[BACK]Return to kanExport1.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport1.c, Revision 1.14

1.14    ! takayama    1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport1.c,v 1.13 2004/07/31 02:23:02 takayama Exp $ */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: static int Message = 1;
                     13: extern int KanGBmessage;
                     14:
1.5       takayama   15: struct object DegreeShifto;
                     16: int DegreeShifto_size = 0;
                     17: int *DegreeShifto_vec = NULL;
1.9       takayama   18: struct object DegreeShiftD;
                     19: int DegreeShiftD_size = 0;
                     20: int *DegreeShiftD_vec = NULL;
1.5       takayama   21:
1.1       maekawa    22: /** :kan, :ring */
                     23: struct object Kreduction(f,set)
1.2       takayama   24:      struct object f;
                     25:      struct object set;
1.1       maekawa    26: {
                     27:   POLY r;
                     28:   struct gradedPolySet *grG;
                     29:   struct syz0 syz;
                     30:   struct object rob;
                     31:   int flag;
                     32:   extern int ReduceLowerTerms;
                     33:
                     34:   if (f.tag != Spoly) errorKan1("%s\n","Kreduction(): the first argument must be a polynomial.");
                     35:
                     36:   if (ectag(set) == CLASSNAME_GradedPolySet) {
                     37:     grG = KopGradedPolySet(set);
                     38:     flag = 1;
                     39:   }else{
                     40:     if (set.tag != Sarray) errorKan1("%s\n","Kreduction(): the second argument must be a set of polynomials.");
                     41:     grG = arrayToGradedPolySet(set);
                     42:     flag = 0;
                     43:   }
                     44:   if (ReduceLowerTerms) {
                     45:     r = (*reductionCdr)(f.lc.poly,grG,1,&syz);
                     46:   }else{
                     47:     r = (*reduction)(f.lc.poly,grG,1,&syz);
                     48:   }
1.6       takayama   49:   /* outputGradedPolySet(grG,0); */
1.1       maekawa    50:   if (flag) {
                     51:     rob = newObjectArray(3);
                     52:     putoa(rob,0,KpoPOLY(r));
                     53:     putoa(rob,1,KpoPOLY(syz.cf));
                     54:     putoa(rob,2,syzPolyToArray(countGradedPolySet(grG),syz.syz,grG));
                     55:   }else {
                     56:     rob = newObjectArray(4);
                     57:     putoa(rob,0,KpoPOLY(r));
                     58:     putoa(rob,1,KpoPOLY(syz.cf));
                     59:     putoa(rob,2,syzPolyToArray(getoaSize(set),syz.syz,grG));
                     60:     putoa(rob,3,gradedPolySetToArray(grG,1));
                     61:   }
                     62:   return(rob);
                     63: }
                     64:
                     65: struct object Kgroebner(ob)
1.2       takayama   66:      struct object ob;
1.1       maekawa    67: {
                     68:   int needSyz = 0;
                     69:   int needBack = 0;
                     70:   int needInput = 0;
                     71:   int countDown = 0;
                     72:   int cdflag = 0;
                     73:   struct object ob1,ob2,ob2c;
                     74:   int i;
                     75:   struct gradedPolySet *grG;
                     76:   struct pair *grP;
                     77:   struct arrayOfPOLY *a;
                     78:   struct object rob;
                     79:   struct gradedPolySet *grBases;
                     80:   struct matrixOfPOLY *mp;
                     81:   struct matrixOfPOLY *backwardMat;
                     82:   struct object ob1New;
                     83:   extern char *F_groebner;
                     84:   extern int CheckHomogenization;
                     85:   extern int StopDegree;
                     86:   int sdflag = 0;
                     87:   int forceReduction = 0;
                     88:
                     89:   int ob1Size, ob2Size, noZeroEntry;
                     90:   int *ob1ToOb2;
                     91:   int *ob1ZeroPos;
                     92:   int method;
                     93:   int j,k;
                     94:   struct object rob2;
                     95:   struct object rob3;
                     96:   struct object rob4;
                     97:   struct ring *myring;
                     98:   POLY f;
                     99:   struct object orgB;
                    100:   struct object newB;
                    101:   struct object orgC;
                    102:   struct object newC;
                    103:   static struct object paddingVector(struct object ob, int table[], int m);
                    104:   static struct object unitVector(int pos, int size,struct ring *r);
                    105:   extern struct ring *CurrentRingp;
                    106:
                    107:   StopDegree = 0x7fff;
                    108:
                    109:   if (ob.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array.");
                    110:   switch(getoaSize(ob)) {
                    111:   case 1:
                    112:     needBack = 0; needSyz = 0; needInput = 0;
                    113:     ob1 = getoa(ob,0);
                    114:     break;
                    115:   case 2:
                    116:     ob1 = getoa(ob,0);
                    117:     ob2 = getoa(ob,1);
                    118:     if (ob2.tag != Sarray) {
                    119:       errorKan1("%s\n","Kgroebner(): The options must be given by an array.");
                    120:     }
                    121:     for (i=0; i<getoaSize(ob2); i++) {
                    122:       ob2c = getoa(ob2,i);
                    123:       if (ob2c.tag == Sdollar) {
1.2       takayama  124:         if (strcmp(ob2c.lc.str,"needBack")==0) {
                    125:           needBack = 1;
                    126:         }else if (strcmp(ob2c.lc.str,"needSyz")==0) {
                    127:           if (!needBack) {
                    128:             /* warningKan("Kgroebner(): needBack is automatically set."); */
                    129:           }
                    130:           needSyz = needBack = 1;
                    131:         }else if (strcmp(ob2c.lc.str,"forceReduction")==0) {
                    132:           forceReduction = 1;
                    133:         }else if (strcmp(ob2c.lc.str,"countDown")==0) {
                    134:           countDown = 1; cdflag = 1;
                    135:           if (needSyz) {
                    136:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    137:             needSyz = 0;
                    138:           }
                    139:         }else if (strcmp(ob2c.lc.str,"StopDegree")==0) {
                    140:           StopDegree = 0; sdflag = 1;
                    141:           if (needSyz) {
                    142:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    143:             needSyz = 0;
                    144:           }
                    145:         }else {
                    146:           warningKan("Unknown keyword for options.");
                    147:         }
1.1       maekawa   148:       }else if (ob2c.tag == Sinteger) {
1.2       takayama  149:         if (cdflag) {
                    150:           cdflag = 0;
                    151:           countDown = KopInteger(ob2c);
                    152:         }else if (sdflag) {
                    153:           sdflag = 0;
                    154:           StopDegree = KopInteger(ob2c);
                    155:         }
1.1       maekawa   156:       }
                    157:     }
                    158:     break;
                    159:   default:
                    160:     errorKan1("%s\n","Kgroebner(): [ [polynomials] ] or [[polynomials] [options]].");
                    161:   }
1.2       takayama  162:
1.1       maekawa   163:   if (ob1.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array. Example: [ [$x-1$ . $x y -2$ .] [$needBack$ $needSyz$ $needInput$]] ");
                    164:   ob1New = newObjectArray(getoaSize(ob1));
                    165:   for (i=0; i< getoaSize(ob1); i++) {
                    166:     if (getoa(ob1,i).tag == Spoly) {
                    167:       putoa(ob1New,i,getoa(ob1,i));
                    168:     }else if (getoa(ob1,i).tag == Sarray) {
                    169:       /* If the generater is given as an array, flatten it. */
                    170:       putoa(ob1New,i,KpoPOLY( arrayToPOLY(getoa(ob1,i))));
                    171:     }else{
                    172:       errorKan1("%s\n","Kgroebner(): The elements must be polynomials or array of polynomials.");
                    173:     }
                    174:     /* getoa(ob1,i) is poly, now check the homogenization. */
                    175:     if (CheckHomogenization) {
                    176:       if ((strcmp(F_groebner,"standard")==0) &&
1.2       takayama  177:           !isHomogenized(KopPOLY(getoa(ob1New,i)))) {
                    178:         fprintf(stderr,"\n%s",KPOLYToString(KopPOLY(getoa(ob1New,i))));
                    179:         errorKan1("%s\n","Kgroebner(): The above polynomial is not homogenized. cf. homogenize.");
1.1       maekawa   180:       }
                    181:     }
                    182:   }
                    183:   ob1 = ob1New;
                    184:
                    185:   /* To handle the input with zero entries. For debug, debug/gr.sm1*/
                    186:   ob1Size = getoaSize(ob1);
                    187:   ob2Size = 0; myring = CurrentRingp;
                    188:   for (i=0; i<ob1Size; i++) {
                    189:     if (KopPOLY(getoa(ob1,i)) != POLYNULL) ob2Size++;
                    190:   }
                    191:   if (ob2Size == ob1Size) noZeroEntry = 1;
                    192:   else noZeroEntry = 0;
                    193:   if (ob1Size == 0)  {
