coeffp->val.f = f;
                   2047:     return(KpoPOLY(r));
                   2048:   }else if (f->m->ringp == SyzRingp) {
                   2049:     return(KpoPOLY(f->coeffp->val.f));
                   2050:   }
                   2051:   errorKan1("%s\n","The ring map is not defined in this case.");
                   2052: }
                   2053:
                   2054:
                   2055: struct object Ksp(ob1,ob2)
1.7       takayama 2056:      struct object ob1,ob2;
1.1       maekawa  2057: {
                   2058:   struct spValue sv;
1.43      takayama 2059:   struct object rob = OINIT;
                   2060:   struct object cob = OINIT;
1.1       maekawa  2061:   POLY f;
                   2062:   if (ob1.tag != Spoly || ob2.tag != Spoly)
                   2063:     errorKan1("%s\n","Ksp(): The arguments must be polynomials.");
                   2064:   sv = (*sp)(ob1.lc.poly,ob2.lc.poly);
                   2065:   f = ppAddv(ppMult(sv.a,KopPOLY(ob1)),
1.7       takayama 2066:              ppMult(sv.b,KopPOLY(ob2)));
1.1       maekawa  2067:   rob = newObjectArray(2);
                   2068:   cob = newObjectArray(2);
                   2069:   putoa(rob,1,KpoPOLY(f));
                   2070:   putoa(cob,0,KpoPOLY(sv.a));
                   2071:   putoa(cob,1,KpoPOLY(sv.b));
                   2072:   putoa(rob,0,cob);
                   2073:   return(rob);
                   2074: }
                   2075:
                   2076: struct object Khead(ob)
1.7       takayama 2077:      struct object ob;
1.1       maekawa  2078: {
                   2079:   if (ob.tag != Spoly) errorKan1("%s\n","Khead(): The argument should be a polynomial.");
                   2080:   return(KpoPOLY(head( KopPOLY(ob))));
                   2081: }
                   2082:
                   2083:
                   2084: /* :eval */
                   2085: struct object Keval(obj)
1.7       takayama 2086:      struct object obj;
1.1       maekawa  2087: {
                   2088:   char *key;
                   2089:   int size;
1.43      takayama 2090:   struct object rob = OINIT;
1.1       maekawa  2091:   rob = NullObject;
                   2092:
                   2093:   if (obj.tag != Sarray)
                   2094:     errorKan1("%s\n","[$key$ arguments] eval");
                   2095:   if (getoaSize(obj) < 1)
                   2096:     errorKan1("%s\n","[$key$ arguments] eval");
                   2097:   if (getoa(obj,0).tag != Sdollar)
                   2098:     errorKan1("%s\n","[$key$ arguments] eval");
                   2099:   key = getoa(obj,0).lc.str;
                   2100:   size = getoaSize(obj);
                   2101:
                   2102:
                   2103:   return(rob);
                   2104: }
                   2105:
                   2106: /* :Utilities */
                   2107: char *KremoveSpace(str)
1.7       takayama 2108:      char str[];
1.1       maekawa  2109: {
                   2110:   int size;
                   2111:   int start;
                   2112:   int end;
                   2113:   char *s;
                   2114:   int i;
                   2115:
                   2116:   size = strlen(str);
                   2117:   for (start = 0; start <= size; start++) {
                   2118:     if (str[start] > ' ') break;
                   2119:   }
                   2120:   for (end = size-1; end >= 0; end--) {
                   2121:     if (str[end] > ' ') break;
                   2122:   }
                   2123:   if (start > end) return((char *) NULL);
                   2124:   s = (char *) sGC_malloc(sizeof(char)*(end-start+2));
                   2125:   if (s == (char *)NULL) errorKan1("%s\n","removeSpace(): No more memory.");
                   2126:   for (i=0; i< end-start+1; i++)
                   2127:     s[i] = str[i+start];
                   2128:   s[end-start+1] = '\0';
                   2129:   return(s);
                   2130: }
                   2131:
                   2132: struct object KtoRecords(ob)
1.7       takayama 2133:      struct object ob;
1.1       maekawa  2134: {
1.43      takayama 2135:   struct object obj = OINIT;
                   2136:   struct object tmp = OINIT;
1.1       maekawa  2137:   int i;
                   2138:   int size;
                   2139:   char **argv;
                   2140:
                   2141:   obj = NullObject;
                   2142:   switch(ob.tag) {
                   2143:   case Sdollar: break;
                   2144:   default:
                   2145:     errorKan1("%s","Argument of KtoRecords() must be a string enclosed by dollars.\n");
                   2146:     break;
                   2147:   }
                   2148:   size = strlen(ob.lc.str)+3;
                   2149:   argv = (char **) sGC_malloc((size+1)*sizeof(char *));
                   2150:   if (argv == (char **)NULL)
                   2151:     errorKan1("%s","No more memory.\n");
                   2152:   size = KtoArgvbyCurryBrace(ob.lc.str,argv,size);
                   2153:   if (size < 0)
                   2154:     errorKan1("%s"," KtoRecords(): You have an error in the argument.\n");
                   2155:
                   2156:   obj = newObjectArray(size);
                   2157:   for (i=0; i<size; i++) {
                   2158:     tmp.tag = Sdollar;
                   2159:     tmp.lc.str = argv[i];
                   2160:     (obj.rc.op)[i] = tmp;
                   2161:   }
                   2162:   return(obj);
                   2163: }
                   2164:
                   2165: int KtoArgvbyCurryBrace(str,argv,limit)
1.7       takayama 2166:      char *str;
                   2167:      char *argv[];
                   2168:      int limit;
                   2169:      /* This function returns argc */
                   2170:      /* decompose into tokens by the separators
1.1       maekawa  2171:    { }, [ ], and characters of which code is less than SPACE.
