[BACK]Return to kanExport1.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport1.c, Revision 1.17

1.17    ! takayama    1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport1.c,v 1.16 2004/09/05 07:42:43 takayama Exp $ */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: static int Message = 1;
                     13: extern int KanGBmessage;
                     14:
1.5       takayama   15: struct object DegreeShifto;
                     16: int DegreeShifto_size = 0;
                     17: int *DegreeShifto_vec = NULL;
1.9       takayama   18: struct object DegreeShiftD;
                     19: int DegreeShiftD_size = 0;
                     20: int *DegreeShiftD_vec = NULL;
1.5       takayama   21:
1.1       maekawa    22: /** :kan, :ring */
                     23: struct object Kreduction(f,set)
1.2       takayama   24:      struct object f;
                     25:      struct object set;
1.1       maekawa    26: {
                     27:   POLY r;
                     28:   struct gradedPolySet *grG;
                     29:   struct syz0 syz;
                     30:   struct object rob;
                     31:   int flag;
                     32:   extern int ReduceLowerTerms;
                     33:
                     34:   if (f.tag != Spoly) errorKan1("%s\n","Kreduction(): the first argument must be a polynomial.");
                     35:
                     36:   if (ectag(set) == CLASSNAME_GradedPolySet) {
                     37:     grG = KopGradedPolySet(set);
                     38:     flag = 1;
                     39:   }else{
                     40:     if (set.tag != Sarray) errorKan1("%s\n","Kreduction(): the second argument must be a set of polynomials.");
                     41:     grG = arrayToGradedPolySet(set);
                     42:     flag = 0;
                     43:   }
                     44:   if (ReduceLowerTerms) {
                     45:     r = (*reductionCdr)(f.lc.poly,grG,1,&syz);
                     46:   }else{
                     47:     r = (*reduction)(f.lc.poly,grG,1,&syz);
                     48:   }
1.6       takayama   49:   /* outputGradedPolySet(grG,0); */
1.1       maekawa    50:   if (flag) {
                     51:     rob = newObjectArray(3);
                     52:     putoa(rob,0,KpoPOLY(r));
                     53:     putoa(rob,1,KpoPOLY(syz.cf));
                     54:     putoa(rob,2,syzPolyToArray(countGradedPolySet(grG),syz.syz,grG));
                     55:   }else {
                     56:     rob = newObjectArray(4);
                     57:     putoa(rob,0,KpoPOLY(r));
                     58:     putoa(rob,1,KpoPOLY(syz.cf));
                     59:     putoa(rob,2,syzPolyToArray(getoaSize(set),syz.syz,grG));
                     60:     putoa(rob,3,gradedPolySetToArray(grG,1));
                     61:   }
                     62:   return(rob);
                     63: }
                     64:
                     65: struct object Kgroebner(ob)
1.2       takayama   66:      struct object ob;
1.1       maekawa    67: {
                     68:   int needSyz = 0;
                     69:   int needBack = 0;
                     70:   int needInput = 0;
                     71:   int countDown = 0;
                     72:   int cdflag = 0;
                     73:   struct object ob1,ob2,ob2c;
                     74:   int i;
                     75:   struct gradedPolySet *grG;
                     76:   struct pair *grP;
                     77:   struct arrayOfPOLY *a;
                     78:   struct object rob;
                     79:   struct gradedPolySet *grBases;
                     80:   struct matrixOfPOLY *mp;
                     81:   struct matrixOfPOLY *backwardMat;
                     82:   struct object ob1New;
                     83:   extern char *F_groebner;
                     84:   extern int CheckHomogenization;
                     85:   extern int StopDegree;
                     86:   int sdflag = 0;
                     87:   int forceReduction = 0;
1.17    ! takayama   88:   int reduceOnly = 0;
1.1       maekawa    89:
                     90:   int ob1Size, ob2Size, noZeroEntry;
                     91:   int *ob1ToOb2;
                     92:   int *ob1ZeroPos;
                     93:   int method;
                     94:   int j,k;
                     95:   struct object rob2;
                     96:   struct object rob3;
                     97:   struct object rob4;
                     98:   struct ring *myring;
                     99:   POLY f;
                    100:   struct object orgB;
                    101:   struct object newB;
                    102:   struct object orgC;
                    103:   struct object newC;
                    104:   static struct object paddingVector(struct object ob, int table[], int m);
                    105:   static struct object unitVector(int pos, int size,struct ring *r);
                    106:   extern struct ring *CurrentRingp;
                    107:
                    108:   StopDegree = 0x7fff;
                    109:
                    110:   if (ob.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array.");
                    111:   switch(getoaSize(ob)) {
                    112:   case 1:
                    113:     needBack = 0; needSyz = 0; needInput = 0;
                    114:     ob1 = getoa(ob,0);
                    115:     break;
                    116:   case 2:
                    117:     ob1 = getoa(ob,0);
                    118:     ob2 = getoa(ob,1);
                    119:     if (ob2.tag != Sarray) {
                    120:       errorKan1("%s\n","Kgroebner(): The options must be given by an array.");
                    121:     }
                    122:     for (i=0; i<getoaSize(ob2); i++) {
                    123:       ob2c = getoa(ob2,i);
                    124:       if (ob2c.tag == Sdollar) {
1.2       takayama  125:         if (strcmp(ob2c.lc.str,"needBack")==0) {
                    126:           needBack = 1;
                    127:         }else if (strcmp(ob2c.lc.str,"needSyz")==0) {
                    128:           if (!needBack) {
                    129:             /* warningKan("Kgroebner(): needBack is automatically set."); */
                    130:           }
                    131:           needSyz = needBack = 1;
                    132:         }else if (strcmp(ob2c.lc.str,"forceReduction")==0) {
                    133:           forceReduction = 1;
1.17    ! takayama  134:         }else if (strcmp(ob2c.lc.str,"reduceOnly")==0) {
        !           135:           reduceOnly = 1;
1.2       takayama  136:         }else if (strcmp(ob2c.lc.str,"countDown")==0) {
                    137:           countDown = 1; cdflag = 1;
                    138:           if (needSyz) {
                    139:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    140:             needSyz = 0;
                    141:           }
                    142:         }else if (strcmp(ob2c.lc.str,"StopDegree")==0) {
                    143:           StopDegree = 0; sdflag = 1;
                    144:           if (needSyz) {
                    145:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    146:             needSyz = 0;
                    147:           }
                    148:         }else {
                    149:           warningKan("Unknown keyword for options.");
                    150:         }
1.1       maekawa   151:       }else if (ob2c.tag == Sinteger) {
1.2       takayama  152:         if (cdflag) {
                    153:           cdflag = 0;
                    154:           countDown = KopInteger(ob2c);
                    155:         }else if (sdflag) {
                    156:           sdflag = 0;
                    157:           StopDegree = KopInteger(ob2c);
                    158:         }
1.1       maekawa   159:       }
                    160:     }
                    161:     break;
                    162:   default:
                    163:     errorKan1("%s\n","Kgroebner(): [ [polynomials] ] or [[polynomials] [options]].");
                    164:   }
1.2       takayama  165:
1.1       maekawa   166:   if (ob1.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array. Example: [ [$x-1$ . $x y -2$ .] [$needBack$ $needSyz$ $needInput$]] ");
                    167:   ob1New = newObjectArray(getoaSize(ob1));
                    168:   for (i=0; i< getoaSize(ob1); i++) {
                    169:     if (getoa(ob1,i).tag == Spoly) {
                    170:       putoa(ob1New,i,getoa(ob1,i));
                    171:     }else if (getoa(ob1,i).tag == Sarray) {
                    172:       /* If the generater is given as an array, flatten it. */
                    173:       putoa(ob1New,i,KpoPOLY( arrayToPOLY(getoa(ob1,i))));
                    174:     }else{
                    175:       errorKan1("%s\n","Kgroebner(): The elements must be polynomials or array of polynomials.");
                    176:     }
                    177:     /* getoa(ob1,i) is poly, now check the homogenization. */
                    178:     if (CheckHomogenization) {
                    179:       if ((strcmp(F_groebner,"standard")==0) &&
1.2       takayama  180:           !isHomogenized(KopPOLY(getoa(ob1New,i)))) {
                    181:         fprintf(stderr,"\n%s",KPOLYToString(KopPOLY(getoa(ob1New,i))));
                    182:         errorKan1("%s\n","Kgroebner(): The above polynomial is not homogenized. cf. homogenize.");
1.1       maekawa   183:       }
                    184:     }
                    185:   }
                    186:   ob1 = ob1New;
                    187:
                    188:   /* To handle the input with zero entries. For debug, debug/gr.sm1*/
                    189:   ob1Size = getoaSize(ob1);
                    190:   ob2Size = 0; myring = CurrentRingp;
                    191:   for (i=0; i<ob1Size; i++) {
                    192:     if (KopPOLY(getoa(ob1,i)) != POLYNULL) ob2Size++;
                    193:   }
                    194:   if (ob2Size == ob1Size) noZeroEntry = 1;
                    195:   else noZeroEntry = 0;
                    196:   if (ob1Size == 0)  {
                    197:     if (needBack && needSyz) {
                    198:       rob = newObjectArray(3);
                    199:       putoa(rob,0,newObjectArray(0));
                    200:       putoa(rob,1,newObjectArray(0));
                    201:       putoa(rob,2,newObjectArray(0));
                    202:     }else if (needBack) {
                    203:       rob = newObjectArray(2);
                    204:       putoa(rob,0,newObjectArray(0));
                    205:       putoa(rob,1,newObjectArray(0));
                    206:     }else {
                    207:       rob = newObjectArray(1);
                    208:       putoa(rob,0,newObjectArray(0));
                    209:     }
                    210:     return(rob);
                    211:   }
                    212:   /* Assume ob1size > 0 */
                    213:   if (ob2Size == 0) {
                    214:     rob2 = newObjectArray(1); putoa(rob2,0,KpoPOLY(POLYNULL));
                    215:     if (needBack && needSyz) {
                    216:       rob = newObjectArray(3);
                    217:       putoa(rob,0,rob2);
                    218:       rob3 = newObjectArray(1);
                    219:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    220:       putoa(rob,1,rob3);
                    221:       rob4 = newObjectArray(ob1Size);
                    222:       for (i=0; i<ob1Size; i++) {
1.2       takayama  223:         putoa(rob4,i,unitVector(i,ob1Size,myring));
1.1       maekawa   224:       }
                    225:       putoa(rob,2,rob4);
                    226:     }else if (needBack) {
                    227:       rob = newObjectArray(2);
                    228:       putoa(rob,0,rob2);
                    229:       rob3 = newObjectArray(1);
                    230:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    231:       putoa(rob,1,rob3);
                    232:     }else {
                    233:       rob = newObjectArray(1);
                    234:       putoa(rob,0,rob2);
                    235:     }
                    236:     return(rob);
                    237:   }
                    238:   /* Assume ob1Size , ob2Size > 0 */
                    239:   ob2 = newObjectArray(ob2Size);
1.11      takayama  240:   ob1ToOb2 =   (int *)sGC_malloc(sizeof(int)*ob1Size);
                    241:   ob1ZeroPos = (int *)sGC_malloc(sizeof(int)*(ob1Size-ob2Size+1));
1.1       maekawa   242:   if (ob1ToOb2 == NULL || ob1ZeroPos == NULL) errorKan1("%s\n","No more memory.");
                    243:   j = 0; k = 0;
                    244:   for (i=0; i<ob1Size; i++) {
                    245:     f = KopPOLY(getoa(ob1,i));
                    246:     if (f != POLYNULL) {
                    247:       myring = f->m->ringp;
                    248:       putoa(ob2,j,KpoPOLY(f));
                    249:       ob1ToOb2[i] = j; j++;
                    250:     }else{
                    251:       ob1ToOb2[i] = -1;
                    252:       ob1ZeroPos[k] = i; k++;
                    253:     }
                    254:   }
                    255:
                    256:   a = arrayToArrayOfPOLY(ob2);
1.17    ! takayama  257:   grG = (*groebner)(a,needBack,needSyz,&grP,countDown,forceReduction,reduceOnly);
1.1       maekawa   258:
                    259:   if (strcmp(F_groebner,"gm") == 0 && (needBack || needSyz)) {
                    260:     warningKan("The options needBack and needSyz are ignored.");
                    261:     needBack = needSyz = 0;
                    262:   }
                    263:
                    264:   /*return(gradedPolySetToGradedArray(grG,0));*/
                    265:   if (needBack && needSyz) {
                    266:     rob = newObjectArray(3);
                    267:     if (Message && KanGBmessage) {
                    268:       printf("Computing the backward transformation   ");
                    269:       fflush(stdout);
                    270:     }
                    271:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    272:     if (KanGBmessage) printf("Done.\n");
                    273:
                    274:     /* Computing the syzygies. */
                    275:     if (Message && KanGBmessage) {
                    276:       printf("Computing the syzygies    ");
                    277:       fflush(stdout);
                    278:     }
                    279:     mp = getSyzygy(grG,grP->next,&grBases,&backwardMat);
1.10      takayama  280:        if (mp == NULL) errorKan1("%s\n","Internal error in getSyzygy(). BUG of sm1.");
1.1       maekawa   281:     if (KanGBmessage) printf("Done.\n");
                    282:
                    283:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    284:     putoa(rob,1,matrixOfPOLYToArray(backwardMat));
                    285:     putoa(rob,2,matrixOfPOLYToArray(mp));
                    286:   }else if (needBack) {
                    287:     rob = newObjectArray(2);
                    288:     if (Message && KanGBmessage) {
                    289:       printf("Computing the backward transformation.....");
                    290:       fflush(stdout);
                    291:     }
                    292:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    293:     if (KanGBmessage) printf("Done.\n");
                    294:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    295:     putoa(rob,1,getBackwardArray(grG));
                    296:   }else {
                    297:     rob = newObjectArray(1);
                    298:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    299:   }
                    300:
                    301:   /* To handle zero entries in the input. */
                    302:   if (noZeroEntry) {
                    303:     return(rob);
                    304:   }
                    305:   method = getoaSize(rob);
                    306:   switch(method) {
                    307:   case 1:
                    308:     return(rob);
                    309:     break;
                    310:   case 2:
                    311:     orgB = getoa(rob,1); /* backward transformation. */
                    312:     newB = newObjectArray(getoaSize(orgB));