                    194:     if (needBack && needSyz) {
                    195:       rob = newObjectArray(3);
                    196:       putoa(rob,0,newObjectArray(0));
                    197:       putoa(rob,1,newObjectArray(0));
                    198:       putoa(rob,2,newObjectArray(0));
                    199:     }else if (needBack) {
                    200:       rob = newObjectArray(2);
                    201:       putoa(rob,0,newObjectArray(0));
                    202:       putoa(rob,1,newObjectArray(0));
                    203:     }else {
                    204:       rob = newObjectArray(1);
                    205:       putoa(rob,0,newObjectArray(0));
                    206:     }
                    207:     return(rob);
                    208:   }
                    209:   /* Assume ob1size > 0 */
                    210:   if (ob2Size == 0) {
                    211:     rob2 = newObjectArray(1); putoa(rob2,0,KpoPOLY(POLYNULL));
                    212:     if (needBack && needSyz) {
                    213:       rob = newObjectArray(3);
                    214:       putoa(rob,0,rob2);
                    215:       rob3 = newObjectArray(1);
                    216:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    217:       putoa(rob,1,rob3);
                    218:       rob4 = newObjectArray(ob1Size);
                    219:       for (i=0; i<ob1Size; i++) {
1.2       takayama  220:         putoa(rob4,i,unitVector(i,ob1Size,myring));
1.1       maekawa   221:       }
                    222:       putoa(rob,2,rob4);
                    223:     }else if (needBack) {
                    224:       rob = newObjectArray(2);
                    225:       putoa(rob,0,rob2);
                    226:       rob3 = newObjectArray(1);
                    227:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    228:       putoa(rob,1,rob3);
                    229:     }else {
                    230:       rob = newObjectArray(1);
                    231:       putoa(rob,0,rob2);
                    232:     }
                    233:     return(rob);
                    234:   }
                    235:   /* Assume ob1Size , ob2Size > 0 */
                    236:   ob2 = newObjectArray(ob2Size);
1.11      takayama  237:   ob1ToOb2 =   (int *)sGC_malloc(sizeof(int)*ob1Size);
                    238:   ob1ZeroPos = (int *)sGC_malloc(sizeof(int)*(ob1Size-ob2Size+1));
1.1       maekawa   239:   if (ob1ToOb2 == NULL || ob1ZeroPos == NULL) errorKan1("%s\n","No more memory.");
                    240:   j = 0; k = 0;
                    241:   for (i=0; i<ob1Size; i++) {
                    242:     f = KopPOLY(getoa(ob1,i));
                    243:     if (f != POLYNULL) {
                    244:       myring = f->m->ringp;
                    245:       putoa(ob2,j,KpoPOLY(f));
                    246:       ob1ToOb2[i] = j; j++;
                    247:     }else{
                    248:       ob1ToOb2[i] = -1;
                    249:       ob1ZeroPos[k] = i; k++;
                    250:     }
                    251:   }
                    252:
                    253:   a = arrayToArrayOfPOLY(ob2);
                    254:   grG = (*groebner)(a,needBack,needSyz,&grP,countDown,forceReduction);
                    255:
                    256:   if (strcmp(F_groebner,"gm") == 0 && (needBack || needSyz)) {
                    257:     warningKan("The options needBack and needSyz are ignored.");
                    258:     needBack = needSyz = 0;
                    259:   }
                    260:
                    261:   /*return(gradedPolySetToGradedArray(grG,0));*/
                    262:   if (needBack && needSyz) {
                    263:     rob = newObjectArray(3);
                    264:     if (Message && KanGBmessage) {
                    265:       printf("Computing the backward transformation   ");
                    266:       fflush(stdout);
                    267:     }
                    268:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    269:     if (KanGBmessage) printf("Done.\n");
                    270:
                    271:     /* Computing the syzygies. */
                    272:     if (Message && KanGBmessage) {
                    273:       printf("Computing the syzygies    ");
                    274:       fflush(stdout);
                    275:     }
                    276:     mp = getSyzygy(grG,grP->next,&grBases,&backwardMat);
1.10      takayama  277:        if (mp == NULL) errorKan1("%s\n","Internal error in getSyzygy(). BUG of sm1.");
1.1       maekawa   278:     if (KanGBmessage) printf("Done.\n");
                    279:
                    280:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    281:     putoa(rob,1,matrixOfPOLYToArray(backwardMat));
                    282:     putoa(rob,2,matrixOfPOLYToArray(mp));
                    283:   }else if (needBack) {
                    284:     rob = newObjectArray(2);
                    285:     if (Message && KanGBmessage) {
                    286:       printf("Computing the backward transformation.....");
                    287:       fflush(stdout);
                    288:     }
                    289:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    290:     if (KanGBmessage) printf("Done.\n");
                    291:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    292:     putoa(rob,1,getBackwardArray(grG));
                    293:   }else {
                    294:     rob = newObjectArray(1);
                    295:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    296:   }
                    297:
                    298:   /* To handle zero entries in the input. */
                    299:   if (noZeroEntry) {
                    300:     return(rob);
                    301:   }
                    302:   method = getoaSize(rob);
                    303:   switch(method) {
                    304:   case 1:
                    305:     return(rob);
                    306:     break;
                    307:   case 2:
                    308:     orgB = getoa(rob,1); /* backward transformation. */
                    309:     newB = newObjectArray(getoaSize(orgB));
                    310:     for (i=0; i<getoaSize(orgB); i++) {
                    311:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    312:     }
                    313:     rob2 = newObjectArray(2);
                    314:     putoa(rob2,0,getoa(rob,0));
                    315:     putoa(rob2,1,newB);
                    316:     return(rob2);
                    317:     break;
                    318:   case 3:
                    319:     orgB = getoa(rob,1); /* backward transformation. */
                    320:     newB = newObjectArray(getoaSize(orgB));
                    321:     for (i=0; i<getoaSize(orgB); i++) {
                    322:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    323:     }
                    324:     orgC = getoa(rob,2);
                    325:     newC = newObjectArray(getoaSize(orgC)+ob1Size-ob2Size);
                    326:     for (i=0; i<getoaSize(orgC); i++) {
                    327:       putoa(newC, i, paddingVector(getoa(orgC,i),ob1ToOb2,ob1Size));
                    328:     }
                    329:     for (i = getoaSize(orgC), j = 0; i<getoaSize(orgC)+ob1Size-ob2Size; i++,j++) {
                    330:       putoa(newC,i,unitVector(ob1ZeroPos[j],ob1Size,myring));
                    331:     }
                    332:     rob2 = newObjectArray(3);
                    333:     putoa(rob2,0,getoa(rob,0));
                    334:     putoa(rob2,1,newB);
                    335:     putoa(rob2,2,newC);
                    336:     return(rob2);
                    337:     break;
                    338:   default:
                    339:     errorKan1("%s","Kgroebner: unknown method.");
                    340:   }
                    341: }
                    342:
                    343: static struct object paddingVector(struct object ob, int table[], int m)
                    344: {
                    345:   struct object rob;
                    346:   int i;
                    347:   rob = newObjectArray(m);
                    348:   for (i=0; i<m; i++) {
                    349:     if (table[i] != -1) {
                    350:       putoa(rob,i,getoa(ob,table[i]));
                    351:     }else{
                    352:       putoa(rob,i,KpoPOLY(POLYNULL));
                    353:     }
                    354:   }
                    355:   return(rob);
                    356: }
                    357:
                    358: static struct object unitVector(int pos, int size,struct ring *r)
                    359: {
                    360:   struct object rob;
                    361:   int i;
                    362:   POLY one;
                    363:   rob = newObjectArray(size);
                    364:   for (i=0; i<size; i++) {
                    365:     putoa(rob,i,KpoPOLY(POLYNULL));
                    366:   }
                    367:   if ((0 <= pos) && (pos < size)) {
                    368:     putoa(rob,pos, KpoPOLY(cxx(1,0,0,r)));
                    369:   }
                    370:   return(rob);
                    371: }
                    372:
                    373:
                    374:
                    375: /* :misc */
                    376:
                    377: #define INITGRADE 3
                    378: #define INITSIZE 0
                    379:
                    380: struct gradedPolySet *arrayToGradedPolySet(ob)
1.2       takayama  381:      struct object ob;
1.1       maekawa   382: {
                    383:   int n,i,grd,ind;
                    384:   POLY f;
                    385:   struct gradedPolySet *grG;
                    386:   int serial;
                    387:   extern int Sugar;
                    388:
                    389:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToGradedPolySet(): the argument must be array.");