                   2172:    Example.   { }  ---> nothing            (argc=0)
                   2173:               {x}----> x                   (argc=1)
                   2174:               {x,y} --> x   y              (argc=2)
1.7       takayama 2175:           {ab, y, z } --> ab   y   z   (argc=3)
1.1       maekawa  2176:               [[ab],c,d]  --> [ab] c   d
                   2177: */
                   2178: {
                   2179:   int argc;
                   2180:   int n;
                   2181:   int i;
                   2182:   int k;
                   2183:   char *a;
                   2184:   char *ident;
                   2185:   int level = 0;
                   2186:   int comma;
                   2187:
                   2188:   if (str == (char *)NULL) {
                   2189:     fprintf(stderr,"You use NULL string to toArgvbyCurryBrace()\n");
                   2190:     return(0);
                   2191:   }
                   2192:
                   2193:   n = strlen(str);
                   2194:   a = (char *) sGC_malloc(sizeof(char)*(n+3));
                   2195:   a[0]=' ';
                   2196:   strcpy(&(a[1]),str);
                   2197:   n = strlen(a); a[0] = '\0';
                   2198:   comma = -1;
                   2199:   for (i=1; i<n; i++) {
                   2200:     if (a[i] == '{' || a[i] == '[') level++;
                   2201:     if (level <= 1 && ( a[i] == ',')) {a[i] = '\0'; ++comma;}
                   2202:     if (level <= 1 && (a[i]=='{' || a[i]=='}' || a[i]=='[' || a[i]==']'))
                   2203:       a[i] = '\0';
                   2204:     if (a[i] == '}' || a[i] == ']') level--;
                   2205:     if ((level <= 1) && (comma == -1) && ( a[i] > ' ')) comma = 0;
                   2206:   }
                   2207:
                   2208:   if (comma == -1) return(0);
                   2209:
                   2210:   argc=0;
                   2211:   for (i=0; i<n; i++) {
                   2212:     if ((a[i] == '\0') && (a[i+1] != '\0')) ++argc;
                   2213:   }
                   2214:   if (argc > limit) return(-argc);
                   2215:
                   2216:   k = 0;
                   2217:   for (i=0; i<n; i++) {
                   2218:     if ((a[i] == '\0') && (a[i+1] != '\0')) {
                   2219:       ident = (char *) sGC_malloc(sizeof(char)*( strlen(&(a[i+1])) + 3));
                   2220:       strcpy(ident,&(a[i+1]));
                   2221:       argv[k] = KremoveSpace(ident);
                   2222:       if (argv[k] != (char *)NULL) k++;
                   2223:       if (k >= limit) errorKan1("%s\n","KtoArgvbyCurryBraces(): k>=limit.");
                   2224:     }
                   2225:   }
                   2226:   argc = k;
                   2227:   /*for (i=0; i<argc; i++) fprintf(stderr,"%d %s\n",i,argv[i]);*/
                   2228:   return(argc);
                   2229: }
                   2230:
1.14      takayama 2231: struct object KstringToArgv(struct object ob) {
1.43      takayama 2232:   struct object rob = OINIT;
1.14      takayama 2233:   char *s;
                   2234:   int n,wc,i,inblank;
                   2235:   char **argv;
                   2236:   if (ob.tag != Sdollar)
1.22      takayama 2237:     errorKan1("%s\n","KstringToArgv(): the argument must be a string.");
1.14      takayama 2238:   n = strlen(KopString(ob));
                   2239:   s = (char *) sGC_malloc(sizeof(char)*(n+2));
                   2240:   if (s == NULL) errorKan1("%s\n","KstringToArgv(): No memory.");
                   2241:   strcpy(s,KopString(ob));
                   2242:   inblank = 1;  wc = 0;
                   2243:   for (i=0; i<n; i++) {
1.22      takayama 2244:     if (inblank && (s[i] > ' ')) {
                   2245:       wc++; inblank = 0;
                   2246:     }else if ((!inblank) && (s[i] <= ' ')) {
                   2247:       inblank = 1;
                   2248:     }
1.14      takayama 2249:   }
                   2250:   argv = (char **) sGC_malloc(sizeof(char *)*(wc+2));
                   2251:   argv[0] = NULL;
                   2252:   inblank = 1;  wc = 0;
                   2253:   for (i=0; i<n; i++) {
1.22      takayama 2254:     if (inblank && (s[i] > ' ')) {
                   2255:       argv[wc] = &(s[i]); argv[wc+1]=NULL;
                   2256:       wc++; inblank = 0;
                   2257:     }else if ((inblank == 0) && (s[i] <= ' ')) {
                   2258:       inblank = 1; s[i] = 0;
                   2259:     }else if (inblank && (s[i] <= ' ')) {
                   2260:       s[i] = 0;
                   2261:     }
1.14      takayama 2262:   }
                   2263:
                   2264:   rob = newObjectArray(wc);
                   2265:   for (i=0; i<wc; i++) {
1.22      takayama 2266:     putoa(rob,i,KpoString(argv[i]));
                   2267:     /* printf("%s\n",argv[i]); */
1.14      takayama 2268:   }
                   2269:   return(rob);
                   2270: }
1.1       maekawa  2271:
                   2272: static void checkDuplicateName(xvars,dvars,n)
1.7       takayama 2273:      char *xvars[];
                   2274:      char *dvars[];
                   2275:      int n;
1.1       maekawa  2276: {
                   2277:   int i,j;
                   2278:   char *names[N0*2];
                   2279:   for (i=0; i<n; i++) {
                   2280:     names[i] = xvars[i]; names[i+n] = dvars[i];
                   2281:   }
                   2282:   n = 2*n;
                   2283:   for (i=0; i<n; i++) {
                   2284:     for (j=i+1; j<n; j++) {
                   2285:       if (strcmp(names[i],names[j]) == 0) {
1.7       takayama 2286:         fprintf(stderr,"\n%d=%s, %d=%s\n",i,names[i],j,names[j]);
                   2287:         errorKan1("%s\n","Duplicate definition of the name above in SetUpRing().");
1.1       maekawa  2288:       }
                   2289:     }
                   2290:   }
                   2291: }
                   2292:
1.20      takayama 2293: struct object KooPower(struct object ob1,struct object ob2) {
1.43      takayama 2294:   struct object rob = OINIT;
1.20      takayama 2295:   /* Bug. It has not yet been implemented. */
                   2296:   if (QuoteMode) {
1.22      takayama 2297:     rob = powerTree(ob1,ob2);
1.20      takayama 2298:   }else{
1.22      takayama 2299:     warningKan("KooDiv2() has not supported yet these objects.\n");
1.20      takayama 2300:   }
                   2301:   return(rob);
                   2302: }
1.1       maekawa  2303:
                   2304:
                   2305:
                   2306: struct object KooDiv2(ob1,ob2)
1.7       takayama 2307:      struct object ob1,ob2;
1.1       maekawa  2308: {
                   2309:   struct object rob = NullObject;
                   2310:   POLY f;
                   2311:   extern struct ring *CurrentRingp;
                   2312:   int s,i;
                   2313:   double d;
                   2314:
                   2315:   switch (Lookup[ob1.tag][ob2.tag]) {
                   2316:   case SpolySpoly:
                   2317:   case SuniversalNumberSuniversalNumber:
                   2318:   case SuniversalNumberSpoly:
                   2319:   case SpolySuniversalNumber:
                   2320:     rob = KnewRationalFunction0(copyObjectp(&ob1),copyObjectp(&ob2));
                   2321:     KisInvalidRational(&rob);
                   2322:     return(rob);
                   2323:     break;
                   2324:   case SarraySpoly:
                   2325:   case SarraySuniversalNumber:
                   2326:   case SarraySrationalFunction:
                   2327:     s = getoaSize(ob1);
                   2328:     rob = newObjectArray(s);
                   2329:     for (i=0; i<s; i++) {
                   2330:       putoa(rob,i,KooDiv2(getoa(ob1,i),ob2));
                   2331:     }
                   2332:     return(rob);
                   2333:     break;
                   2334:   case SpolySrationalFunction:
                   2335:   case SrationalFunctionSpoly:
                   2336:   case SrationalFunctionSrationalFunction:
                   2337:   case SuniversalNumberSrationalFunction:
                   2338:   case SrationalFunctionSuniversalNumber:
                   2339:     rob = KoInverse(ob2);
                   2340:     rob = KooMult(ob1,rob);
                   2341:     return(rob);
                   2342:     break;
                   2343:
                   2344:   case SdoubleSdouble:
                   2345:     d = KopDouble(ob2);
                   2346:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2347:     return(KpoDouble( KopDouble(ob1) / d ));
                   2348:     break;
                   2349:   case SdoubleSinteger:
                   2350:   case SdoubleSuniversalNumber:
                   2351:   case SdoubleSrationalFunction:
                   2352:     d = toDouble0(ob2);
                   2353:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2354:     return(KpoDouble( KopDouble(ob1) / d) );
                   2355:     break;
                   2356:   case SintegerSdouble:
                   2357:   case SuniversalNumberSdouble:
                   2358:   case SrationalFunctionSdouble:
                   2359:     d = KopDouble(ob2);
                   2360:     if (d == 0.0) errorKan1("%s\n","KooDiv2, Division by zero.");
                   2361:     return(KpoDouble( toDouble0(ob1) / d ) );
                   2362:     break;
                   2363:
                   2364:   default:
1.20      takayama 2365:     if (QuoteMode) {
                   2366:       rob = divideTree(ob1,ob2);
                   2367:     }else{
                   2368:       warningKan("KooDiv2() has not supported yet these objects.\n");
                   2369:     }
1.1       maekawa  2370:     break;
                   2371:   }
                   2372:   return(rob);
                   2373: }
                   2374: /* Template
                   2375:   case SrationalFunctionSrationalFunction:
                   2376:     warningKan("Koo() has not supported yet these objects.\n");
                   2377:     return(rob);
                   2378:     break;
                   2379:   case SpolySrationalFunction:
                   2380:     warningKan("Koo() has not supported yet these objects.\n");
                   2381:     return(rob);
                   2382:     break;
                   2383:   case SrationalFunctionSpoly:
                   2384:     warningKan("Koo() has not supported yet these objects.\n");
                   2385:     return(rob);
                   2386:     break;
                   2387:   case SuniversalNumberSrationalFunction:
                   2388:     warningKan("Koo() has not supported yet these objects.\n");
                   2389:     return(rob);
                   2390:     break;
                   2391:   case SrationalFunctionSuniversalNumber:
                   2392:     warningKan("Koo() has not supported yet these objects.\n");
                   2393:     return(rob);
                   2394:     break;
                   2395: */
                   2396:
                   2397: int KisInvalidRational(op)
1.7       takayama 2398:      objectp op;
1.1       maekawa  2399: {
                   2400:   extern struct coeff *UniversalZero;
                   2401:   if (op->tag != SrationalFunction) return(0);
                   2402:   if (KisZeroObject(Kdenominator(*op))) {
                   2403:     errorKan1("%s\n","KisInvalidRational(): zero division. You have f/0.");
                   2404:   }
                   2405:   if (KisZeroObject(Knumerator(*op))) {
                   2406:     op->tag = SuniversalNumber;
                   2407:     op->lc.universalNumber = UniversalZero;
                   2408:   }
                   2409:   return(0);
                   2410: }
                   2411:
                   2412: struct object KgbExtension(struct object obj)
                   2413: {
                   2414:   char *key;
                   2415:   int size;
1.43      takayama 2416:   struct object keyo = OINIT;
1.1       maekawa  2417:   struct object rob = NullObject;
1.43      takayama 2418:   struct object obj1 = OINIT;
                   2419:   struct object obj2 = OINIT;
                   2420:   struct object obj3 = OINIT;
1.1       maekawa  2421:   POLY f1;
                   2422:   POLY f2;
                   2423:   POLY f3;
                   2424:   POLY f;
                   2425:   int m,i;
                   2426:   struct pairOfPOLY pf;
1.16      takayama 2427:   struct coeff *cont;
1.1       maekawa  2428:
                   2429:   if (obj.tag != Sarray) errorKan1("%s\n","KgbExtension(): The argument must be an array.");
                   2430:   size = getoaSize(obj);
                   2431:   if (size < 1) errorKan1("%s\n","KgbExtension(): Empty array.");
                   2432:   keyo = getoa(obj,0);
                   2433:   if (keyo.tag != Sdollar) errorKan1("%s\n","KgbExtension(): No key word.");
                   2434:   key = KopString(keyo);
                   2435:
                   2436:   /* branch by the key word. */
                   2437:   if (strcmp(key,"isReducible")==0) {
                   2438:     if (size != 3) errorKan1("%s\n","[(isReducible)  poly1 poly2] gbext.");
                   2439:     obj1 = getoa(obj,1);
                   2440:     obj2 = getoa(obj,2);
                   2441:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2442:       errorKan1("%s\n","[(isReducible)  poly1 poly2] gb.");
                   2443:     f1 = KopPOLY(obj1);
                   2444:     f2 = KopPOLY(obj2);
                   2445:     rob = KpoInteger((*isReducible)(f1,f2));
                   2446:   }else if (strcmp(key,"lcm") == 0) {
                   2447:     if (size != 3) errorKan1("%s\n","[(lcm)  poly1 poly2] gb.");
                   2448:     obj1 = getoa(obj,1);
                   2449:     obj2 = getoa(obj,2);
                   2450:     if (obj1.tag != Spoly || obj2.tag != Spoly)
                   2451:       errorKan1("%s\n","[(lcm)  poly1 poly2] gbext.");
                   2452:     f1 = KopPOLY(obj1);
                   2453:     f2 = KopPOLY(obj2);
                   2454:     rob = KpoPOLY((*lcm)(f1,f2));
                   2455:   }else if (strcmp(key,"grade")==0) {
                   2456:     if (size != 2) errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2457:     obj1 = getoa(obj,1);
                   2458:     if (obj1.tag != Spoly)
                   2459:       errorKan1("%s\n","[(grade)  poly1 ] gbext.");
                   2460:     f1 = KopPOLY(obj1);
                   2461:     rob = KpoInteger((*grade)(f1));
                   2462:   }else if (strcmp(key,"mod")==0) {
                   2463:     if (size != 3) errorKan1("%s\n","[(mod) poly num] gbext");
                   2464:     obj1 = getoa(obj,1);
                   2465:     obj2 = getoa(obj,2);
                   2466:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2467:       errorKan1("%s\n","The datatype of the argument mismatch: [(mod) polynomial  universalNumber] gbext");
                   2468:     }
                   2469:     rob = KpoPOLY( modulopZ(KopPOLY(obj1),KopUniversalNumber(obj2)) );
                   2470:   }else if (strcmp(key,"tomodp")==0) {
                   2471:     /* The ring must be a ring of characteristic p. */
                   2472:     if (size != 3) errorKan1("%s\n","[(tomod) poly ring] gbext");
                   2473:     obj1 = getoa(obj,1);
                   2474:     obj2 = getoa(obj,2);
                   2475:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2476:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod) polynomial  ring] gbext");
                   2477:     }
                   2478:     rob = KpoPOLY( modulop(KopPOLY(obj1),KopRingp(obj2)) );
                   2479:   }else if (strcmp(key,"tomod0")==0) {
                   2480:     /* Ring must be a ring of characteristic 0. */
                   2481:     if (size != 3) errorKan1("%s\n","[(tomod0) poly ring] gbext");
                   2482:     obj1 = getoa(obj,1);
                   2483:     obj2 = getoa(obj,2);
                   2484:     if (obj1.tag != Spoly || obj2.tag != Sring) {
                   2485:       errorKan1("%s\n","The datatype of the argument mismatch: [(tomod0) polynomial  ring] gbext");
                   2486:     }
                   2487:     errorKan1("%s\n","It has not been implemented.");
                   2488:     rob = KpoPOLY( POLYNULL );
                   2489:   }else if (strcmp(key,"divByN")==0) {
                   2490:     if (size != 3) errorKan1("%s\n","[(divByN) poly num] gbext");
                   2491:     obj1 = getoa(obj,1);
                   2492:     obj2 = getoa(obj,2);
                   2493:     if (obj1.tag != Spoly || obj2.tag != SuniversalNumber) {
                   2494:       errorKan1("%s\n","The datatype of the argument mismatch: [(divByN) polynomial  universalNumber] gbext");
                   2495:     }
                   2496:     pf =  quotientByNumber(KopPOLY(obj1),KopUniversalNumber(obj2));
                   2497:     rob  = newObjectArray(2);
                   2498:     putoa(rob,0,KpoPOLY(pf.first));
                   2499:     putoa(rob,1,KpoPOLY(pf.second));
                   2500:   }else if (strcmp(key,"isConstant")==0) {
                   2501:     if (size != 2) errorKan1("%s\n","[(isConstant) poly ] gbext bool");
                   2502:     obj1 = getoa(obj,1);
                   2503:     if (obj1.tag != Spoly) {
                   2504:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstant) polynomial] gbext");
                   2505:     }
                   2506:     return(KpoInteger(isConstant(KopPOLY(obj1))));