                    313:     for (i=0; i<getoaSize(orgB); i++) {
                    314:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    315:     }
                    316:     rob2 = newObjectArray(2);
                    317:     putoa(rob2,0,getoa(rob,0));
                    318:     putoa(rob2,1,newB);
                    319:     return(rob2);
                    320:     break;
                    321:   case 3:
                    322:     orgB = getoa(rob,1); /* backward transformation. */
                    323:     newB = newObjectArray(getoaSize(orgB));
                    324:     for (i=0; i<getoaSize(orgB); i++) {
                    325:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    326:     }
                    327:     orgC = getoa(rob,2);
                    328:     newC = newObjectArray(getoaSize(orgC)+ob1Size-ob2Size);
                    329:     for (i=0; i<getoaSize(orgC); i++) {
                    330:       putoa(newC, i, paddingVector(getoa(orgC,i),ob1ToOb2,ob1Size));
                    331:     }
                    332:     for (i = getoaSize(orgC), j = 0; i<getoaSize(orgC)+ob1Size-ob2Size; i++,j++) {
                    333:       putoa(newC,i,unitVector(ob1ZeroPos[j],ob1Size,myring));
                    334:     }
                    335:     rob2 = newObjectArray(3);
                    336:     putoa(rob2,0,getoa(rob,0));
                    337:     putoa(rob2,1,newB);
                    338:     putoa(rob2,2,newC);
                    339:     return(rob2);
                    340:     break;
                    341:   default:
                    342:     errorKan1("%s","Kgroebner: unknown method.");
                    343:   }
                    344: }
                    345:
                    346: static struct object paddingVector(struct object ob, int table[], int m)
                    347: {
                    348:   struct object rob;
                    349:   int i;
                    350:   rob = newObjectArray(m);
                    351:   for (i=0; i<m; i++) {
                    352:     if (table[i] != -1) {
                    353:       putoa(rob,i,getoa(ob,table[i]));
                    354:     }else{
                    355:       putoa(rob,i,KpoPOLY(POLYNULL));
                    356:     }
                    357:   }
                    358:   return(rob);
                    359: }
                    360:
                    361: static struct object unitVector(int pos, int size,struct ring *r)
                    362: {
                    363:   struct object rob;
                    364:   int i;
                    365:   POLY one;
                    366:   rob = newObjectArray(size);
                    367:   for (i=0; i<size; i++) {
                    368:     putoa(rob,i,KpoPOLY(POLYNULL));
                    369:   }
                    370:   if ((0 <= pos) && (pos < size)) {
                    371:     putoa(rob,pos, KpoPOLY(cxx(1,0,0,r)));
                    372:   }
                    373:   return(rob);
                    374: }
                    375:
                    376:
                    377:
                    378: /* :misc */
                    379:
                    380: #define INITGRADE 3
                    381: #define INITSIZE 0
                    382:
                    383: struct gradedPolySet *arrayToGradedPolySet(ob)
1.2       takayama  384:      struct object ob;
1.1       maekawa   385: {
                    386:   int n,i,grd,ind;
                    387:   POLY f;
                    388:   struct gradedPolySet *grG;
                    389:   int serial;
                    390:   extern int Sugar;
                    391:
                    392:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToGradedPolySet(): the argument must be array.");
                    393:   n = getoaSize(ob);
                    394:   for (i=0; i<n; i++) {
                    395:     if (getoa(ob,i).tag != Spoly)
                    396:       errorKan1("%s\n","arrayToGradedPolySet(): the elements must be polynomials.");
                    397:   }
                    398:   grG = newGradedPolySet(INITGRADE);
                    399:
                    400:   for (i=0; i<grG->lim; i++) {
                    401:     grG->polys[i] = newPolySet(INITSIZE);
                    402:   }
                    403:   for (i=0; i<n; i++) {
                    404:     f = KopPOLY(getoa(ob,i));
                    405:     grd = -1; whereInG(grG,f,&grd,&ind,Sugar);
                    406:     serial = i;
                    407:     grG = putPolyInG(grG,f,grd,ind,(struct syz0 *)NULL,1,serial);
                    408:   }
                    409:   return(grG);
                    410: }
                    411:
                    412:
                    413: struct object polySetToArray(ps,keepRedundant)
1.2       takayama  414:      struct polySet *ps;
                    415:      int keepRedundant;
1.1       maekawa   416: {
                    417:   int n,i,j;
                    418:   struct object ob;
                    419:   if (ps == (struct polySet *)NULL) return(newObjectArray(0));
                    420:   n = 0;
                    421:   if (keepRedundant) {
                    422:     n = ps->size;
                    423:   }else{
                    424:     for (i=0; i<ps->size; i++) {
                    425:       if (ps->del[i] == 0) ++n;
                    426:     }
                    427:   }
                    428:   ob = newObjectArray(n);
                    429:   j = 0;
                    430:   for (i=0; i<ps->size; i++) {
                    431:     if (keepRedundant || (ps->del[i] == 0)) {
                    432:       putoa(ob,j,KpoPOLY(ps->g[i]));
                    433:       j++;
                    434:     }
                    435:   }
                    436:   return(ob);
                    437: }
                    438:
                    439:
                    440: struct object gradedPolySetToGradedArray(gps,keepRedundant)
1.2       takayama  441:      struct gradedPolySet *gps;
                    442:      int keepRedundant;
1.1       maekawa   443: {
                    444:   struct object ob,vec;
                    445:   int i;
                    446:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    447:   ob = newObjectArray(gps->maxGrade +1);
                    448:   vec = newObjectArray(gps->maxGrade);
                    449:   for (i=0; i<gps->maxGrade; i++) {
                    450:     putoa(vec,i,KpoInteger(i));
                    451:     putoa(ob,i+1,polySetToArray(gps->polys[i],keepRedundant));
                    452:   }
                    453:   putoa(ob,0,vec);
                    454:   return(ob);
                    455: }
                    456:
                    457:
                    458: struct object gradedPolySetToArray(gps,keepRedundant)
1.2       takayama  459:      struct gradedPolySet *gps;
                    460:      int keepRedundant;
1.1       maekawa   461: {
                    462:   struct object ob,vec;
                    463:   struct polySet *ps;
                    464:   int k;
                    465:   int i,j;
                    466:   int size;
                    467:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    468:   size = 0;
                    469:   for (i=0; i<gps->maxGrade; i++) {
                    470:     ps = gps->polys[i];
                    471:     if (keepRedundant) {
                    472:       size += ps->size;
                    473:     }else{
                    474:       for (j=0; j<ps->size; j++) {
1.2       takayama  475:         if (ps->del[j] == 0) ++size;
1.1       maekawa   476:       }
                    477:     }
                    478:   }
                    479:
                    480:   ob = newObjectArray(size);
                    481:   k = 0;
                    482:   for (i=0; i<gps->maxGrade; i++) {
                    483:     ps = gps->polys[i];
                    484:     for (j=0; j<ps->size; j++) {
                    485:       if (keepRedundant || (ps->del[j] == 0)) {