                    390:   n = getoaSize(ob);
                    391:   for (i=0; i<n; i++) {
                    392:     if (getoa(ob,i).tag != Spoly)
                    393:       errorKan1("%s\n","arrayToGradedPolySet(): the elements must be polynomials.");
                    394:   }
                    395:   grG = newGradedPolySet(INITGRADE);
                    396:
                    397:   for (i=0; i<grG->lim; i++) {
                    398:     grG->polys[i] = newPolySet(INITSIZE);
                    399:   }
                    400:   for (i=0; i<n; i++) {
                    401:     f = KopPOLY(getoa(ob,i));
                    402:     grd = -1; whereInG(grG,f,&grd,&ind,Sugar);
                    403:     serial = i;
                    404:     grG = putPolyInG(grG,f,grd,ind,(struct syz0 *)NULL,1,serial);
                    405:   }
                    406:   return(grG);
                    407: }
                    408:
                    409:
                    410: struct object polySetToArray(ps,keepRedundant)
1.2       takayama  411:      struct polySet *ps;
                    412:      int keepRedundant;
1.1       maekawa   413: {
                    414:   int n,i,j;
                    415:   struct object ob;
                    416:   if (ps == (struct polySet *)NULL) return(newObjectArray(0));
                    417:   n = 0;
                    418:   if (keepRedundant) {
                    419:     n = ps->size;
                    420:   }else{
                    421:     for (i=0; i<ps->size; i++) {
                    422:       if (ps->del[i] == 0) ++n;
                    423:     }
                    424:   }
                    425:   ob = newObjectArray(n);
                    426:   j = 0;
                    427:   for (i=0; i<ps->size; i++) {
                    428:     if (keepRedundant || (ps->del[i] == 0)) {
                    429:       putoa(ob,j,KpoPOLY(ps->g[i]));
                    430:       j++;
                    431:     }
                    432:   }
                    433:   return(ob);
                    434: }
                    435:
                    436:
                    437: struct object gradedPolySetToGradedArray(gps,keepRedundant)
1.2       takayama  438:      struct gradedPolySet *gps;
                    439:      int keepRedundant;
1.1       maekawa   440: {
                    441:   struct object ob,vec;
                    442:   int i;
                    443:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    444:   ob = newObjectArray(gps->maxGrade +1);
                    445:   vec = newObjectArray(gps->maxGrade);
                    446:   for (i=0; i<gps->maxGrade; i++) {
                    447:     putoa(vec,i,KpoInteger(i));
                    448:     putoa(ob,i+1,polySetToArray(gps->polys[i],keepRedundant));
                    449:   }
                    450:   putoa(ob,0,vec);
                    451:   return(ob);
                    452: }
                    453:
                    454:
                    455: struct object gradedPolySetToArray(gps,keepRedundant)
1.2       takayama  456:      struct gradedPolySet *gps;
                    457:      int keepRedundant;
1.1       maekawa   458: {
                    459:   struct object ob,vec;
                    460:   struct polySet *ps;
                    461:   int k;
                    462:   int i,j;
                    463:   int size;
                    464:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    465:   size = 0;
                    466:   for (i=0; i<gps->maxGrade; i++) {
                    467:     ps = gps->polys[i];
                    468:     if (keepRedundant) {
                    469:       size += ps->size;
                    470:     }else{
                    471:       for (j=0; j<ps->size; j++) {
1.2       takayama  472:         if (ps->del[j] == 0) ++size;
1.1       maekawa   473:       }
                    474:     }
                    475:   }
                    476:
                    477:   ob = newObjectArray(size);
                    478:   k = 0;
                    479:   for (i=0; i<gps->maxGrade; i++) {
                    480:     ps = gps->polys[i];
                    481:     for (j=0; j<ps->size; j++) {
                    482:       if (keepRedundant || (ps->del[j] == 0)) {
1.2       takayama  483:         putoa(ob,k,KpoPOLY(ps->g[j]));
                    484:         k++;
1.1       maekawa   485:       }
                    486:     }
                    487:   }
                    488:   return(ob);
                    489: }
                    490:
                    491:
                    492: /* serial == -1  :  It's not in the marix input. */
                    493: struct object syzPolyToArray(size,f,grG)
1.2       takayama  494:      int size;
                    495:      POLY f;
                    496:      struct gradedPolySet *grG;
1.1       maekawa   497: {
                    498:   struct object ob;
                    499:   int i,g0,i0,serial;
                    500:
                    501:   ob = newObjectArray(size);
                    502:   for (i=0; i<size; i++) {
                    503:     putoa(ob,i,KpoPOLY(ZERO));
                    504:   }
                    505:
                    506:   while (f != POLYNULL) {
                    507:     g0 = srGrade(f);
1.6       takayama  508:     i0 = srIndex(f);
1.1       maekawa   509:     serial = grG->polys[g0]->serial[i0];
                    510:     if (serial < 0) {
                    511:       errorKan1("%s\n","syzPolyToArray(): invalid serial[i] of grG.");
                    512:     }
                    513:     if (KopPOLY(getoa(ob,serial)) != ZERO) {
                    514:       errorKan1("%s\n","syzPolyToArray(): syzygy polynomial is broken.");
                    515:     }
                    516:     putoa(ob,serial,KpoPOLY(f->coeffp->val.f));
                    517:     f = f->next;
                    518:   }
                    519:   return(ob);
                    520: }
                    521:
                    522: struct object getBackwardArray(grG)
1.2       takayama  523:      struct gradedPolySet *grG;
1.1       maekawa   524: {
                    525:   /* use serial, del.  cf. getBackwardTransformation(). */
                    526:   int inputSize,outputSize;
                    527:   int i,j,k;
                    528:   struct object ob;
                    529:   struct polySet *ps;
                    530:
                    531:   inputSize = 0; outputSize = 0;
                    532:   for (i=0; i<grG->maxGrade; i++) {
                    533:     ps = grG->polys[i];
                    534:     for (j=0; j<ps->size; j++) {
                    535:       if (ps->serial[j] >= 0) ++inputSize;
                    536:       if (ps->del[j] == 0) ++outputSize;
                    537:     }
                    538:   }
                    539:
                    540:   ob = newObjectArray(outputSize);
                    541:   k = 0;
                    542:   for (i=0; i<grG->maxGrade; i++) {
                    543:     ps = grG->polys[i];
                    544:     for (j=0; j<ps->size; j++) {
                    545:       if (ps->del[j] == 0) {
1.2       takayama  546:         putoa(ob,k,syzPolyToArray(inputSize,ps->syz[j]->syz,grG));
                    547:         k++;
1.1       maekawa   548:       }
                    549:     }
                    550:   }
                    551:   return(ob);
                    552: }
                    553:
                    554:
                    555: POLY arrayToPOLY(ob)
1.2       takayama  556:      struct object ob;
1.1       maekawa   557: {
                    558:   int size,i;
                    559:   struct object f;
                    560:   POLY r;
                    561:   static int nn,mm,ll,cc,n,m,l,c;
                    562:   static struct ring *cr = (struct ring *)NULL;
                    563:   POLY ff,ee;
                    564:   MONOMIAL tf;
                    565:
                    566:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToPOLY(): The argument must be an array.");
                    567:   size = getoaSize(ob);
                    568:   r = ZERO;
                    569:   for (i=0; i<size; i++) {
                    570:     f = getoa(ob,i);
                    571:     if (f.tag != Spoly) errorKan1("%s\n","arrayToPOLY(): The elements must be polynomials.");
                    572:     ff = KopPOLY(f);
                    573:     if (ff != ZERO) {
                    574:       tf = ff->m;
                    575:       if (tf->ringp != cr) {
1.2       takayama  576:         n = tf->ringp->n;
                    577:         m = tf->ringp->m;
                    578:         l = tf->ringp->l;
                    579:         c = tf->ringp->c;
                    580:         nn = tf->ringp->nn;
                    581:         mm = tf->ringp->mm;
                    582:         ll = tf->ringp->ll;
                    583:         cc = tf->ringp->cc;
                    584:         cr = tf->ringp;
1.1       maekawa   585:       }
                    586:       if (n-nn >0) ee = cxx(1,n-1,i,tf->ringp);
                    587:       else if (m-mm >0) ee = cxx(1,m-1,i,tf->ringp);
                    588:       else if (l-ll >0) ee = cxx(1,l-1,i,tf->ringp);
                    589:       else if (c-cc >0) ee = cxx(1,c-1,i,tf->ringp);
                    590:       else ee = ZERO;
                    591:       r = ppAddv(r,ppMult(ee,ff));
                    592:     }
                    593:   }
                    594:   return(r);
                    595: }
                    596:
                    597: struct object POLYToArray(ff)
1.2       takayama  598:      POLY ff;
1.1       maekawa   599: {
                    600:
                    601:   static int nn,mm,ll,cc,n,m,l,c;
                    602:   static struct ring *cr = (struct ring *)NULL;
                    603:   POLY ee;