1.18      takayama 2507:   }else if (strcmp(key,"isConstantAll")==0) {
                   2508:     if (size != 2) errorKan1("%s\n","[(isConstantAll) poly ] gbext bool");
                   2509:     obj1 = getoa(obj,1);
                   2510:     if (obj1.tag != Spoly) {
                   2511:       errorKan1("%s\n","The datatype of the argument mismatch: [(isConstantAll) polynomial] gbext");
                   2512:     }
                   2513:     return(KpoInteger(isConstantAll(KopPOLY(obj1))));
1.1       maekawa  2514:   }else if (strcmp(key,"schreyerSkelton") == 0) {
                   2515:     if (size != 2) errorKan1("%s\n","[(schreyerSkelton) array_of_poly ] gbext array");
                   2516:     obj1 = getoa(obj,1);
                   2517:     return(KschreyerSkelton(obj1));
                   2518:   }else if (strcmp(key,"lcoeff") == 0) {
                   2519:     if (size != 2) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2520:     obj1 = getoa(obj,1);
                   2521:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lcoeff) poly] gbext poly");
                   2522:     f = KopPOLY(obj1);
                   2523:     if (f == POLYNULL) return(KpoPOLY(f));
                   2524:     return(KpoPOLY( newCell(coeffCopy(f->coeffp),newMonomial(f->m->ringp))));
                   2525:   }else if (strcmp(key,"lmonom") == 0) {
                   2526:     if (size != 2) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2527:     obj1 = getoa(obj,1);
                   2528:     if (obj1.tag != Spoly) errorKan1("%s\n","[(lmonom) poly] gbext poly");
                   2529:     f = KopPOLY(obj1);
                   2530:     if (f == POLYNULL) return(KpoPOLY(f));
                   2531:     return(KpoPOLY( newCell(intToCoeff(1,f->m->ringp),monomialCopy(f->m))));
                   2532:   }else if (strcmp(key,"toes") == 0) {
                   2533:     if (size != 2) errorKan1("%s\n","[(toes) array] gbext poly");
                   2534:     obj1 = getoa(obj,1);
                   2535:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toes) array] gbext poly");
                   2536:     return(KvectorToSchreyer_es(obj1));
1.3       takayama 2537:   }else if (strcmp(key,"toe_") == 0) {
                   2538:     if (size != 2) errorKan1("%s\n","[(toe_) array] gbext poly");
                   2539:     obj1 = getoa(obj,1);
                   2540:     if (obj1.tag == Spoly) return(obj1);
                   2541:     if (obj1.tag != Sarray) errorKan1("%s\n","[(toe_) array] gbext poly");
                   2542:     return(KpoPOLY(arrayToPOLY(obj1)));
1.1       maekawa  2543:   }else if (strcmp(key,"isOrdered") == 0) {
                   2544:     if (size != 2) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2545:     obj1 = getoa(obj,1);
                   2546:     if (obj1.tag != Spoly) errorKan1("%s\n","[(isOrdered) poly] gbext poly");
                   2547:     return(KisOrdered(obj1));
1.16      takayama 2548:   }else if (strcmp(key,"reduceContent")==0) {
                   2549:     if (size != 2) errorKan1("%s\n","[(reduceContent)  poly1 ] gbext.");
                   2550:     obj1 = getoa(obj,1);
                   2551:     if (obj1.tag != Spoly)
                   2552:       errorKan1("%s\n","[(reduceContent)  poly1 ] gbext.");
                   2553:     f1 = KopPOLY(obj1);
1.22      takayama 2554:     rob = newObjectArray(2);
                   2555:     f1 = reduceContentOfPoly(f1,&cont);
                   2556:     putoa(rob,0,KpoPOLY(f1));
                   2557:     if (f1 == POLYNULL) {
                   2558:       putoa(rob,1,KpoPOLY(f1));
                   2559:     }else{
                   2560:       putoa(rob,1,KpoPOLY(newCell(cont,newMonomial(f1->m->ringp))));
                   2561:     }
1.17      takayama 2562:   }else if (strcmp(key,"ord_ws_all")==0) {
                   2563:     if (size != 3) errorKan1("%s\n","[(ord_ws_all) fv wv] gbext");
                   2564:     obj1 = getoa(obj,1);
                   2565:     obj2 = getoa(obj,2);
                   2566:     rob  = KordWsAll(obj1,obj2);
1.23      takayama 2567:   }else if (strcmp(key,"exponents")==0) {
                   2568:     if (size == 3) {
                   2569:       obj1 = getoa(obj,1);
                   2570:       obj2 = getoa(obj,2);
                   2571:       rob  = KgetExponents(obj1,obj2);
                   2572:     }else if (size == 2) {
                   2573:       obj1 = getoa(obj,1);
                   2574:       obj2 = KpoInteger(2);
                   2575:       rob  = KgetExponents(obj1,obj2);
                   2576:     }else{
                   2577:       errorKan1("%s\n","[(exponents) f type] gbext");
                   2578:     }
1.1       maekawa  2579:   }else {
                   2580:     errorKan1("%s\n","gbext : unknown tag.");
                   2581:   }
                   2582:   return(rob);
                   2583: }
                   2584:
                   2585: struct object KmpzExtension(struct object obj)
                   2586: {
                   2587:   char *key;
                   2588:   int size;
1.43      takayama 2589:   struct object keyo = OINIT;
1.1       maekawa  2590:   struct object rob = NullObject;
1.43      takayama 2591:   struct object obj0 = OINIT;
                   2592:   struct object obj1 = OINIT;
                   2593:   struct object obj2 = OINIT;
                   2594:   struct object obj3 = OINIT;
1.1       maekawa  2595:   MP_INT *f;
                   2596:   MP_INT *g;
                   2597:   MP_INT *h;
                   2598:   MP_INT *r0;
                   2599:   MP_INT *r1;
                   2600:   MP_INT *r2;
                   2601:   int gi;
                   2602:   extern struct ring *SmallRingp;
                   2603:
                   2604:
                   2605:   if (obj.tag != Sarray) errorKan1("%s\n","KmpzExtension(): The argument must be an array.");
                   2606:   size = getoaSize(obj);
                   2607:   if (size < 1) errorKan1("%s\n","KmpzExtension(): Empty array.");
                   2608:   keyo = getoa(obj,0);
                   2609:   if (keyo.tag != Sdollar) errorKan1("%s\n","KmpzExtension(): No key word.");
                   2610:   key = KopString(keyo);
                   2611:
                   2612:   /* branch by the key word. */
                   2613:   if (strcmp(key,"gcd")==0) {
                   2614:     if (size != 3) errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2615:     obj1 = getoa(obj,1);
                   2616:     obj2 = getoa(obj,2);
1.24      takayama 2617:     if (obj1.tag != SuniversalNumber) {
                   2618:       obj1 = KdataConversion(obj1,"universalNumber");
                   2619:        }
                   2620:     if (obj2.tag != SuniversalNumber) {
                   2621:       obj2 = KdataConversion(obj2,"universalNumber");
                   2622:        }
1.1       maekawa  2623:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2624:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2625:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2626:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2627:       errorKan1("%s\n","[(gcd)  universalNumber universalNumber] mpzext.");
                   2628:     }
                   2629:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2630:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2631:     r1 = newMP_INT();
                   2632:     mpz_gcd(r1,f,g);
                   2633:     rob.tag = SuniversalNumber;
                   2634:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2635:   }else if (strcmp(key,"tdiv_qr")==0) {
                   2636:     if (size != 3) errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2637:     obj1 = getoa(obj,1);
                   2638:     obj2 = getoa(obj,2);
1.24      takayama 2639:     if (obj1.tag != SuniversalNumber) {
                   2640:       obj1 = KdataConversion(obj1,"universalNumber");
                   2641:        }
                   2642:     if (obj2.tag != SuniversalNumber) {
                   2643:       obj2 = KdataConversion(obj2,"universalNumber");
                   2644:        }
1.1       maekawa  2645:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2646:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2647:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2648:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2649:       errorKan1("%s\n","[(tdiv_qr)  universalNumber universalNumber] mpzext.");
                   2650:     }
                   2651:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2652:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2653:     r1 = newMP_INT();
                   2654:     r2 = newMP_INT();
                   2655:     mpz_tdiv_qr(r1,r2,f,g);
                   2656:     obj1.tag = SuniversalNumber;
                   2657:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2658:     obj2.tag = SuniversalNumber;