1.2       takayama  486:         putoa(ob,k,KpoPOLY(ps->g[j]));
                    487:         k++;
1.1       maekawa   488:       }
                    489:     }
                    490:   }
                    491:   return(ob);
                    492: }
                    493:
                    494:
                    495: /* serial == -1  :  It's not in the marix input. */
                    496: struct object syzPolyToArray(size,f,grG)
1.2       takayama  497:      int size;
                    498:      POLY f;
                    499:      struct gradedPolySet *grG;
1.1       maekawa   500: {
                    501:   struct object ob;
                    502:   int i,g0,i0,serial;
                    503:
                    504:   ob = newObjectArray(size);
                    505:   for (i=0; i<size; i++) {
                    506:     putoa(ob,i,KpoPOLY(ZERO));
                    507:   }
                    508:
                    509:   while (f != POLYNULL) {
                    510:     g0 = srGrade(f);
1.6       takayama  511:     i0 = srIndex(f);
1.1       maekawa   512:     serial = grG->polys[g0]->serial[i0];
                    513:     if (serial < 0) {
                    514:       errorKan1("%s\n","syzPolyToArray(): invalid serial[i] of grG.");
                    515:     }
                    516:     if (KopPOLY(getoa(ob,serial)) != ZERO) {
                    517:       errorKan1("%s\n","syzPolyToArray(): syzygy polynomial is broken.");
                    518:     }
                    519:     putoa(ob,serial,KpoPOLY(f->coeffp->val.f));
                    520:     f = f->next;
                    521:   }
                    522:   return(ob);
                    523: }
                    524:
                    525: struct object getBackwardArray(grG)
1.2       takayama  526:      struct gradedPolySet *grG;
1.1       maekawa   527: {
                    528:   /* use serial, del.  cf. getBackwardTransformation(). */
                    529:   int inputSize,outputSize;
                    530:   int i,j,k;
                    531:   struct object ob;
                    532:   struct polySet *ps;
                    533:
                    534:   inputSize = 0; outputSize = 0;
                    535:   for (i=0; i<grG->maxGrade; i++) {
                    536:     ps = grG->polys[i];
                    537:     for (j=0; j<ps->size; j++) {
                    538:       if (ps->serial[j] >= 0) ++inputSize;
                    539:       if (ps->del[j] == 0) ++outputSize;
                    540:     }
                    541:   }
                    542:
                    543:   ob = newObjectArray(outputSize);
                    544:   k = 0;
                    545:   for (i=0; i<grG->maxGrade; i++) {
                    546:     ps = grG->polys[i];
                    547:     for (j=0; j<ps->size; j++) {
                    548:       if (ps->del[j] == 0) {
1.2       takayama  549:         putoa(ob,k,syzPolyToArray(inputSize,ps->syz[j]->syz,grG));
                    550:         k++;
1.1       maekawa   551:       }
                    552:     }
                    553:   }
                    554:   return(ob);
                    555: }
                    556:
                    557:
                    558: POLY arrayToPOLY(ob)
1.2       takayama  559:      struct object ob;
1.1       maekawa   560: {
                    561:   int size,i;
                    562:   struct object f;
                    563:   POLY r;
                    564:   static int nn,mm,ll,cc,n,m,l,c;
                    565:   static struct ring *cr = (struct ring *)NULL;
                    566:   POLY ff,ee;
                    567:   MONOMIAL tf;
                    568:
                    569:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToPOLY(): The argument must be an array.");
                    570:   size = getoaSize(ob);
                    571:   r = ZERO;
                    572:   for (i=0; i<size; i++) {
                    573:     f = getoa(ob,i);
                    574:     if (f.tag != Spoly) errorKan1("%s\n","arrayToPOLY(): The elements must be polynomials.");
                    575:     ff = KopPOLY(f);
                    576:     if (ff != ZERO) {
                    577:       tf = ff->m;
                    578:       if (tf->ringp != cr) {
1.2       takayama  579:         n = tf->ringp->n;
                    580:         m = tf->ringp->m;
                    581:         l = tf->ringp->l;
                    582:         c = tf->ringp->c;
                    583:         nn = tf->ringp->nn;
                    584:         mm = tf->ringp->mm;
                    585:         ll = tf->ringp->ll;
                    586:         cc = tf->ringp->cc;
                    587:         cr = tf->ringp;
1.1       maekawa   588:       }
                    589:       if (n-nn >0) ee = cxx(1,n-1,i,tf->ringp);
                    590:       else if (m-mm >0) ee = cxx(1,m-1,i,tf->ringp);
                    591:       else if (l-ll >0) ee = cxx(1,l-1,i,tf->ringp);
                    592:       else if (c-cc >0) ee = cxx(1,c-1,i,tf->ringp);
                    593:       else ee = ZERO;
                    594:       r = ppAddv(r,ppMult(ee,ff));
                    595:     }
                    596:   }
                    597:   return(r);
                    598: }
                    599:
                    600: struct object POLYToArray(ff)
1.2       takayama  601:      POLY ff;
1.1       maekawa   602: {
                    603:
                    604:   static int nn,mm,ll,cc,n,m,l,c;
                    605:   static struct ring *cr = (struct ring *)NULL;
                    606:   POLY ee;
                    607:   MONOMIAL tf;
                    608:   int k,i,matn,size;
                    609:   struct matrixOfPOLY *mat;
                    610:   POLY ex,sizep;
                    611:   struct object ob;
                    612:
                    613:   if (ff != ZERO) {
                    614:     tf = ff->m;
                    615:     if (tf->ringp != cr) {
                    616:       n = tf->ringp->n;
                    617:       m = tf->ringp->m;
                    618:       l = tf->ringp->l;
                    619:       c = tf->ringp->c;
                    620:       nn = tf->ringp->nn;
                    621:       mm = tf->ringp->mm;
                    622:       ll = tf->ringp->ll;
                    623:       cc = tf->ringp->cc;
                    624:       cr = tf->ringp;
                    625:     }
                    626:     if (n-nn >0) ee = cxx(1,n-1,1,tf->ringp);
                    627:     else if (m-mm >0) ee = cxx(1,m-1,1,tf->ringp);
                    628:     else if (l-ll >0) ee = cxx(1,l-1,1,tf->ringp);
                    629:     else if (c-cc >0) ee = cxx(1,c-1,1,tf->ringp);
                    630:     else ee = ZERO;
                    631:   }else{
                    632:     ob = newObjectArray(1);
                    633:     getoa(ob,0) = KpoPOLY(ZERO);
                    634:     return(ob);
                    635:   }
                    636:   mat = parts(ff,ee);
                    637:   matn = mat->n;
                    638:   sizep = getMatrixOfPOLY(mat,0,0);
                    639:   if (sizep == ZERO) size = 1;
                    640:   else size = coeffToInt(sizep->coeffp)+1;
                    641:   ob = newObjectArray(size);
                    642:   for (i=0; i<size; i++) getoa(ob,i) = KpoPOLY(ZERO);
                    643:   for (i=0; i<matn; i++) {
                    644:     ex = getMatrixOfPOLY(mat,0,i);
                    645:     if (ex == ZERO) k = 0;
                    646:     else {
                    647:       k = coeffToInt(ex->coeffp);
                    648:     }
                    649:     getoa(ob,k) = KpoPOLY(getMatrixOfPOLY(mat,1,i));
                    650:   }
                    651:   return(ob);
                    652: }
                    653:
                    654: static int isThereh(f)
1.2       takayama  655:      POLY f;
1.1       maekawa   656: {
                    657:   POLY t;
                    658:   if (f == 0) return(0);
                    659:   t = f;