                    604:   MONOMIAL tf;
                    605:   int k,i,matn,size;
                    606:   struct matrixOfPOLY *mat;
                    607:   POLY ex,sizep;
                    608:   struct object ob;
                    609:
                    610:   if (ff != ZERO) {
                    611:     tf = ff->m;
                    612:     if (tf->ringp != cr) {
                    613:       n = tf->ringp->n;
                    614:       m = tf->ringp->m;
                    615:       l = tf->ringp->l;
                    616:       c = tf->ringp->c;
                    617:       nn = tf->ringp->nn;
                    618:       mm = tf->ringp->mm;
                    619:       ll = tf->ringp->ll;
                    620:       cc = tf->ringp->cc;
                    621:       cr = tf->ringp;
                    622:     }
                    623:     if (n-nn >0) ee = cxx(1,n-1,1,tf->ringp);
                    624:     else if (m-mm >0) ee = cxx(1,m-1,1,tf->ringp);
                    625:     else if (l-ll >0) ee = cxx(1,l-1,1,tf->ringp);
                    626:     else if (c-cc >0) ee = cxx(1,c-1,1,tf->ringp);
                    627:     else ee = ZERO;
                    628:   }else{
                    629:     ob = newObjectArray(1);
                    630:     getoa(ob,0) = KpoPOLY(ZERO);
                    631:     return(ob);
                    632:   }
                    633:   mat = parts(ff,ee);
                    634:   matn = mat->n;
                    635:   sizep = getMatrixOfPOLY(mat,0,0);
                    636:   if (sizep == ZERO) size = 1;
                    637:   else size = coeffToInt(sizep->coeffp)+1;
                    638:   ob = newObjectArray(size);
                    639:   for (i=0; i<size; i++) getoa(ob,i) = KpoPOLY(ZERO);
                    640:   for (i=0; i<matn; i++) {
                    641:     ex = getMatrixOfPOLY(mat,0,i);
                    642:     if (ex == ZERO) k = 0;
                    643:     else {
                    644:       k = coeffToInt(ex->coeffp);
                    645:     }
                    646:     getoa(ob,k) = KpoPOLY(getMatrixOfPOLY(mat,1,i));
                    647:   }
                    648:   return(ob);
                    649: }
                    650:
                    651: static int isThereh(f)
1.2       takayama  652:      POLY f;
1.1       maekawa   653: {
                    654:   POLY t;
                    655:   if (f == 0) return(0);
                    656:   t = f;
                    657:   while (t != POLYNULL) {
                    658:     if (t->m->e[0].D) return(1);
                    659:     t = t->next;
                    660:   }
                    661:   return(0);
                    662: }
                    663:
                    664: struct object homogenizeObject(ob,gradep)
1.2       takayama  665:      struct object ob;
                    666:      int *gradep;
1.1       maekawa   667: {
                    668:   struct object rob,ob1;
                    669:   int maxg;
                    670:   int gr,flag,i,d,size;
                    671:   struct ring *rp;
                    672:   POLY f;
                    673:   extern struct ring *CurrentRingp;
                    674:   extern int Homogenize_vec;
                    675:
                    676:   if (!Homogenize_vec) return(homogenizeObject_vec(ob,gradep));
                    677:
                    678:   switch(ob.tag) {
                    679:   case Spoly:
                    680:     if (isThereh(KopPOLY(ob))) {
                    681:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    682:       errorKan1("%s\n","homogenizeObject(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    683:     }
                    684:     f = homogenize( KopPOLY(ob) );
                    685:     *gradep = (*grade)(f);
                    686:     return(KpoPOLY(f));
                    687:     break;
                    688:   case Sarray:
                    689:     size = getoaSize(ob);
                    690:     if (size == 0) {
                    691:       errorKan1("%s\n","homogenizeObject() is called for the empty array.");
                    692:     }
                    693:     rob = newObjectArray(size);
                    694:     flag = 0;
                    695:     ob1 = getoa(ob,0);
1.5       takayama  696:     if (ob1.tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   697:     ob1 = homogenizeObject(ob1,&gr);
                    698:     maxg = gr;
                    699:     getoa(rob,0) = ob1;
                    700:     for (i=1; i<size; i++) {
                    701:       ob1 = getoa(ob,i);
                    702:       ob1 = homogenizeObject(ob1,&gr);
                    703:       if (gr > maxg) {
1.2       takayama  704:         maxg = gr;
1.1       maekawa   705:       }
                    706:       getoa(rob,i) = ob1;
                    707:     }
                    708:     maxg = maxg+size-1;
                    709:     if (1) {
                    710:       rp = oRingp(rob);
                    711:       if (rp == (struct ring *)NULL) rp = CurrentRingp;
                    712:       for (i=0; i<size; i++) {
1.2       takayama  713:         gr = oGrade(getoa(rob,i));
                    714:         /**printf("maxg=%d, gr=%d(i=%d) ",maxg,gr,i); fflush(stdout);**/
                    715:         if (maxg > gr) {
                    716:           f = cdd(1,0,maxg-gr-i,rp); /* h^{maxg-gr-i} */
                    717:           getoa(rob,i) = KooMult(KpoPOLY(f),getoa(rob,i));
                    718:         }
1.1       maekawa   719:       }
                    720:     }
                    721:     *gradep = maxg;
                    722:     return(rob);
                    723:     break;
                    724:   default:
                    725:     errorKan1("%s\n","homogenizeObject(): Invalid argument data type.");
                    726:     break;
                    727:   }
                    728: }
                    729:
                    730: struct object homogenizeObject_vec(ob,gradep)
1.2       takayama  731:      struct object ob;
                    732:      int *gradep;
1.1       maekawa   733: {
                    734:   struct object rob,ob1;
                    735:   int maxg;
                    736:   int gr,i,size;
                    737:   POLY f;
                    738:   extern struct ring *CurrentRingp;
                    739:
                    740:   switch(ob.tag) {
                    741:   case Spoly:
                    742:     if (isThereh(KopPOLY(ob))) {
                    743:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    744:       errorKan1("%s\n","homogenizeObject_vec(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    745:     }
                    746:     if (containVectorVariable(KopPOLY(ob))) {
                    747:       errorKan1("%s\n","homogenizedObject_vec(): The given polynomial contains a variable to express a vector component.");
                    748:     }
                    749:     f = homogenize( KopPOLY(ob) );
                    750:     *gradep = (*grade)(f);
                    751:     return(KpoPOLY(f));
                    752:     break;
                    753:   case Sarray:
                    754:     size = getoaSize(ob);
                    755:     if (size == 0) {
                    756:       errorKan1("%s\n","homogenizeObject_vec() is called for the empty array.");
                    757:     }
1.5       takayama  758:     if (getoa(ob,0).tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   759:     rob = newObjectArray(size);
                    760:     for (i=0; i<size; i++) {
                    761:       ob1 = getoa(ob,i);
                    762:       ob1 = homogenizeObject_vec(ob1,&gr);
                    763:       if (i==0) maxg = gr;
                    764:       else {
1.2       takayama  765:         maxg = (maxg > gr? maxg: gr);
1.1       maekawa   766:       }
                    767:       putoa(rob,i,ob1);
                    768:     }
                    769:     *gradep = maxg;
                    770:     return(rob);
                    771:     break;
                    772:   default:
                    773:     errorKan1("%s\n","homogenizeObject_vec(): Invalid argument data type.");
                    774:     break;
                    775:   }
                    776: }
                    777:
1.9       takayama  778: void KresetDegreeShift() {
                    779:   DegreeShifto = NullObject;
                    780:   DegreeShifto_vec = (int *)NULL;
                    781:   DegreeShifto_size = 0;
                    782:   DegreeShiftD = NullObject;
                    783:   DegreeShiftD_vec = (int *)NULL;
                    784:   DegreeShiftD_size = 0;
                    785: }
                    786:
1.3       takayama  787: struct object homogenizeObject_go(struct object ob,int *gradep) {
                    788:   int size,i,dssize,j;
                    789:   struct object ob0;
                    790:   struct object ob1;
                    791:   struct object ob2;
                    792:   struct object rob;
                    793:   struct object tob;
                    794:   struct object ob1t;
                    795:   int *ds;
                    796:   POLY f;
1.9       takayama  797:   int onlyS;
                    798:
                    799:   onlyS = 0;  /* default value */
1.3       takayama  800:   rob = NullObject;
1.9       takayama  801:   /*printf("[%d,%d]\n",DegreeShiftD_size,DegreeShifto_size);*/
                    802:   if (DegreeShifto_size == 0) DegreeShifto = NullObject;
                    803:   if (DegreeShiftD_size == 0) DegreeShiftD = NullObject;
                    804:   /*
                    805:       DegreeShiftD : Degree shift vector for (0,1)-h-homogenization,
                    806:                      which is {\vec n} in G-O paper.