                   2659:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2660:     rob = newObjectArray(2);
                   2661:     putoa(rob,0,obj1); putoa(rob,1,obj2);
                   2662:   } else if (strcmp(key,"cancel")==0) {
                   2663:     if (size != 2) {
                   2664:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2665:     }
                   2666:     obj0 = getoa(obj,1);
                   2667:     if (obj0.tag == SuniversalNumber) return(obj0);
                   2668:     if (obj0.tag != SrationalFunction) {
                   2669:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2670:       return(obj0);
                   2671:     }
                   2672:     obj1 = *(Knumerator(obj0));
                   2673:     obj2 = *(Kdenominator(obj0));
                   2674:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber) {
                   2675:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2676:       return(obj0);
                   2677:     }
                   2678:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2679:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2680:       errorKan1("%s\n","[(cancel)  universalNumber/universalNumber] mpzext.");
                   2681:     }
                   2682:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2683:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2684:
                   2685:     r0 = newMP_INT();
                   2686:     r1 = newMP_INT();
                   2687:     r2 = newMP_INT();
                   2688:     mpz_gcd(r0,f,g);
                   2689:     mpz_divexact(r1,f,r0);
                   2690:     mpz_divexact(r2,g,r0);
                   2691:     obj1.tag = SuniversalNumber;
                   2692:     obj1.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2693:     obj2.tag = SuniversalNumber;
                   2694:     obj2.lc.universalNumber = mpintToCoeff(r2,SmallRingp);
                   2695:
                   2696:     rob = KnewRationalFunction0(copyObjectp(&obj1),copyObjectp(&obj2));
                   2697:     KisInvalidRational(&rob);
                   2698:   }else if (strcmp(key,"sqrt")==0 ||
1.7       takayama 2699:             strcmp(key,"com")==0) {
1.1       maekawa  2700:     /*  One arg functions  */
                   2701:     if (size != 2) errorKan1("%s\n","[key num] mpzext");
                   2702:     obj1 = getoa(obj,1);
1.24      takayama 2703:     if (obj1.tag != SuniversalNumber) {
                   2704:       obj1 = KdataConversion(obj1,"universalNumber");
                   2705:        }
1.1       maekawa  2706:     if (obj1.tag != SuniversalNumber)
                   2707:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2708:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber))
                   2709:       errorKan1("%s\n","[key num] mpzext : num must be a universalNumber.");
                   2710:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2711:     if (strcmp(key,"sqrt")==0) {
                   2712:       r1 = newMP_INT();
                   2713:       mpz_sqrt(r1,f);
                   2714:     }else if (strcmp(key,"com")==0) {
                   2715:       r1 = newMP_INT();
                   2716:       mpz_com(r1,f);
                   2717:     }
                   2718:     rob.tag = SuniversalNumber;
                   2719:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2720:   }else if (strcmp(key,"probab_prime_p")==0 ||
1.7       takayama 2721:             strcmp(key,"and") == 0 ||
                   2722:             strcmp(key,"ior")==0) {
1.1       maekawa  2723:     /* Two args functions */
                   2724:     if (size != 3) errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2725:     obj1 = getoa(obj,1);
                   2726:     obj2 = getoa(obj,2);
1.24      takayama 2727:     if (obj1.tag != SuniversalNumber) {
                   2728:       obj1 = KdataConversion(obj1,"universalNumber");
                   2729:        }
                   2730:     if (obj2.tag != SuniversalNumber) {
                   2731:       obj2 = KdataConversion(obj2,"universalNumber");
                   2732:        }
1.1       maekawa  2733:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2734:       errorKan1("%s\n","[key num1 num2] mpzext.");
                   2735:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2736:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
1.1       maekawa  2737:       errorKan1("%s\n","[key  num1 num2] mpzext.");
                   2738:     }
                   2739:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2740:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2741:     if (strcmp(key,"probab_prime_p")==0) {
                   2742:       gi = (int) mpz_get_si(g);
                   2743:       if (mpz_probab_prime_p(f,gi)) {
1.7       takayama 2744:         rob = KpoInteger(1);
1.1       maekawa  2745:       }else {
1.7       takayama 2746:         rob = KpoInteger(0);
1.1       maekawa  2747:       }
                   2748:     }else if (strcmp(key,"and")==0) {
                   2749:       r1 = newMP_INT();
                   2750:       mpz_and(r1,f,g);
                   2751:       rob.tag = SuniversalNumber;
                   2752:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2753:     }else if (strcmp(key,"ior")==0) {
                   2754:       r1 = newMP_INT();
                   2755:       mpz_ior(r1,f,g);
                   2756:       rob.tag = SuniversalNumber;
                   2757:       rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
                   2758:     }
                   2759:
                   2760:   }else if (strcmp(key,"powm")==0) {
                   2761:     /* three args */
                   2762:     if (size != 4) errorKan1("%s\n","[key num1 num2 num3] mpzext");
                   2763:     obj1 = getoa(obj,1); obj2 = getoa(obj,2); obj3 = getoa(obj,3);
1.24      takayama 2764:     if (obj1.tag != SuniversalNumber) {
                   2765:       obj1 = KdataConversion(obj1,"universalNumber");
                   2766:        }
                   2767:     if (obj2.tag != SuniversalNumber) {
                   2768:       obj2 = KdataConversion(obj2,"universalNumber");
                   2769:        }
                   2770:     if (obj3.tag != SuniversalNumber) {
                   2771:       obj3 = KdataConversion(obj3,"universalNumber");
                   2772:        }
1.1       maekawa  2773:     if (obj1.tag != SuniversalNumber ||
                   2774:         obj2.tag != SuniversalNumber ||
                   2775:         obj3.tag != SuniversalNumber ) {
                   2776:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2777:     }
                   2778:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
1.7       takayama 2779:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber) ||
                   2780:         ! is_this_coeff_MP_INT(obj3.lc.universalNumber)) {
1.1       maekawa  2781:       errorKan1("%s\n","[key num1 num2 num3] mpzext : num1, num2 and num3 must be universalNumbers.");
                   2782:     }
                   2783:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2784:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2785:     h = coeff_to_MP_INT(obj3.lc.universalNumber);
                   2786:     if (mpz_sgn(g) < 0) errorKan1("%s\n","[(powm) base exp mod] mpzext : exp must not be negative.");
                   2787:     r1 = newMP_INT();
                   2788:     mpz_powm(r1,f,g,h);
                   2789:     rob.tag = SuniversalNumber;
                   2790:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
1.24      takayama 2791:   } else if (strcmp(key,"lcm")==0) {
                   2792:     if (size != 3) errorKan1("%s\n","[(lcm)  universalNumber universalNumber] mpzext.");
                   2793:     obj1 = getoa(obj,1);
                   2794:     obj2 = getoa(obj,2);
                   2795:     if (obj1.tag != SuniversalNumber) {
                   2796:       obj1 = KdataConversion(obj1,"universalNumber");
                   2797:        }
                   2798:     if (obj2.tag != SuniversalNumber) {
                   2799:       obj2 = KdataConversion(obj2,"universalNumber");
                   2800:        }
                   2801:     if (obj1.tag != SuniversalNumber || obj2.tag != SuniversalNumber)
                   2802:       errorKan1("%s\n","[lcm num1 num2] mpzext.");
                   2803:     if (! is_this_coeff_MP_INT(obj1.lc.universalNumber) ||
                   2804:         ! is_this_coeff_MP_INT(obj2.lc.universalNumber)) {
                   2805:       errorKan1("%s\n","[(lcm)  universalNumber universalNumber] mpzext.");
                   2806:     }
                   2807:     f = coeff_to_MP_INT(obj1.lc.universalNumber);
                   2808:     g = coeff_to_MP_INT(obj2.lc.universalNumber);