                    660:   while (t != POLYNULL) {
                    661:     if (t->m->e[0].D) return(1);
                    662:     t = t->next;
                    663:   }
                    664:   return(0);
                    665: }
                    666:
                    667: struct object homogenizeObject(ob,gradep)
1.2       takayama  668:      struct object ob;
                    669:      int *gradep;
1.1       maekawa   670: {
                    671:   struct object rob,ob1;
                    672:   int maxg;
                    673:   int gr,flag,i,d,size;
                    674:   struct ring *rp;
                    675:   POLY f;
                    676:   extern struct ring *CurrentRingp;
                    677:   extern int Homogenize_vec;
                    678:
                    679:   if (!Homogenize_vec) return(homogenizeObject_vec(ob,gradep));
                    680:
                    681:   switch(ob.tag) {
                    682:   case Spoly:
                    683:     if (isThereh(KopPOLY(ob))) {
                    684:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    685:       errorKan1("%s\n","homogenizeObject(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    686:     }
                    687:     f = homogenize( KopPOLY(ob) );
                    688:     *gradep = (*grade)(f);
                    689:     return(KpoPOLY(f));
                    690:     break;
                    691:   case Sarray:
                    692:     size = getoaSize(ob);
                    693:     if (size == 0) {
                    694:       errorKan1("%s\n","homogenizeObject() is called for the empty array.");
                    695:     }
                    696:     rob = newObjectArray(size);
                    697:     flag = 0;
                    698:     ob1 = getoa(ob,0);
1.5       takayama  699:     if (ob1.tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   700:     ob1 = homogenizeObject(ob1,&gr);
                    701:     maxg = gr;
                    702:     getoa(rob,0) = ob1;
                    703:     for (i=1; i<size; i++) {
                    704:       ob1 = getoa(ob,i);
                    705:       ob1 = homogenizeObject(ob1,&gr);
                    706:       if (gr > maxg) {
1.2       takayama  707:         maxg = gr;
1.1       maekawa   708:       }
                    709:       getoa(rob,i) = ob1;
                    710:     }
                    711:     maxg = maxg+size-1;
                    712:     if (1) {
                    713:       rp = oRingp(rob);
                    714:       if (rp == (struct ring *)NULL) rp = CurrentRingp;
                    715:       for (i=0; i<size; i++) {
1.2       takayama  716:         gr = oGrade(getoa(rob,i));
                    717:         /**printf("maxg=%d, gr=%d(i=%d) ",maxg,gr,i); fflush(stdout);**/
                    718:         if (maxg > gr) {
                    719:           f = cdd(1,0,maxg-gr-i,rp); /* h^{maxg-gr-i} */
                    720:           getoa(rob,i) = KooMult(KpoPOLY(f),getoa(rob,i));
                    721:         }
1.1       maekawa   722:       }
                    723:     }
                    724:     *gradep = maxg;
                    725:     return(rob);
                    726:     break;
                    727:   default:
                    728:     errorKan1("%s\n","homogenizeObject(): Invalid argument data type.");
                    729:     break;
                    730:   }
                    731: }
                    732:
                    733: struct object homogenizeObject_vec(ob,gradep)
1.2       takayama  734:      struct object ob;
                    735:      int *gradep;
1.1       maekawa   736: {
                    737:   struct object rob,ob1;
                    738:   int maxg;
                    739:   int gr,i,size;
                    740:   POLY f;
                    741:   extern struct ring *CurrentRingp;
                    742:
                    743:   switch(ob.tag) {
                    744:   case Spoly:
                    745:     if (isThereh(KopPOLY(ob))) {
                    746:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    747:       errorKan1("%s\n","homogenizeObject_vec(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    748:     }
                    749:     if (containVectorVariable(KopPOLY(ob))) {
                    750:       errorKan1("%s\n","homogenizedObject_vec(): The given polynomial contains a variable to express a vector component.");
                    751:     }
                    752:     f = homogenize( KopPOLY(ob) );
                    753:     *gradep = (*grade)(f);
                    754:     return(KpoPOLY(f));
                    755:     break;
                    756:   case Sarray:
                    757:     size = getoaSize(ob);
                    758:     if (size == 0) {
                    759:       errorKan1("%s\n","homogenizeObject_vec() is called for the empty array.");
                    760:     }
1.5       takayama  761:     if (getoa(ob,0).tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   762:     rob = newObjectArray(size);
                    763:     for (i=0; i<size; i++) {
                    764:       ob1 = getoa(ob,i);
                    765:       ob1 = homogenizeObject_vec(ob1,&gr);
                    766:       if (i==0) maxg = gr;
                    767:       else {
1.2       takayama  768:         maxg = (maxg > gr? maxg: gr);
1.1       maekawa   769:       }
                    770:       putoa(rob,i,ob1);
                    771:     }
                    772:     *gradep = maxg;
                    773:     return(rob);
                    774:     break;
                    775:   default:
                    776:     errorKan1("%s\n","homogenizeObject_vec(): Invalid argument data type.");
                    777:     break;
                    778:   }
                    779: }
                    780:
1.9       takayama  781: void KresetDegreeShift() {
                    782:   DegreeShifto = NullObject;
                    783:   DegreeShifto_vec = (int *)NULL;
                    784:   DegreeShifto_size = 0;
                    785:   DegreeShiftD = NullObject;
                    786:   DegreeShiftD_vec = (int *)NULL;
                    787:   DegreeShiftD_size = 0;
                    788: }
                    789:
1.3       takayama  790: struct object homogenizeObject_go(struct object ob,int *gradep) {
                    791:   int size,i,dssize,j;
                    792:   struct object ob0;
                    793:   struct object ob1;
                    794:   struct object ob2;
                    795:   struct object rob;
                    796:   struct object tob;
                    797:   struct object ob1t;
                    798:   int *ds;
                    799:   POLY f;
1.9       takayama  800:   int onlyS;
                    801:
                    802:   onlyS = 0;  /* default value */
1.3       takayama  803:   rob = NullObject;
1.9       takayama  804:   /*printf("[%d,%d]\n",DegreeShiftD_size,DegreeShifto_size);*/
                    805:   if (DegreeShifto_size == 0) DegreeShifto = NullObject;
                    806:   if (DegreeShiftD_size == 0) DegreeShiftD = NullObject;
                    807:   /*
                    808:       DegreeShiftD : Degree shift vector for (0,1)-h-homogenization,
                    809:                      which is {\vec n} in G-O paper.
                    810:                      It is used in dGrade1()  redm.c
                    811:       DegreeShifto : Degree shift vector for (u,v)-s-homogenization
                    812:                      which is used only in ecart division and (u,v) is
                    813:                      usually (-1,1).
                    814:                      This shift vector is written {\vec v} in G-O paper.
                    815:                      It may differ from the degree shift for the ring,
                    816:                      which is used to get (minimal) Schreyer resolution.
                    817:                      This shift vector is denoted by {\vec m} in G-O paper.