                    807:                      It is used in dGrade1()  redm.c
                    808:       DegreeShifto : Degree shift vector for (u,v)-s-homogenization
                    809:                      which is used only in ecart division and (u,v) is
                    810:                      usually (-1,1).
                    811:                      This shift vector is written {\vec v} in G-O paper.
                    812:                      It may differ from the degree shift for the ring,
                    813:                      which is used to get (minimal) Schreyer resolution.
                    814:                      This shift vector is denoted by {\vec m} in G-O paper.
                    815:                      It is often used as an argument for uvGrade1 and
                    816:                      goHomogenize*
                    817:    */
1.3       takayama  818:   if (ob.tag != Sarray) errorKan1("%s\n","homogenizeObject_go(): Invalid argument data type.");
                    819:
                    820:   size = getoaSize(ob);
                    821:   if (size == 0) errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    822:   ob0 = getoa(ob,0);
                    823:   if (ob0.tag != Sdollar) {
                    824:     errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    825:   }
                    826:   if (strcmp(KopString(ob0),"degreeShift") == 0) {
1.5       takayama  827:     if (size < 2)
1.9       takayama  828:       errorKan1("%s\n","homogenizeObject_go(): [(degreeShift) shift-vector obj] or [(degreeShift) shift-vector] or [(degreeShift) (value)] homogenize.\nshift-vector=(0,1)-shift vector or [(0,1)-shift vector, (u,v)-shift vector].");
1.5       takayama  829:     ob1 = getoa(ob,1);
                    830:        if (ob1.tag != Sarray) {
1.9       takayama  831:          if ((ob1.tag == Sdollar) && (strcmp(KopString(ob1),"value")==0)) {
                    832:         /* Reporting the value. It is done below. */
                    833:          }else if ((ob1.tag == Sdollar) && (strcmp(KopString(ob1),"reset")==0)) {
                    834:                KresetDegreeShift();
                    835:          }
                    836:          rob = newObjectArray(2);
                    837:          putoa(rob,0,DegreeShiftD);
                    838:          putoa(rob,1,DegreeShifto);
                    839:          return rob;
                    840:        }
                    841:
                    842:        if (getoaSize(ob1) == 2) {
                    843:          /* [(degreeShift) [ [1 2]   [3 4] ]  ...] homogenize */
                    844:       /*                  (0,1)-h (u,v)-s                  */
                    845:          DegreeShiftD = getoa(ob1,0);
                    846:          dssize = getoaSize(DegreeShiftD);
                    847:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    848:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    849:          for (i=0; i<dssize; i++) {
                    850:                ds[i] = objToInteger(getoa(DegreeShiftD,i));
                    851:          }
                    852:       DegreeShiftD_size = dssize;
                    853:          DegreeShiftD_vec = ds;
                    854:
                    855:          DegreeShifto = getoa(ob1,1);
                    856:          dssize = getoaSize(DegreeShifto);
                    857:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    858:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    859:          for (i=0; i<dssize; i++) {
                    860:                ds[i] = objToInteger(getoa(DegreeShifto,i));
1.3       takayama  861:          }
1.9       takayama  862:       DegreeShifto_size = dssize;
                    863:          DegreeShifto_vec = ds;
                    864:        }else if (getoaSize(ob1) == 1) {
                    865:          /* Set only  for (0,1)-h */
                    866:          DegreeShiftD = getoa(ob1,0);
                    867:          dssize = getoaSize(DegreeShiftD);
                    868:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    869:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    870:          for (i=0; i<dssize; i++) {
                    871:                ds[i] = objToInteger(getoa(DegreeShiftD,i));
                    872:          }
                    873:       DegreeShiftD_size = dssize;
                    874:          DegreeShiftD_vec = ds;
1.3       takayama  875:        }
1.9       takayama  876:
                    877:        ds = DegreeShifto_vec;
                    878:        dssize = DegreeShifto_size;
                    879:
1.5       takayama  880:     if (size == 2) {
1.9       takayama  881:          rob = newObjectArray(2);
                    882:          putoa(rob,0,DegreeShiftD);
                    883:          putoa(rob,1,DegreeShifto);
                    884:          return rob;
1.5       takayama  885:     }else{
                    886:       ob2 = getoa(ob,2);
                    887:       if (ob2.tag == Spoly) {
1.9       takayama  888:         f = goHomogenize11(KopPOLY(ob2),ds,dssize,-1,onlyS);
1.5       takayama  889:         rob = KpoPOLY(f);
                    890:       }else if (ob2.tag == SuniversalNumber) {
                    891:         rob = ob2;
                    892:       }else if (ob2.tag == Sarray) {
1.9       takayama  893:                int mm;
                    894:                mm = getoaSize(ob2);
                    895:                f = objArrayToPOLY(ob2);
                    896:         f = goHomogenize11(f,ds,dssize,-1,onlyS);
                    897:         rob = POLYtoObjArray(f,mm);
1.5       takayama  898:       }else{
                    899:         errorKan1("%s\n","homogenizeObject_go(): invalid object for the third element.");
                    900:       }
                    901:     }
1.3       takayama  902:   }else{
1.5       takayama  903:       errorKan1("%s\n","homogenizeObject_go(): unknown key word.");
1.3       takayama  904:   }
1.5       takayama  905:   return( rob );
1.3       takayama  906: }
                    907:
                    908:
1.1       maekawa   909: struct ring *oRingp(ob)
1.2       takayama  910:      struct object ob;
1.1       maekawa   911: {
                    912:   struct ring *rp,*rptmp;
                    913:   int i,size;
                    914:   POLY f;
                    915:   switch(ob.tag) {
                    916:   case Spoly:
                    917:     f = KopPOLY(ob);
                    918:     if (f == ZERO) return((struct ring *)NULL);
                    919:     return( f->m->ringp);
                    920:     break;
                    921:   case Sarray:
                    922:     size = getoaSize(ob);
                    923:     rp = (struct ring *)NULL;
                    924:     for (i=0; i<size; i++) {
                    925:       rptmp = oRingp(getoa(ob,i));
                    926:       if (rptmp != (struct ring *)NULL) rp = rptmp;
                    927:       return(rp);
                    928:     }
                    929:     break;
                    930:   default:
                    931:     errorKan1("%s\n","oRingp(): Invalid argument data type.");
                    932:     break;
                    933:   }
                    934: }
                    935:
                    936: int oGrade(ob)
1.2       takayama  937:      struct object ob;
1.1       maekawa   938: {
                    939:   int i,size;
                    940:   POLY f;
                    941:   int maxg,tmpg;
                    942:   switch(ob.tag) {
                    943:   case Spoly:
                    944:     f = KopPOLY(ob);
                    945:     return( (*grade)(f) );
                    946:     break;
                    947:   case Sarray:
                    948:     size = getoaSize(ob);
                    949:     if (size == 0) return(0);
                    950:     maxg = oGrade(getoa(ob,0));
                    951:     for (i=1; i<size; i++) {
                    952:       tmpg = oGrade(getoa(ob,i));
                    953:       if (tmpg > maxg) maxg = tmpg;
                    954:     }
                    955:     return(maxg);
                    956:     break;
                    957:   default:
                    958:     errorKan1("%s\n","oGrade(): Invalid data type for the argument.");
                    959:     break;
                    960:   }
                    961: }
                    962:
                    963:
                    964: struct object oPrincipalPart(ob)
1.2       takayama  965:      struct object ob;
1.1       maekawa   966: {
                    967:   POLY f;
                    968:   struct object rob;
                    969:
                    970:   switch(ob.tag) {
                    971:   case Spoly:
                    972:     f = KopPOLY(ob);
                    973:     return( KpoPOLY(POLYToPrincipalPart(f)));
                    974:     break;
                    975:   default:
                    976:     errorKan1("%s\n","oPrincipalPart(): Invalid data type for the argument.");
                    977:     break;
                    978:   }
                    979: }
                    980: struct object oInitW(ob,oWeight)
1.2       takayama  981:      struct object ob;
                    982:      struct object oWeight;
1.1       maekawa   983: {
                    984:   POLY f;
                    985:   struct object rob;
                    986:   int w[2*N0];
                    987:   int n,i;
                    988:   struct object ow;
1.7       takayama  989:   int shiftvec;
                    990:   struct object oShift;
                    991:   int *s;
                    992:   int ssize,m;
1.1       maekawa   993:
1.7       takayama  994:   shiftvec = 0;
                    995:   s = NULL;
                    996:
1.1       maekawa   997:   if (oWeight.tag != Sarray) {
                    998:     errorKan1("%s\n","oInitW(): the second argument must be array.");
                    999:   }
1.14    ! takayama 1000:   oWeight = Kto_int(oWeight);
1.1       maekawa  1001:   n = getoaSize(oWeight);
1.8       takayama 1002:   if (n == 0) {
                   1003:        m = getoaSize(ob);
                   1004:        f = objArrayToPOLY(ob);
                   1005:        f = head(f);
                   1006:     return POLYtoObjArray(f,m);
                   1007:   }
1.7       takayama 1008:   if (getoa(oWeight,0).tag == Sarray) {
                   1009:        if (n != 2) errorKan1("%s\n","oInitW(): the size of the second argument should be 2.");
                   1010:        shiftvec = 1;
                   1011:        oShift = getoa(oWeight,1);
                   1012:        oWeight = getoa(oWeight,0);
                   1013:        if (oWeight.tag != Sarray) {
                   1014:          errorKan1("%s\n","oInitW(): the weight vector must be array.");
                   1015:        }
                   1016:        n = getoaSize(oWeight);
                   1017:        if (oShift.tag != Sarray) {
                   1018:          errorKan1("%s\n","oInitW(): the shift vector must be array.");
                   1019:        }
                   1020:   }
                   1021:   /* oWeight = Ksm1WeightExpressionToVec(oWeight); */
1.1       maekawa  1022:   if (n >= 2*N0) errorKan1("%s\n","oInitW(): the size of the second argument is invalid.");
                   1023:   for (i=0; i<n; i++) {
                   1024:     ow = getoa(oWeight,i);
1.7       takayama 1025:        if (ow.tag == SuniversalNumber) {
                   1026:          ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1027:        }
1.1       maekawa  1028:     if (ow.tag != Sinteger) {
                   1029:       errorKan1("%s\n","oInitW(): the entries of the second argument must be integers.");
                   1030:     }
                   1031:     w[i] = KopInteger(ow);
                   1032:   }
1.7       takayama 1033:   if (shiftvec) {
                   1034:     ssize = getoaSize(oShift);
                   1035:        s = (int *)sGC_malloc(sizeof(int)*(ssize+1));
                   1036:        if (s == NULL) errorKan1("%s\n","oInitW() no more memory.");
                   1037:        for (i=0; i<ssize; i++) {
                   1038:          ow = getoa(oShift,i);
                   1039:          if (ow.tag == SuniversalNumber) {
                   1040:                ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1041:          }
                   1042:          if (ow.tag != Sinteger) {
                   1043:                errorKan1("%s\n","oInitW(): the entries of shift vector must be integers.");
                   1044:          }
                   1045:          s[i] = KopInteger(ow);
                   1046:        }
                   1047:   }
                   1048:
1.1       maekawa  1049:   switch(ob.tag) {
                   1050:   case Spoly:
                   1051:     f = KopPOLY(ob);
1.7       takayama 1052:        if (shiftvec) {
                   1053:          return( KpoPOLY(POLYToInitWS(f,w,s)));
                   1054:        }else{
                   1055:          return( KpoPOLY(POLYToInitW(f,w)));
                   1056:        }
1.1       maekawa  1057:     break;
1.7       takayama 1058:   case Sarray:
                   1059:        m = getoaSize(ob);
                   1060:        f = objArrayToPOLY(ob);
                   1061:     /* printf("1.%s\n",POLYToString(f,'*',1)); */
                   1062:        if (shiftvec) {
                   1063:          f =  POLYToInitWS(f,w,s);
                   1064:        }else{
                   1065:          f =  POLYToInitW(f,w);
                   1066:        }
                   1067:     /* printf("2.%s\n",POLYToString(f,'*',1)); */
                   1068:
                   1069:        return POLYtoObjArray(f,m);
1.1       maekawa  1070:   default:
1.7       takayama 1071:     errorKan1("%s\n","oInitW(): Argument must be polynomial or a vector of polynomials");
1.1       maekawa  1072:     break;
                   1073:   }
                   1074: }
1.7       takayama 1075:
                   1076: POLY objArrayToPOLY(struct object ob) {
                   1077:   int m;
                   1078:   POLY f;
                   1079:   POLY t;
                   1080:   int i,n;
                   1081:   struct ring *ringp;
                   1082:   if (ob.tag != Sarray) errorKan1("%s\n", "objArrayToPOLY() the argument must be an array.");
                   1083:   m = getoaSize(ob);
                   1084:   ringp = NULL;
                   1085:   f = POLYNULL;
                   1086:   for (i=0; i<m; i++) {
                   1087:     if (getoa(ob,i).tag != Spoly) errorKan1("%s\n","objArrayToPOLY() elements must be a polynomial.");
                   1088:     t = KopPOLY(getoa(ob,i));
                   1089:     if (t ISZERO) {
                   1090:     }else{
                   1091:       if (ringp == NULL) {
                   1092:         ringp = t->m->ringp;
                   1093:         n = ringp->n;
1.8       takayama 1094:                if (n - ringp->nn <= 0) errorKan1("%s\n","Graduation variable in D is not given.");
1.7       takayama 1095:       }
                   1096:       t = (*mpMult)(cxx(1,n-1,i,ringp),t);
                   1097:       f = ppAddv(f,t);
                   1098:     }
                   1099:   }
                   1100:   return f;
                   1101: }
                   1102:
                   1103: struct object POLYtoObjArray(POLY f,int size) {
                   1104:   struct object rob;
                   1105:   POLY *pa;
                   1106:   int d,n,i;
                   1107:   POLY t;
                   1108:   if (size < 0) errorKan1("%s\n","POLYtoObjArray() invalid size.");
                   1109:   rob = newObjectArray(size);
                   1110:   pa = (POLY *) sGC_malloc(sizeof(POLY)*(size+1));
                   1111:   if (pa == NULL) errorKan1("%s\n","POLYtoObjArray() no more memory.");
                   1112:   for (i=0; i<size; i++) {
                   1113:     pa[i] = POLYNULL;
                   1114:     putoa(rob,i,KpoPOLY(pa[i]));
                   1115:   }
                   1116:   if (f == POLYNULL) {
                   1117:     return rob;
                   1118:   }
                   1119:   n = f->m->ringp->n;
                   1120:   while (f != POLYNULL) {
                   1121:     d = f->m->e[n-1].x;
                   1122:     if (d >= size) errorKan1("%s\n","POLYtoObjArray() size is too small.");
1.8       takayama 1123:     t = newCell(coeffCopy(f->coeffp),monomialCopy(f->m));
1.7       takayama 1124:        i = t->m->e[n-1].x;
                   1125:     t->m->e[n-1].x = 0;
                   1126:     pa[i] = ppAddv(pa[i],t); /* slow to add from the top. */
                   1127:     f = f->next;
                   1128:   }
                   1129:   for (i=0; i<size; i++) {
                   1130:     putoa(rob,i,KpoPOLY(pa[i]));
                   1131:   }
                   1132:   return rob;
                   1133: }
                   1134:
1.8       takayama 1135: struct object KordWsAll(ob,oWeight)
                   1136:      struct object ob;
                   1137:      struct object oWeight;
                   1138: {
                   1139:   POLY f;
                   1140:   struct object rob;
                   1141:   int w[2*N0];
                   1142:   int n,i;
                   1143:   struct object ow;
                   1144:   int shiftvec;
                   1145:   struct object oShift;
                   1146:   int *s;