                   2809:     r1 = newMP_INT();
                   2810:     mpz_lcm(r1,f,g);
                   2811:     rob.tag = SuniversalNumber;
                   2812:     rob.lc.universalNumber = mpintToCoeff(r1,SmallRingp);
1.1       maekawa  2813:   }else {
                   2814:     errorKan1("%s\n","mpzExtension(): Unknown tag.");
                   2815:   }
                   2816:   return(rob);
                   2817: }
                   2818:
                   2819:
                   2820: /** : context   */
                   2821: struct object KnewContext(struct object superObj,char *name) {
                   2822:   struct context *cp;
1.43      takayama 2823:   struct object ob = OINIT;
1.1       maekawa  2824:   if (superObj.tag != Sclass) {
                   2825:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2826:   }
                   2827:   if (superObj.lc.ival != CLASSNAME_CONTEXT) {
                   2828:     errorKan1("%s\n","The argument of KnewContext must be a Class.Context");
                   2829:   }
                   2830:   cp = newContext0((struct context *)(superObj.rc.voidp),name);
                   2831:   ob.tag = Sclass;
                   2832:   ob.lc.ival = CLASSNAME_CONTEXT;
                   2833:   ob.rc.voidp = cp;
                   2834:   return(ob);
                   2835: }
                   2836:
                   2837: struct object KcreateClassIncetance(struct object ob1,
1.7       takayama 2838:                                     struct object ob2,
                   2839:                                     struct object ob3)
1.1       maekawa  2840: {
                   2841:   /* [class-tag super-obj] size [class-tag]  cclass */
1.43      takayama 2842:   struct object ob4 = OINIT;
1.1       maekawa  2843:   int size,size2,i;
1.43      takayama 2844:   struct object ob5 = OINIT;
                   2845:   struct object rob = OINIT;
1.1       maekawa  2846:
                   2847:   if (ob1.tag != Sarray)
                   2848:     errorKan1("%s\n","cclass: The first argument must be an array.");
                   2849:   if (getoaSize(ob1) < 1)
                   2850:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2851:   ob4 = getoa(ob1,0);
                   2852:   if (ectag(ob4) != CLASSNAME_CONTEXT)
                   2853:     errorKan1("%s\n","cclass: The first argument must be [class-tag ....].");
                   2854:
                   2855:   if (ob2.tag != Sinteger)
                   2856:     errorKan1("%s\n","cclass: The second argument must be an integer.");
                   2857:   size = KopInteger(ob2);
                   2858:   if (size < 1)
                   2859:     errorKan1("%s\n","cclass: The size must be > 0.");
                   2860:
                   2861:   if (ob3.tag != Sarray)
                   2862:     errorKan1("%s\n","cclass: The third argument must be an array.");
                   2863:   if (getoaSize(ob3) < 1)
                   2864:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
                   2865:   ob5 = getoa(ob3,0);
                   2866:   if (ectag(ob5) != CLASSNAME_CONTEXT)
                   2867:     errorKan1("%s\n","cclass: The third argument must be [class-tag].");
1.7       takayama 2868:
1.1       maekawa  2869:   rob = newObjectArray(size);
                   2870:   putoa(rob,0,ob5);
                   2871:   if (getoaSize(ob1) < size) size2 = getoaSize(ob1);
                   2872:   else size2 = size;
                   2873:   for (i=1; i<size2; i++) {
                   2874:     putoa(rob,i,getoa(ob1,i));
                   2875:   }
                   2876:   for (i=size2; i<size; i++) {
                   2877:     putoa(rob,i,NullObject);
                   2878:   }
                   2879:   return(rob);
                   2880: }
                   2881:
                   2882:
                   2883: struct object KpoDouble(double a) {
                   2884:   struct object rob;
                   2885:   rob.tag = Sdouble;
                   2886:   /* rob.lc.dbl = (double *)sGC_malloc_atomic(sizeof(double)); */
                   2887:   rob.lc.dbl = (double *)sGC_malloc(sizeof(double));
                   2888:   if (rob.lc.dbl == (double *)NULL) {
                   2889:     fprintf(stderr,"No memory.\n"); exit(10);
                   2890:   }
                   2891:   *(rob.lc.dbl) = a;
                   2892:   return(rob);
                   2893: }
                   2894:
                   2895: double toDouble0(struct object ob) {
                   2896:   double r;
                   2897:   int r3;
1.43      takayama 2898:   struct object ob2 = OINIT;
                   2899:   struct object ob3 = OINIT;
1.1       maekawa  2900:   switch(ob.tag) {
                   2901:   case Sinteger:
                   2902:     return( (double) (KopInteger(ob)) );
                   2903:   case SuniversalNumber:
                   2904:     return((double) coeffToInt(ob.lc.universalNumber));
                   2905:   case SrationalFunction:
                   2906:     /* The argument is assumed to be a rational number. */
                   2907:     ob2 = newObjectArray(2);  ob3 = KpoString("cancel");
                   2908:     putoa(ob2,0,ob3); putoa(ob2,1,ob);
                   2909:     ob = KmpzExtension(ob2);
                   2910:     ob2 = *Knumerator(ob);  ob3 = *Kdenominator(ob);
                   2911:     r3 =  coeffToInt(ob3.lc.universalNumber);
                   2912:     if (r3  == 0) {
                   2913:       errorKan1("%s\n","toDouble0(): Division by zero.");
                   2914:       break;
                   2915:     }
                   2916:     r = ((double) coeffToInt(ob2.lc.universalNumber)) / ((double)r3);
                   2917:     return(r);
                   2918:   case Sdouble:
                   2919:     return( KopDouble(ob) );
                   2920:   default:
                   2921:     errorKan1("%s\n","toDouble0(): This type of conversion is not supported.");
                   2922:     break;
                   2923:   }
                   2924:   return(0.0);
                   2925: }
                   2926:
                   2927: struct object KpoGradedPolySet(struct gradedPolySet *grD) {
1.43      takayama 2928:   struct object rob = OINIT;
1.1       maekawa  2929:   rob.tag = Sclass;
                   2930:   rob.lc.ival = CLASSNAME_GradedPolySet;
                   2931:   rob.rc.voidp = (void *) grD;
                   2932:   return(rob);
                   2933: }
                   2934:
                   2935: static char *getspace0(int a) {
                   2936:   char *s;
                   2937:   a = (a > 0? a:-a);
                   2938:   s = (char *) sGC_malloc(a+1);
                   2939:   if (s == (char *)NULL) {
                   2940:     errorKan1("%s\n","no more memory.");
                   2941:   }
                   2942:   return(s);
                   2943: }
                   2944: struct object KdefaultPolyRing(struct object ob) {
1.43      takayama 2945:   struct object rob = OINIT;
1.1       maekawa  2946:   int i,j,k,n;
1.43      takayama 2947:   struct object ob1 = OINIT;
                   2948:   struct object ob2 = OINIT;
                   2949:   struct object ob3 = OINIT;
                   2950:   struct object ob4 = OINIT;
                   2951:   struct object ob5 = OINIT;
                   2952:   struct object t1 = OINIT;
1.1       maekawa  2953:   char *s1;
                   2954:   extern struct ring *CurrentRingp;
                   2955:   static struct ring *a[N0];
                   2956:
                   2957:   rob = NullObject;
                   2958:   if (ob.tag != Sinteger) {
                   2959:     errorKan1("%s\n","KdefaultPolyRing(): the argument must be integer.");
                   2960:   }
                   2961:   n = KopInteger(ob);
                   2962:   if (n <= 0) {
                   2963:     /* initializing */
                   2964:     for (i=0; i<N0; i++) {
                   2965:       a[i] = (struct ring*) NULL;
                   2966:     }
                   2967:     return(rob);
                   2968:   }
                   2969:
                   2970:   if ( a[n] != (struct ring*)NULL) return(KpoRingp(a[n]));
                   2971:
                   2972:   /* Let's construct ring of polynomials of 2n variables  */
                   2973:   /* x variables */
                   2974:   ob1 = newObjectArray(n);
                   2975:   for (i=0; i<n; i++) {
                   2976:     s1 = getspace0(1+ ((n-i)/10) + 1);
                   2977:     sprintf(s1,"x%d",n-i);
                   2978:     putoa(ob1,i,KpoString(s1));
                   2979:   }
                   2980:   ob2 = newObjectArray(n);
                   2981:   s1 = getspace0(1);
                   2982:   sprintf(s1,"h");