                    818:                      It is often used as an argument for uvGrade1 and
                    819:                      goHomogenize*
                    820:    */
1.3       takayama  821:   if (ob.tag != Sarray) errorKan1("%s\n","homogenizeObject_go(): Invalid argument data type.");
                    822:
                    823:   size = getoaSize(ob);
                    824:   if (size == 0) errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    825:   ob0 = getoa(ob,0);
                    826:   if (ob0.tag != Sdollar) {
                    827:     errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    828:   }
                    829:   if (strcmp(KopString(ob0),"degreeShift") == 0) {
1.5       takayama  830:     if (size < 2)
1.9       takayama  831:       errorKan1("%s\n","homogenizeObject_go(): [(degreeShift) shift-vector obj] or [(degreeShift) shift-vector] or [(degreeShift) (value)] homogenize.\nshift-vector=(0,1)-shift vector or [(0,1)-shift vector, (u,v)-shift vector].");
1.5       takayama  832:     ob1 = getoa(ob,1);
                    833:        if (ob1.tag != Sarray) {
1.9       takayama  834:          if ((ob1.tag == Sdollar) && (strcmp(KopString(ob1),"value")==0)) {
                    835:         /* Reporting the value. It is done below. */
                    836:          }else if ((ob1.tag == Sdollar) && (strcmp(KopString(ob1),"reset")==0)) {
                    837:                KresetDegreeShift();
                    838:          }
                    839:          rob = newObjectArray(2);
                    840:          putoa(rob,0,DegreeShiftD);
                    841:          putoa(rob,1,DegreeShifto);
                    842:          return rob;
                    843:        }
                    844:
                    845:        if (getoaSize(ob1) == 2) {
                    846:          /* [(degreeShift) [ [1 2]   [3 4] ]  ...] homogenize */
                    847:       /*                  (0,1)-h (u,v)-s                  */
                    848:          DegreeShiftD = getoa(ob1,0);
                    849:          dssize = getoaSize(DegreeShiftD);
                    850:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    851:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    852:          for (i=0; i<dssize; i++) {
                    853:                ds[i] = objToInteger(getoa(DegreeShiftD,i));
                    854:          }
                    855:       DegreeShiftD_size = dssize;
                    856:          DegreeShiftD_vec = ds;
                    857:
                    858:          DegreeShifto = getoa(ob1,1);
                    859:          dssize = getoaSize(DegreeShifto);
                    860:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    861:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    862:          for (i=0; i<dssize; i++) {
                    863:                ds[i] = objToInteger(getoa(DegreeShifto,i));
1.3       takayama  864:          }
1.9       takayama  865:       DegreeShifto_size = dssize;
                    866:          DegreeShifto_vec = ds;
                    867:        }else if (getoaSize(ob1) == 1) {
                    868:          /* Set only  for (0,1)-h */
                    869:          DegreeShiftD = getoa(ob1,0);
                    870:          dssize = getoaSize(DegreeShiftD);
                    871:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    872:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    873:          for (i=0; i<dssize; i++) {
                    874:                ds[i] = objToInteger(getoa(DegreeShiftD,i));
                    875:          }
                    876:       DegreeShiftD_size = dssize;
                    877:          DegreeShiftD_vec = ds;
1.3       takayama  878:        }
1.9       takayama  879:
                    880:        ds = DegreeShifto_vec;
                    881:        dssize = DegreeShifto_size;
                    882:
1.5       takayama  883:     if (size == 2) {
1.9       takayama  884:          rob = newObjectArray(2);
                    885:          putoa(rob,0,DegreeShiftD);
                    886:          putoa(rob,1,DegreeShifto);
                    887:          return rob;
1.5       takayama  888:     }else{
                    889:       ob2 = getoa(ob,2);
                    890:       if (ob2.tag == Spoly) {
1.9       takayama  891:         f = goHomogenize11(KopPOLY(ob2),ds,dssize,-1,onlyS);
1.5       takayama  892:         rob = KpoPOLY(f);
                    893:       }else if (ob2.tag == SuniversalNumber) {
                    894:         rob = ob2;
                    895:       }else if (ob2.tag == Sarray) {
1.9       takayama  896:                int mm;
                    897:                mm = getoaSize(ob2);
                    898:                f = objArrayToPOLY(ob2);
                    899:         f = goHomogenize11(f,ds,dssize,-1,onlyS);
                    900:         rob = POLYtoObjArray(f,mm);
1.5       takayama  901:       }else{
                    902:         errorKan1("%s\n","homogenizeObject_go(): invalid object for the third element.");
                    903:       }
                    904:     }
1.3       takayama  905:   }else{
1.5       takayama  906:       errorKan1("%s\n","homogenizeObject_go(): unknown key word.");
1.3       takayama  907:   }
1.5       takayama  908:   return( rob );
1.3       takayama  909: }
                    910:
                    911:
1.1       maekawa   912: struct ring *oRingp(ob)
1.2       takayama  913:      struct object ob;
1.1       maekawa   914: {
                    915:   struct ring *rp,*rptmp;
                    916:   int i,size;
                    917:   POLY f;
                    918:   switch(ob.tag) {
                    919:   case Spoly:
                    920:     f = KopPOLY(ob);
                    921:     if (f == ZERO) return((struct ring *)NULL);
                    922:     return( f->m->ringp);
                    923:     break;
                    924:   case Sarray:
                    925:     size = getoaSize(ob);
                    926:     rp = (struct ring *)NULL;
                    927:     for (i=0; i<size; i++) {
                    928:       rptmp = oRingp(getoa(ob,i));
                    929:       if (rptmp != (struct ring *)NULL) rp = rptmp;
                    930:       return(rp);
                    931:     }
                    932:     break;
                    933:   default:
                    934:     errorKan1("%s\n","oRingp(): Invalid argument data type.");
                    935:     break;
                    936:   }
                    937: }
                    938:
                    939: int oGrade(ob)
1.2       takayama  940:      struct object ob;
1.1       maekawa   941: {
                    942:   int i,size;
                    943:   POLY f;
                    944:   int maxg,tmpg;
                    945:   switch(ob.tag) {
                    946:   case Spoly:
                    947:     f = KopPOLY(ob);
                    948:     return( (*grade)(f) );
                    949:     break;
                    950:   case Sarray:
                    951:     size = getoaSize(ob);
                    952:     if (size == 0) return(0);
                    953:     maxg = oGrade(getoa(ob,0));
                    954:     for (i=1; i<size; i++) {
                    955:       tmpg = oGrade(getoa(ob,i));
                    956:       if (tmpg > maxg) maxg = tmpg;
                    957:     }
                    958:     return(maxg);
                    959:     break;
                    960:   default:
                    961:     errorKan1("%s\n","oGrade(): Invalid data type for the argument.");
                    962:     break;
                    963:   }
                    964: }
                    965:
                    966:
                    967: struct object oPrincipalPart(ob)
1.2       takayama  968:      struct object ob;
1.1       maekawa   969: {
                    970:   POLY f;
                    971:   struct object rob;
                    972:
                    973:   switch(ob.tag) {
                    974:   case Spoly:
                    975:     f = KopPOLY(ob);
                    976:     return( KpoPOLY(POLYToPrincipalPart(f)));
                    977:     break;
                    978:   default:
                    979:     errorKan1("%s\n","oPrincipalPart(): Invalid data type for the argument.");
                    980:     break;
                    981:   }
                    982: }
                    983: struct object oInitW(ob,oWeight)
1.2       takayama  984:      struct object ob;
                    985:      struct object oWeight;
1.1       maekawa   986: {
                    987:   POLY f;
                    988:   struct object rob;
                    989:   int w[2*N0];
                    990:   int n,i;
                    991:   struct object ow;
1.7       takayama  992:   int shiftvec;
                    993:   struct object oShift;
                    994:   int *s;
                    995:   int ssize,m;
1.1       maekawa   996:
1.7       takayama  997:   shiftvec = 0;