                   1147:   int ssize,m;
                   1148:
                   1149:   shiftvec = 0;
                   1150:   s = NULL;
                   1151:
                   1152:   if (oWeight.tag != Sarray) {
                   1153:     errorKan1("%s\n","ordWsAll(): the second argument must be array.");
                   1154:   }
1.14    ! takayama 1155:   oWeight = Kto_int(oWeight);
1.8       takayama 1156:   n = getoaSize(oWeight);
                   1157:   if (n == 0) {
                   1158:        m = getoaSize(ob);
                   1159:        f = objArrayToPOLY(ob);
                   1160:        f = head(f);
                   1161:     return POLYtoObjArray(f,m);
                   1162:   }
                   1163:   if (getoa(oWeight,0).tag == Sarray) {
                   1164:        if (n != 2) errorKan1("%s\n","ordWsAll(): the size of the second argument should be 2.");
                   1165:        shiftvec = 1;
                   1166:        oShift = getoa(oWeight,1);
                   1167:        oWeight = getoa(oWeight,0);
                   1168:        if (oWeight.tag != Sarray) {
                   1169:          errorKan1("%s\n","ordWsAll(): the weight vector must be array.");
                   1170:        }
                   1171:        n = getoaSize(oWeight);
                   1172:        if (oShift.tag != Sarray) {
                   1173:          errorKan1("%s\n","ordWsAll(): the shift vector must be array.");
                   1174:        }
                   1175:   }
                   1176:   /* oWeight = Ksm1WeightExpressionToVec(oWeight); */
                   1177:   if (n >= 2*N0) errorKan1("%s\n","ordWsAll(): the size of the second argument is invalid.");
                   1178:   for (i=0; i<n; i++) {
                   1179:     ow = getoa(oWeight,i);
                   1180:        if (ow.tag == SuniversalNumber) {
                   1181:          ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1182:        }
                   1183:     if (ow.tag != Sinteger) {
                   1184:       errorKan1("%s\n","ordWsAll(): the entries of the second argument must be integers.");
                   1185:     }
                   1186:     w[i] = KopInteger(ow);
                   1187:   }
                   1188:   if (shiftvec) {
                   1189:     ssize = getoaSize(oShift);
                   1190:        s = (int *)sGC_malloc(sizeof(int)*(ssize+1));
                   1191:        if (s == NULL) errorKan1("%s\n","ordWsAll() no more memory.");
                   1192:        for (i=0; i<ssize; i++) {
                   1193:          ow = getoa(oShift,i);
                   1194:          if (ow.tag == SuniversalNumber) {
                   1195:                ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1196:          }
                   1197:          if (ow.tag != Sinteger) {
                   1198:                errorKan1("%s\n","ordWsAll(): the entries of shift vector must be integers.");
                   1199:          }
                   1200:          s[i] = KopInteger(ow);
                   1201:        }
                   1202:   }
                   1203:
                   1204:   switch(ob.tag) {
                   1205:   case Spoly:
                   1206:     f = KopPOLY(ob);
                   1207:        if (f == POLYNULL) errorKan1("%s\n","ordWsAll(): the argument is 0");
                   1208:        if (shiftvec) {
                   1209:          return( KpoInteger(ordWsAll(f,w,s)));
                   1210:        }else{
                   1211:          return( KpoInteger(ordWsAll(f,w,(int *) NULL)));
                   1212:        }
                   1213:     break;
                   1214:   case Sarray:
                   1215:        m = getoaSize(ob);
                   1216:        f = objArrayToPOLY(ob);
                   1217:        if (f == POLYNULL) errorKan1("%s\n","ordWsAll(): the argument is 0");
                   1218:        if (shiftvec) {
                   1219:          return KpoInteger(ordWsAll(f,w,s));
                   1220:        }else{
                   1221:          return KpoInteger(ordWsAll(f,w,(int *)NULL));
                   1222:        }
                   1223:   default:
                   1224:     errorKan1("%s\n","ordWsAll(): Argument must be polynomial or a vector of polynomials");
                   1225:     break;
                   1226:   }
                   1227: }
1.1       maekawa  1228:
                   1229: int KpolyLength(POLY f) {
                   1230:   int size;
                   1231:   if (f == POLYNULL) return(1);
                   1232:   size = 0;
                   1233:   while (f != POLYNULL) {
                   1234:     f = f->next;
                   1235:     size++;
                   1236:   }
                   1237:   return(size);
                   1238: }
                   1239:
                   1240: int validOutputOrder(int ord[],int n) {
                   1241:   int i,j,flag;
                   1242:   for (i=0; i<n; i++) {
                   1243:     flag = 0;
                   1244:     for (j=0; j<n; j++) {
                   1245:       if (ord[j] == i) flag = 1;
                   1246:     }
                   1247:     if (flag == 0) return(0); /* invalid */
                   1248:   }
                   1249:   return(1);
                   1250: }
                   1251:
                   1252: struct object KsetOutputOrder(struct object ob, struct ring *rp)
                   1253: {
                   1254:   int n,i;
                   1255:   struct object ox;
                   1256:   struct object otmp;
                   1257:   int *xxx;
                   1258:   int *ddd;
                   1259:   if (ob.tag  != Sarray) {
                   1260:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...]");
                   1261:   }
                   1262:   n = rp->n;
                   1263:   ox = ob;
                   1264:   if (getoaSize(ox) != 2*n) {
                   1265:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...] and the length of [x y z ...] must be equal to the number of x and D variables.");
                   1266:   }
                   1267:   xxx = (int *)sGC_malloc(sizeof(int)*n*2);
                   1268:   if (xxx == NULL ) {
                   1269:     errorKan1("%s\n","KsetOutputOrder(): no more memory.");
                   1270:   }
                   1271:   for (i=0; i<2*n; i++) {
                   1272:     otmp = getoa(ox,i);
                   1273:     if(otmp.tag != Sinteger) {
                   1274:       errorKan1("%s\n","KsetOutputOrder(): elements must be integers.");
                   1275:     }
                   1276:     xxx[i] = KopInteger(otmp);
                   1277:   }
                   1278:   if (!validOutputOrder(xxx,2*n)) {
                   1279:     errorKan1("%s\n","KsetOutputOrder(): Invalid output order for variables.");
                   1280:   }
                   1281:   rp->outputOrder = xxx;
                   1282:   return(ob);
                   1283: }
                   1284:
                   1285: struct object KschreyerSkelton(struct object g)
                   1286: {
                   1287:   struct object rob;
                   1288:   struct object ij;
                   1289:   struct object ab;
                   1290:   struct object tt;
                   1291:   struct arrayOfPOLY *ap;
                   1292:   struct arrayOfMonomialSyz ans;
                   1293:   int k;
                   1294:   rob.tag = Snull;
                   1295:   if (g.tag != Sarray) {
                   1296:     errorKan1("%s\n","KschreyerSkelton(): argument must be an array of polynomials.");
                   1297:   }
                   1298:
                   1299:   ap = arrayToArrayOfPOLY(g);
                   1300:   ans = schreyerSkelton(*ap);
                   1301:
                   1302:   rob = newObjectArray(ans.size);
                   1303:   for (k=0; k<ans.size; k++) {
                   1304:     ij = newObjectArray(2);
                   1305:     putoa(ij,0, KpoInteger(ans.p[k]->i));
                   1306:     putoa(ij,1, KpoInteger(ans.p[k]->j));
                   1307:     ab = newObjectArray(2);
                   1308:     putoa(ab,0, KpoPOLY(ans.p[k]->a));
                   1309:     putoa(ab,1, KpoPOLY(ans.p[k]->b));
                   1310:     tt = newObjectArray(2);
                   1311:     putoa(tt,0, ij);
                   1312:     putoa(tt,1, ab);
                   1313:     putoa(rob,k,tt);
                   1314:   }
                   1315:   return(rob);
                   1316: }
                   1317:
                   1318: struct object KisOrdered(struct object of)
                   1319: {
                   1320:   if (of.tag != Spoly) {