                   2983:   putoa(ob2,0,KpoString(s1));
                   2984:   for (i=1; i<n; i++) {
                   2985:     s1 = getspace0(1+((n+n-i)/10)+1);
                   2986:     sprintf(s1,"x%d",n+n-i);
                   2987:     putoa(ob2,i,KpoString(s1));
                   2988:   }
                   2989:
                   2990:   ob3 = newObjectArray(9);
                   2991:   putoa(ob3,0,KpoInteger(0));
                   2992:   for (i=1; i<9; i++) {
                   2993:     putoa(ob3,i,KpoInteger(n));
                   2994:   }
                   2995:
                   2996:   ob4 = newObjectArray(2*n);
                   2997:   t1 = newObjectArray(2*n);
                   2998:   for (i=0; i<2*n; i++) {
                   2999:     putoa(t1,i,KpoInteger(1));
                   3000:   }
                   3001:   putoa(ob4,0,t1);
                   3002:   for (i=1; i<2*n; i++) {
                   3003:     t1 = newObjectArray(2*n);
                   3004:     for (j=0; j<2*n; j++) {
                   3005:       putoa(t1,j,KpoInteger(0));
                   3006:       if (j == (2*n-i)) {
1.7       takayama 3007:         putoa(t1,j,KpoInteger(-1));
1.1       maekawa  3008:       }
                   3009:     }
                   3010:     putoa(ob4,i,t1);
                   3011:   }
                   3012:
                   3013:   ob5 = newObjectArray(2);
                   3014:   putoa(ob5,0,KpoString("mpMult"));
                   3015:   putoa(ob5,1,KpoString("poly"));
                   3016:
                   3017:   KsetUpRing(ob1,ob2,ob3,ob4,ob5);
                   3018:   a[n] = CurrentRingp;
                   3019:   return(KpoRingp(a[n]));
                   3020: }
                   3021:
                   3022:
1.31      takayama 3023: struct object Krest(struct object ob) {
                   3024:   struct object rob;
                   3025:   struct object *op;
                   3026:   int n,i;
                   3027:   if (ob.tag == Sarray) {
                   3028:     n = getoaSize(ob);
                   3029:     if (n == 0) return ob;
                   3030:     rob = newObjectArray(n-1);
                   3031:     for (i=1; i<n; i++) {
                   3032:       putoa(rob,i-1,getoa(ob,i));
                   3033:     }
                   3034:     return rob;
1.32      takayama 3035:   }else if ((ob.tag == Slist) || (ob.tag == Snull)) {
                   3036:     return Kcdr(ob);
1.31      takayama 3037:   }else{
                   3038:     errorKan1("%s\n","Krest(ob): ob must be an array or a list.");
                   3039:   }
                   3040: }
                   3041: struct object Kjoin(struct object ob1, struct object ob2) {
1.43      takayama 3042:   struct object rob = OINIT;
1.31      takayama 3043:   int n1,n2,i;
                   3044:   if ((ob1.tag == Sarray) &&  (ob2.tag == Sarray)) {
                   3045:     n1 = getoaSize(ob1); n2 = getoaSize(ob2);
                   3046:     rob = newObjectArray(n1+n2);
                   3047:     for (i=0; i<n1; i++) {
                   3048:       putoa(rob,i,getoa(ob1,i));
                   3049:     }
                   3050:     for (i=n1; i<n1+n2; i++) {
                   3051:       putoa(rob,i,getoa(ob2,i-n1));
                   3052:     }
                   3053:     return rob;
1.32      takayama 3054:   }else if ((ob1.tag == Slist) || (ob1.tag == Snull)) {
                   3055:        if ((ob2.tag == Slist) || (ob2.tag == Snull)) {
                   3056:          return KvJoin(ob1,ob2);
                   3057:        }else{
                   3058:          errorKan1("%s\n","Kjoin: both argument must be a list.");
                   3059:        }
1.31      takayama 3060:   }else{
                   3061:     errorKan1("%s\n","Kjoin: arguments must be arrays.");
                   3062:   }
                   3063: }
1.1       maekawa  3064:
1.33      takayama 3065: struct object Kget(struct object ob1, struct object ob2) {
1.43      takayama 3066:   struct object rob = OINIT;
                   3067:   struct object tob = OINIT;
1.33      takayama 3068:   int i,j,size,n;
                   3069:   if (ob2.tag == Sinteger) {
                   3070:     i =ob2.lc.ival;
                   3071:   }else if (ob2.tag == SuniversalNumber) {
                   3072:     i = KopInteger(KdataConversion(ob2,"integer"));
                   3073:   }else if (ob2.tag == Sarray) {
                   3074:     n = getoaSize(ob2);
                   3075:     if (n == 0) return ob1;
                   3076:     rob = ob1;
                   3077:     for (i=0; i<n; i++) {
                   3078:       rob=Kget(rob,getoa(ob2,i));
                   3079:     }
                   3080:     return rob;
                   3081:   }
                   3082:   if (ob1.tag == Sarray) {
                   3083:     size = getoaSize(ob1);
                   3084:     if ((0 <= i) && (i<size)) {
                   3085:       return(getoa(ob1,i));
                   3086:     }else{
                   3087:       errorKan1("%s\n","Kget: Index is out of bound. (get)\n");
                   3088:     }
                   3089:   }else if (ob1.tag == Slist) {
                   3090:     rob = NullObject;
                   3091:     if (i < 0) errorKan1("%s\n","Kget: Index is negative. (get)");
                   3092:     for (j=0; j<i; j++) {
                   3093:       rob = Kcdr(ob1);
                   3094:       if ((ob1.tag == Snull) && (rob.tag == Snull)) {
                   3095:         errorKan1("%s\n","Kget: Index is out of bound. (get) cdr of null list.\n");
                   3096:       }
                   3097:       ob1 = rob;
                   3098:     }
                   3099:     return Kcar(ob1);
1.38      takayama 3100:   } else if (ob1.tag == SbyteArray) {
                   3101:     size = getByteArraySize(ob1);
                   3102:     if ((0 <= i) && (i<size)) {
                   3103:       return(KpoInteger(KopByteArray(ob1)[i]));
                   3104:     }else{
                   3105:       errorKan1("%s\n","Kget: Index is out of bound. (get)\n");
                   3106:     }
                   3107:   } else if (ob1.tag == Sdollar) {
                   3108:     unsigned char *sss;
                   3109:     sss = (unsigned char *) KopString(ob1);
                   3110:     size = strlen(sss);
                   3111:     if ((0 <= i) && (i<size)) {
                   3112:       return(KpoInteger(sss[i]));
                   3113:     }else{
                   3114:       errorKan1("%s\n","Kget: Index is out of bound. (get)\n");
                   3115:     }
                   3116:
1.33      takayama 3117:   }else errorKan1("%s\n","Kget: argument must be an array or a list.");
1.38      takayama 3118: }
                   3119:
                   3120: /* Constructor of byteArray */
                   3121: struct object newByteArray(int size,struct object obj) {
                   3122:   unsigned char *ba;
                   3123:   unsigned char *ba2;
1.43      takayama 3124:   struct object rob = OINIT;
                   3125:   struct object tob = OINIT;
1.38      takayama 3126:   int i,n;
                   3127:   ba = NULL;
1.39      takayama 3128:   if (size > 0) {
                   3129:     ba = (unsigned char *) sGC_malloc(size);
                   3130:     if (ba == NULL) errorKan1("%s\n","No more memory.");
                   3131:   }
1.38      takayama 3132:   rob.tag = SbyteArray; rob.lc.bytes = ba; rob.rc.ival = size;
                   3133:   if (obj.tag == SbyteArray) {
                   3134:     n = getByteArraySize(obj);
                   3135:     ba2 = KopByteArray(obj);
1.39      takayama 3136:     for (i=0; i<(n<size?n:size); i++) {
1.38      takayama 3137:       ba[i] = ba2[i];
                   3138:     }
                   3139:     for (i=n; i<size; i++) ba[i] = 0;
                   3140:     return rob;
                   3141:   }else if (obj.tag == Sarray) {
                   3142:     n = getoaSize(obj);
                   3143:     for (i=0; i<n; i++) {
                   3144:       tob = getoa(obj,i);
                   3145:       tob = Kto_int32(tob);
                   3146:       if (tob.tag != Sinteger) errorKan1("%s\n","newByteArray: array is not an array of integer or universalNumber.");
                   3147:       ba[i] = (unsigned char) KopInteger(tob);
                   3148:     }
                   3149:     for (i=n; i<size; i++) ba[i] = 0;
                   3150:     return rob;
                   3151:   }else{
                   3152:     for (i=0; i<size; i++) ba[i] = 0;
                   3153:     return rob;
                   3154:   }
1.40      takayama 3155: }
                   3156: struct object newByteArrayFromStr(char *s,int size) {
                   3157:   unsigned char *ba;
1.43      takayama 3158:   struct object rob = OINIT;