                    998:   s = NULL;
                    999:
1.1       maekawa  1000:   if (oWeight.tag != Sarray) {
                   1001:     errorKan1("%s\n","oInitW(): the second argument must be array.");
                   1002:   }
1.15      takayama 1003:   oWeight = Kto_int32(oWeight);
1.1       maekawa  1004:   n = getoaSize(oWeight);
1.8       takayama 1005:   if (n == 0) {
                   1006:        m = getoaSize(ob);
                   1007:        f = objArrayToPOLY(ob);
                   1008:        f = head(f);
                   1009:     return POLYtoObjArray(f,m);
                   1010:   }
1.7       takayama 1011:   if (getoa(oWeight,0).tag == Sarray) {
                   1012:        if (n != 2) errorKan1("%s\n","oInitW(): the size of the second argument should be 2.");
                   1013:        shiftvec = 1;
                   1014:        oShift = getoa(oWeight,1);
                   1015:        oWeight = getoa(oWeight,0);
                   1016:        if (oWeight.tag != Sarray) {
                   1017:          errorKan1("%s\n","oInitW(): the weight vector must be array.");
                   1018:        }
                   1019:        n = getoaSize(oWeight);
                   1020:        if (oShift.tag != Sarray) {
                   1021:          errorKan1("%s\n","oInitW(): the shift vector must be array.");
                   1022:        }
                   1023:   }
                   1024:   /* oWeight = Ksm1WeightExpressionToVec(oWeight); */
1.1       maekawa  1025:   if (n >= 2*N0) errorKan1("%s\n","oInitW(): the size of the second argument is invalid.");
                   1026:   for (i=0; i<n; i++) {
                   1027:     ow = getoa(oWeight,i);
1.7       takayama 1028:        if (ow.tag == SuniversalNumber) {
                   1029:          ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1030:        }
1.1       maekawa  1031:     if (ow.tag != Sinteger) {
                   1032:       errorKan1("%s\n","oInitW(): the entries of the second argument must be integers.");
                   1033:     }
                   1034:     w[i] = KopInteger(ow);
                   1035:   }
1.7       takayama 1036:   if (shiftvec) {
                   1037:     ssize = getoaSize(oShift);
                   1038:        s = (int *)sGC_malloc(sizeof(int)*(ssize+1));
                   1039:        if (s == NULL) errorKan1("%s\n","oInitW() no more memory.");
                   1040:        for (i=0; i<ssize; i++) {
                   1041:          ow = getoa(oShift,i);
                   1042:          if (ow.tag == SuniversalNumber) {
                   1043:                ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1044:          }
                   1045:          if (ow.tag != Sinteger) {
                   1046:                errorKan1("%s\n","oInitW(): the entries of shift vector must be integers.");
                   1047:          }
                   1048:          s[i] = KopInteger(ow);
                   1049:        }
                   1050:   }
                   1051:
1.1       maekawa  1052:   switch(ob.tag) {
                   1053:   case Spoly:
                   1054:     f = KopPOLY(ob);
1.7       takayama 1055:        if (shiftvec) {
                   1056:          return( KpoPOLY(POLYToInitWS(f,w,s)));
                   1057:        }else{
                   1058:          return( KpoPOLY(POLYToInitW(f,w)));
                   1059:        }
1.1       maekawa  1060:     break;
1.7       takayama 1061:   case Sarray:
                   1062:        m = getoaSize(ob);
                   1063:        f = objArrayToPOLY(ob);
                   1064:     /* printf("1.%s\n",POLYToString(f,'*',1)); */
                   1065:        if (shiftvec) {
                   1066:          f =  POLYToInitWS(f,w,s);
                   1067:        }else{
                   1068:          f =  POLYToInitW(f,w);
                   1069:        }
                   1070:     /* printf("2.%s\n",POLYToString(f,'*',1)); */
                   1071:
                   1072:        return POLYtoObjArray(f,m);
1.1       maekawa  1073:   default:
1.7       takayama 1074:     errorKan1("%s\n","oInitW(): Argument must be polynomial or a vector of polynomials");
1.1       maekawa  1075:     break;
                   1076:   }
                   1077: }
1.7       takayama 1078:
                   1079: POLY objArrayToPOLY(struct object ob) {
                   1080:   int m;
                   1081:   POLY f;
                   1082:   POLY t;
                   1083:   int i,n;
                   1084:   struct ring *ringp;
                   1085:   if (ob.tag != Sarray) errorKan1("%s\n", "objArrayToPOLY() the argument must be an array.");
                   1086:   m = getoaSize(ob);
                   1087:   ringp = NULL;
                   1088:   f = POLYNULL;
                   1089:   for (i=0; i<m; i++) {
                   1090:     if (getoa(ob,i).tag != Spoly) errorKan1("%s\n","objArrayToPOLY() elements must be a polynomial.");
                   1091:     t = KopPOLY(getoa(ob,i));
                   1092:     if (t ISZERO) {
                   1093:     }else{
                   1094:       if (ringp == NULL) {
                   1095:         ringp = t->m->ringp;
                   1096:         n = ringp->n;
1.8       takayama 1097:                if (n - ringp->nn <= 0) errorKan1("%s\n","Graduation variable in D is not given.");
1.7       takayama 1098:       }
                   1099:       t = (*mpMult)(cxx(1,n-1,i,ringp),t);
                   1100:       f = ppAddv(f,t);
                   1101:     }
                   1102:   }
                   1103:   return f;
                   1104: }
                   1105:
                   1106: struct object POLYtoObjArray(POLY f,int size) {
                   1107:   struct object rob;
                   1108:   POLY *pa;
                   1109:   int d,n,i;
                   1110:   POLY t;
                   1111:   if (size < 0) errorKan1("%s\n","POLYtoObjArray() invalid size.");
                   1112:   rob = newObjectArray(size);
                   1113:   pa = (POLY *) sGC_malloc(sizeof(POLY)*(size+1));
                   1114:   if (pa == NULL) errorKan1("%s\n","POLYtoObjArray() no more memory.");
                   1115:   for (i=0; i<size; i++) {
                   1116:     pa[i] = POLYNULL;
                   1117:     putoa(rob,i,KpoPOLY(pa[i]));
                   1118:   }
                   1119:   if (f == POLYNULL) {
                   1120:     return rob;
                   1121:   }
                   1122:   n = f->m->ringp->n;
                   1123:   while (f != POLYNULL) {
                   1124:     d = f->m->e[n-1].x;
                   1125:     if (d >= size) errorKan1("%s\n","POLYtoObjArray() size is too small.");
1.8       takayama 1126:     t = newCell(coeffCopy(f->coeffp),monomialCopy(f->m));
1.7       takayama 1127:        i = t->m->e[n-1].x;
                   1128:     t->m->e[n-1].x = 0;
                   1129:     pa[i] = ppAddv(pa[i],t); /* slow to add from the top. */
                   1130:     f = f->next;
                   1131:   }
                   1132:   for (i=0; i<size; i++) {
                   1133:     putoa(rob,i,KpoPOLY(pa[i]));
                   1134:   }
                   1135:   return rob;
                   1136: }
                   1137:
1.8       takayama 1138: struct object KordWsAll(ob,oWeight)
                   1139:      struct object ob;
                   1140:      struct object oWeight;
                   1141: {
                   1142:   POLY f;
                   1143:   struct object rob;
                   1144:   int w[2*N0];
                   1145:   int n,i;
                   1146:   struct object ow;
                   1147:   int shiftvec;
                   1148:   struct object oShift;
                   1149:   int *s;
                   1150:   int ssize,m;
                   1151:
                   1152:   shiftvec = 0;
                   1153:   s = NULL;
                   1154:
                   1155:   if (oWeight.tag != Sarray) {
                   1156:     errorKan1("%s\n","ordWsAll(): the second argument must be array.");
                   1157:   }
1.15      takayama 1158:   oWeight = Kto_int32(oWeight);
1.8       takayama 1159:   n = getoaSize(oWeight);
                   1160:   if (n == 0) {
                   1161:        m = getoaSize(ob);
                   1162:        f = objArrayToPOLY(ob);
                   1163:        f = head(f);
                   1164:     return POLYtoObjArray(f,m);
                   1165:   }
                   1166:   if (getoa(oWeight,0).tag == Sarray) {
                   1167:        if (n != 2) errorKan1("%s\n","ordWsAll(): the size of the second argument should be 2.");
                   1168:        shiftvec = 1;
                   1169:        oShift = getoa(oWeight,1);
                   1170:        oWeight = getoa(oWeight,0);
                   1171:        if (oWeight.tag != Sarray) {
                   1172:          errorKan1("%s\n","ordWsAll(): the weight vector must be array.");
                   1173:        }
                   1174:        n = getoaSize(oWeight);