                   1321:     errorKan1("%s\n","KisOrdered(): argument must be a polynomial.");
                   1322:   }
                   1323:   if (isOrdered(KopPOLY(of))) {
                   1324:     return(KpoInteger(1));
                   1325:   }else{
                   1326:     return(KpoInteger(0));
                   1327:   }
                   1328: }
                   1329:
                   1330: struct object KvectorToSchreyer_es(struct object obarray)
                   1331: {
                   1332:   int m,i;
                   1333:   int nn;
                   1334:   POLY f;
                   1335:   POLY g;
                   1336:   struct object ob;
                   1337:   struct ring *rp;
                   1338:   if (obarray.tag != Sarray) {
                   1339:     errorKan1("%s\n","KvectorToSchreyer_es(): argument must be an array of polynomials.");
                   1340:   }
                   1341:   m = getoaSize(obarray);
                   1342:   f = POLYNULL;
                   1343:   for (i=0; i<m; i++) {
                   1344:     ob = getoa(obarray,i);
                   1345:     if (ob.tag != Spoly) {
                   1346:       errorKan1("%s\n","KvectorToSchreyer_es(): each element of the array must be a polynomial.");
                   1347:     }
                   1348:     g = KopPOLY(ob);
                   1349:     if (g != POLYNULL) {
                   1350:       rp = g->m->ringp;
                   1351:       nn = rp->nn;
                   1352:       /*   g = es^i  g */
                   1353:       g = mpMult_poly(cxx(1,nn,i,rp), g);
                   1354:       if (!isOrdered(g)) {
1.2       takayama 1355:         errorKan1("%s\n","KvectorToSchreyer_es(): given polynomial is not ordered properly by the given Schreyer order.");
1.1       maekawa  1356:       }
                   1357:       f = ppAdd(f,g);
                   1358:     }
                   1359:   }
                   1360:   return(KpoPOLY(f));
1.3       takayama 1361: }
                   1362:
                   1363: int objToInteger(struct object ob) {
                   1364:   if (ob.tag == Sinteger) {
1.5       takayama 1365:     return KopInteger(ob);
1.3       takayama 1366:   }else if (ob.tag == SuniversalNumber) {
1.5       takayama 1367:     return(coeffToInt(KopUniversalNumber(ob)));
1.3       takayama 1368:   }else {
1.5       takayama 1369:     errorKan1("%s\n","objToInteger(): invalid argument.");
1.3       takayama 1370:   }
1.12      takayama 1371: }
                   1372:
                   1373: struct object KgetExponents(struct object obPoly,struct object otype) {
                   1374:   int type,asize,i;
                   1375:   POLY f;
                   1376:   POLY ff;
                   1377:   MONOMIAL tf;
                   1378:   struct object rob;
                   1379:   struct object tob;
                   1380:   static int nn,mm,ll,cc,n,m,l,c;
                   1381:   static struct ring *cr = (struct ring *)NULL;
                   1382:   extern struct ring *CurrentRingp;
                   1383:   int size,hsize,fsize,p,r;
                   1384:
                   1385:   if (otype.tag == Sinteger) {
                   1386:     type = KopInteger(otype);
                   1387:   }else if (otype.tag == SuniversalNumber) {
                   1388:     type = coeffToInt(KopUniversalNumber(otype));
                   1389:   }else {
                   1390:     errorKan1("%s\n","KgetExponents(): invalid translation type.");
                   1391:   }
                   1392:
                   1393:   if (obPoly.tag == Spoly) {
                   1394:     f = KopPOLY(obPoly);
                   1395:   }else if (obPoly.tag == Sarray) {
                   1396:     asize = getoaSize(obPoly);
                   1397:     rob = newObjectArray(asize);
                   1398:     for (i=0; i<asize; i++) {
                   1399:       tob = KgetExponents(getoa(obPoly,i),otype);
                   1400:       putoa(rob,i,tob);
                   1401:     }
1.13      takayama 1402:        return rob;
1.12      takayama 1403:   }else{
                   1404:     errorKan1("%s\n","KgetExponents(): argument must be a polynomial.");
                   1405:   }
                   1406:
                   1407:   /* type == 0    x,y,Dx,Dy     (no commutative, no vector)
                   1408:      type == 1    x,y,h,Dx,Dy,H (commutative & no vector)
                   1409:      type == 2    x,y,Dx,Dy,h   (commutative & no vector)
                   1410:   */
                   1411:   if (f ISZERO) {
                   1412:     cr = CurrentRingp;
                   1413:   }else{
                   1414:     tf = f->m;
                   1415:   }
                   1416:   if (tf->ringp != cr) {
                   1417:     n = tf->ringp->n;
                   1418:     m = tf->ringp->m;
                   1419:     l = tf->ringp->l;
                   1420:     c = tf->ringp->c;
                   1421:     nn = tf->ringp->nn;
                   1422:     mm = tf->ringp->mm;
                   1423:     ll = tf->ringp->ll;
                   1424:     cc = tf->ringp->cc;
                   1425:     cr = tf->ringp;
                   1426:   }
                   1427:   if (type == 0) {
                   1428:     size = 0;
                   1429:     for (i=c; i<ll; i++) size += 2;
                   1430:     for (i=l; i<mm; i++) size += 2;
                   1431:     for (i=m; i<nn; i++) size += 2;
                   1432:   }else if (type == 1) {
                   1433:     size = 0;
                   1434:     for (i=0; i<cc; i++) size += 2;
                   1435:     for (i=c; i<ll; i++) size += 2;
                   1436:     for (i=l; i<mm; i++) size += 2;
                   1437:     for (i=m; i<nn; i++) size += 2;
                   1438:   }else if (type == 2) {
                   1439:     size = 0;
                   1440:     for (i=0; i<cc; i++) size += 1;
                   1441:     for (i=c; i<ll; i++) size += 2;
                   1442:     for (i=l; i<mm; i++) size += 2;
                   1443:     for (i=m; i<nn; i++) size += 2;
                   1444:   }else{
                   1445:     errorKan1("%s\n","KgetExponent, unknown type.");
                   1446:   }
                   1447:   hsize = size/2;
                   1448:   if (f ISZERO) {
                   1449:     tob = newObjectArray(size);
                   1450:     for (i=0; i<size; i++) {
                   1451:       putoa(tob,i,KpoInteger(0));
                   1452:     }
                   1453:     rob = newObjectArray(1);
                   1454:     putoa(rob,0,tob);
                   1455:     return rob;
                   1456:   }
                   1457:   fsize = 0;
                   1458:   ff = f;
                   1459:   while (ff != POLYNULL) {
                   1460:     fsize++;
                   1461:     ff = ff->next;
                   1462:   }
                   1463:   rob = newObjectArray(fsize);
                   1464:
                   1465:   ff = f;
                   1466:   p = 0;
                   1467:   while (ff != POLYNULL) {
                   1468:     r = 0;
                   1469:     tob = newObjectArray(size);
                   1470:        tf = ff->m;
                   1471:     for (i=ll-1; i>=c; i--) {
                   1472:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1473:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1474:       r++;
                   1475:     }
                   1476:     for (i=mm-1; i>=l; i--) {
                   1477:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1478:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1479:       r++;
                   1480:     }
                   1481:     for (i=nn-1; i>=m; i--) {
                   1482:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1483:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1484:       r++;
                   1485:     }
                   1486:     if (type == 1) {
                   1487:       for (i=cc-1; i>=0; i--) {
                   1488:         putoa(tob,hsize+r,KpoInteger(tf->e[i].x));
                   1489:         putoa(tob,r,KpoInteger(tf->e[i].D));
                   1490:         r++;
                   1491:       }
                   1492:     }else if (type == 2) {
                   1493:       for (i=cc-1; i>=0; i--) {
                   1494:         putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1495:         r++;
                   1496:       }
                   1497:        }
                   1498:
                   1499:     putoa(rob,p,tob);
                   1500:     p++;
                   1501:     ff = ff->next;
                   1502:   }
                   1503:   return rob;
1.1       maekawa  1504: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>