1.40      takayama 3159:   int i;
                   3160:   ba = NULL;
                   3161:   if (size > 0) {
                   3162:     ba = (unsigned char *) sGC_malloc(size);
                   3163:     if (ba == NULL) errorKan1("%s\n","No more memory.");
                   3164:   }
                   3165:   rob.tag = SbyteArray; rob.lc.bytes = ba; rob.rc.ival = size;
                   3166:   for (i=0; i<size; i++) {
                   3167:        ba[i] = (char) s[i];
                   3168:   }
                   3169:   return(rob);
1.38      takayama 3170: }
1.42      takayama 3171:
1.38      takayama 3172: struct object byteArrayToArray(struct object obj) {
                   3173:   int n,i; unsigned char *ba;
1.43      takayama 3174:   struct object rob = OINIT;
1.38      takayama 3175:   if (obj.tag != SbyteArray) errorKan1("%s\n","byteArrayToArray: argument is not an byteArray.");
                   3176:   n = getByteArraySize(obj);
                   3177:   rob = newObjectArray(n);
                   3178:   ba = KopByteArray(obj);
                   3179:   for (i=0; i<n; i++) putoa(rob,i,KpoInteger((int) ba[i]));
                   3180:   return rob;
1.33      takayama 3181: }
1.1       maekawa  3182:
1.42      takayama 3183: struct object KgetAttributeList(struct object ob){
1.43      takayama 3184:   struct object rob = OINIT;
1.42      takayama 3185:   if (ob.attr != NULL) rob = *(ob.attr);
                   3186:   else rob = NullObject;
                   3187:   return rob;
                   3188: }
1.44      takayama 3189: struct object  KsetAttributeList(struct object ob,struct object attr) {
1.42      takayama 3190:   ob.attr = newObject();
                   3191:   *(ob.attr) = attr;
                   3192:   return ob;
                   3193: }
                   3194: struct object KgetAttribute(struct object ob,struct object key) {
1.43      takayama 3195:   struct object rob = OINIT;
                   3196:   struct object alist = OINIT;
1.42      takayama 3197:   int n,i;
1.43      takayama 3198:   struct object tob = OINIT;
1.42      takayama 3199:   char *s;
                   3200:   rob = NullObject;
                   3201:   if (ob.attr == NULL) return rob;
                   3202:   alist = *(ob.attr);
                   3203:   if (alist.tag != Sarray) return rob;
                   3204:   if (key.tag != Sdollar) return rob;
                   3205:   s = KopString(key);
                   3206:   n = getoaSize(alist);
                   3207:   for (i = 0; i < n; i += 2) {
                   3208:     tob = getoa(alist,i);
                   3209:     if (tob.tag == Sdollar) {
                   3210:       if (strcmp(KopString(tob),s) == 0) {
                   3211:         if (i+1 < n) rob = getoa(alist,i+1);
                   3212:         return rob;
                   3213:       }
                   3214:     }
                   3215:   }
                   3216:   return rob;
                   3217: }
1.44      takayama 3218: /*  ob (key) (value) setAttribute /ob set. They are not destructive. */
                   3219: struct object KsetAttribute(struct object ob,struct object key,struct object value) {
1.43      takayama 3220:   struct object rob = OINIT;
                   3221:   struct object alist = OINIT;
1.42      takayama 3222:   int n,i;
                   3223:   char *s = "";
1.43      takayama 3224:   struct object tob = OINIT;
1.42      takayama 3225:   rob = ob;
                   3226:   if (ob.attr == NULL) {
                   3227:     rob.attr = newObject();
                   3228:     *(rob.attr) = newObjectArray(2);
                   3229:     putoa((*(rob.attr)),0,key);
                   3230:     putoa((*(rob.attr)),1,value);
                   3231:     return rob;
                   3232:   }
                   3233:   alist = *(ob.attr);
                   3234:   if (alist.tag != Sarray) return rob;
                   3235:   if (key.tag != Sdollar) {
                   3236:     s = KopString(key);
                   3237:   }
                   3238:   n = getoaSize(alist);
                   3239:   for (i = 0; i < n; i += 2) {
                   3240:     tob = getoa(alist,i);
                   3241:     if (tob.tag == Sdollar) {
                   3242:       if (strcmp(KopString(tob),s) == 0) {
                   3243:         if (i+1 < n) putoa(alist,i+1,value);
                   3244:         return rob;
                   3245:       }
                   3246:     }
                   3247:   }
                   3248:
                   3249:   rob.attr = newObject();
                   3250:   *(rob.attr) = newObjectArray(n+2);
                   3251:   for (i=0; i<n; i++) {
                   3252:     putoa((*(rob.attr)),i,getoa((*(ob.attr)),i));
                   3253:   }
                   3254:   putoa((*(rob.attr)),n,key);
                   3255:   putoa((*(rob.attr)),n+1,value);
                   3256:   return rob;
                   3257: }
                   3258:
1.1       maekawa  3259: /******************************************************************
1.42      takayama 3260:      Error handler
1.1       maekawa  3261: ******************************************************************/
                   3262:
                   3263: errorKan1(str,message)
1.7       takayama 3264:      char *str;
                   3265:      char *message;
1.1       maekawa  3266: {
                   3267:   extern char *GotoLabel;
                   3268:   extern int GotoP;
                   3269:   extern int ErrorMessageMode;
1.37      takayama 3270:   extern int RestrictedMode, RestrictedMode_saved;
1.1       maekawa  3271:   char tmpc[1024];
1.37      takayama 3272:   RestrictedMode = RestrictedMode_saved;
1.10      takayama 3273:   cancelAlarm();
1.1       maekawa  3274:   if (ErrorMessageMode == 1 || ErrorMessageMode == 2) {
                   3275:     sprintf(tmpc,"\nERROR(kanExport[0|1].c): ");
                   3276:     if (strlen(message) < 900) {
                   3277:       strcat(tmpc,message);
                   3278:     }
                   3279:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   3280:   }
                   3281:   if (ErrorMessageMode != 1) {
                   3282:     fprintf(stderr,"\nERROR(kanExport[0|1].c): ");
                   3283:     fprintf(stderr,str,message);
1.30      takayama 3284:     (void) traceShowStack(); traceClearStack();
1.1       maekawa  3285:   }
                   3286:   /* fprintf(stderr,"Hello "); */
                   3287:   if (GotoP) {
                   3288:     /* fprintf(stderr,"Hello. GOTO "); */
                   3289:     fprintf(Fstack,"The interpreter was looking for the label <<%s>>. It is also aborted.\n",GotoLabel);
                   3290:     GotoP = 0;
                   3291:   }
                   3292:   stdOperandStack(); contextControl(CCRESTORE);
                   3293:   /* fprintf(stderr,"Now. Long jump!\n"); */
1.8       takayama 3294: #if defined(__CYGWIN__)
                   3295:   siglongjmp(EnvOfStackMachine,1);
                   3296: #else
1.1       maekawa  3297:   longjmp(EnvOfStackMachine,1);
1.8       takayama 3298: #endif
1.1       maekawa  3299: }
1.22      takayama 3300:
1.1       maekawa  3301:
                   3302: warningKan(str)
1.7       takayama 3303:      char *str;
1.1       maekawa  3304: {
                   3305:   extern int WarningMessageMode;
                   3306:   extern int Strict;
                   3307:   char tmpc[1024];
                   3308:   if (WarningMessageMode == 1 || WarningMessageMode == 2) {
                   3309:     sprintf(tmpc,"\nWARNING(kanExport[0|1].c): ");
                   3310:     if (strlen(str) < 900) {
                   3311:       strcat(tmpc,str);
                   3312:     }
                   3313:     pushErrorStack(KnewErrorPacket(SerialCurrent,-1,tmpc));
                   3314:   }
                   3315:   if (WarningMessageMode != 1) {
                   3316:     fprintf(stderr,"\nWARNING(kanExport[0|1].c): ");
                   3317:     fprintf(stderr,str);
                   3318:     fprintf(stderr,"\n");
                   3319:   }
                   3320:   /* if (Strict) errorKan1("%s\n"," "); */
                   3321:   if (Strict) errorKan1("%s\n",str);
1.4       takayama 3322:   return(0);
                   3323: }
                   3324:
                   3325: warningKanNoStrictMode(str)
1.7       takayama 3326:      char *str;
1.4       takayama 3327: {
                   3328:   extern int Strict;
                   3329:   int t;
                   3330:   t = Strict;
                   3331:   Strict = 0;
                   3332:   warningKan(str);
                   3333:   Strict = t;
1.1       maekawa  3334:   return(0);
                   3335: }
                   3336:
                   3337:
                   3338:
                   3339:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>