                   1175:        if (oShift.tag != Sarray) {
                   1176:          errorKan1("%s\n","ordWsAll(): the shift vector must be array.");
                   1177:        }
                   1178:   }
                   1179:   /* oWeight = Ksm1WeightExpressionToVec(oWeight); */
                   1180:   if (n >= 2*N0) errorKan1("%s\n","ordWsAll(): the size of the second argument is invalid.");
                   1181:   for (i=0; i<n; i++) {
                   1182:     ow = getoa(oWeight,i);
                   1183:        if (ow.tag == SuniversalNumber) {
                   1184:          ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1185:        }
                   1186:     if (ow.tag != Sinteger) {
                   1187:       errorKan1("%s\n","ordWsAll(): the entries of the second argument must be integers.");
                   1188:     }
                   1189:     w[i] = KopInteger(ow);
                   1190:   }
                   1191:   if (shiftvec) {
                   1192:     ssize = getoaSize(oShift);
                   1193:        s = (int *)sGC_malloc(sizeof(int)*(ssize+1));
                   1194:        if (s == NULL) errorKan1("%s\n","ordWsAll() no more memory.");
                   1195:        for (i=0; i<ssize; i++) {
                   1196:          ow = getoa(oShift,i);
                   1197:          if (ow.tag == SuniversalNumber) {
                   1198:                ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1199:          }
                   1200:          if (ow.tag != Sinteger) {
                   1201:                errorKan1("%s\n","ordWsAll(): the entries of shift vector must be integers.");
                   1202:          }
                   1203:          s[i] = KopInteger(ow);
                   1204:        }
                   1205:   }
                   1206:
                   1207:   switch(ob.tag) {
                   1208:   case Spoly:
                   1209:     f = KopPOLY(ob);
                   1210:        if (f == POLYNULL) errorKan1("%s\n","ordWsAll(): the argument is 0");
                   1211:        if (shiftvec) {
                   1212:          return( KpoInteger(ordWsAll(f,w,s)));
                   1213:        }else{
                   1214:          return( KpoInteger(ordWsAll(f,w,(int *) NULL)));
                   1215:        }
                   1216:     break;
                   1217:   case Sarray:
                   1218:        m = getoaSize(ob);
                   1219:        f = objArrayToPOLY(ob);
                   1220:        if (f == POLYNULL) errorKan1("%s\n","ordWsAll(): the argument is 0");
                   1221:        if (shiftvec) {
                   1222:          return KpoInteger(ordWsAll(f,w,s));
                   1223:        }else{
                   1224:          return KpoInteger(ordWsAll(f,w,(int *)NULL));
                   1225:        }
                   1226:   default:
                   1227:     errorKan1("%s\n","ordWsAll(): Argument must be polynomial or a vector of polynomials");
                   1228:     break;
                   1229:   }
                   1230: }
1.1       maekawa  1231:
                   1232: int KpolyLength(POLY f) {
                   1233:   int size;
                   1234:   if (f == POLYNULL) return(1);
                   1235:   size = 0;
                   1236:   while (f != POLYNULL) {
                   1237:     f = f->next;
                   1238:     size++;
                   1239:   }
                   1240:   return(size);
                   1241: }
                   1242:
                   1243: int validOutputOrder(int ord[],int n) {
                   1244:   int i,j,flag;
                   1245:   for (i=0; i<n; i++) {
                   1246:     flag = 0;
                   1247:     for (j=0; j<n; j++) {
                   1248:       if (ord[j] == i) flag = 1;
                   1249:     }
                   1250:     if (flag == 0) return(0); /* invalid */
                   1251:   }
                   1252:   return(1);
                   1253: }
                   1254:
                   1255: struct object KsetOutputOrder(struct object ob, struct ring *rp)
                   1256: {
                   1257:   int n,i;
                   1258:   struct object ox;
                   1259:   struct object otmp;
                   1260:   int *xxx;
                   1261:   int *ddd;
                   1262:   if (ob.tag  != Sarray) {
                   1263:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...]");
                   1264:   }
                   1265:   n = rp->n;
                   1266:   ox = ob;
                   1267:   if (getoaSize(ox) != 2*n) {
                   1268:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...] and the length of [x y z ...] must be equal to the number of x and D variables.");
                   1269:   }
                   1270:   xxx = (int *)sGC_malloc(sizeof(int)*n*2);
                   1271:   if (xxx == NULL ) {
                   1272:     errorKan1("%s\n","KsetOutputOrder(): no more memory.");
                   1273:   }
                   1274:   for (i=0; i<2*n; i++) {
                   1275:     otmp = getoa(ox,i);
                   1276:     if(otmp.tag != Sinteger) {
                   1277:       errorKan1("%s\n","KsetOutputOrder(): elements must be integers.");
                   1278:     }
                   1279:     xxx[i] = KopInteger(otmp);
                   1280:   }
                   1281:   if (!validOutputOrder(xxx,2*n)) {
                   1282:     errorKan1("%s\n","KsetOutputOrder(): Invalid output order for variables.");
                   1283:   }
                   1284:   rp->outputOrder = xxx;
                   1285:   return(ob);
                   1286: }
                   1287:
                   1288: struct object KschreyerSkelton(struct object g)
                   1289: {
                   1290:   struct object rob;
                   1291:   struct object ij;
                   1292:   struct object ab;
                   1293:   struct object tt;
                   1294:   struct arrayOfPOLY *ap;
                   1295:   struct arrayOfMonomialSyz ans;
                   1296:   int k;
                   1297:   rob.tag = Snull;
                   1298:   if (g.tag != Sarray) {
                   1299:     errorKan1("%s\n","KschreyerSkelton(): argument must be an array of polynomials.");
                   1300:   }
                   1301:
                   1302:   ap = arrayToArrayOfPOLY(g);
                   1303:   ans = schreyerSkelton(*ap);
                   1304:
                   1305:   rob = newObjectArray(ans.size);
                   1306:   for (k=0; k<ans.size; k++) {
                   1307:     ij = newObjectArray(2);
                   1308:     putoa(ij,0, KpoInteger(ans.p[k]->i));
                   1309:     putoa(ij,1, KpoInteger(ans.p[k]->j));
                   1310:     ab = newObjectArray(2);
                   1311:     putoa(ab,0, KpoPOLY(ans.p[k]->a));
                   1312:     putoa(ab,1, KpoPOLY(ans.p[k]->b));
                   1313:     tt = newObjectArray(2);
                   1314:     putoa(tt,0, ij);
                   1315:     putoa(tt,1, ab);
                   1316:     putoa(rob,k,tt);
                   1317:   }
                   1318:   return(rob);
                   1319: }
                   1320:
                   1321: struct object KisOrdered(struct object of)
                   1322: {
                   1323:   if (of.tag != Spoly) {
                   1324:     errorKan1("%s\n","KisOrdered(): argument must be a polynomial.");
                   1325:   }
                   1326:   if (isOrdered(KopPOLY(of))) {
                   1327:     return(KpoInteger(1));
                   1328:   }else{
                   1329:     return(KpoInteger(0));
                   1330:   }
                   1331: }
                   1332:
                   1333: struct object KvectorToSchreyer_es(struct object obarray)
                   1334: {
                   1335:   int m,i;
                   1336:   int nn;
                   1337:   POLY f;
                   1338:   POLY g;
                   1339:   struct object ob;
                   1340:   struct ring *rp;
                   1341:   if (obarray.tag != Sarray) {
                   1342:     errorKan1("%s\n","KvectorToSchreyer_es(): argument must be an array of polynomials.");
                   1343:   }
                   1344:   m = getoaSize(obarray);
                   1345:   f = POLYNULL;
                   1346:   for (i=0; i<m; i++) {
                   1347:     ob = getoa(obarray,i);
                   1348:     if (ob.tag != Spoly) {
                   1349:       errorKan1("%s\n","KvectorToSchreyer_es(): each element of the array must be a polynomial.");
                   1350:     }
                   1351:     g = KopPOLY(ob);
                   1352:     if (g != POLYNULL) {
                   1353:       rp = g->m->ringp;
                   1354:       nn = rp->nn;
                   1355:       /*   g = es^i  g */
                   1356:       g = mpMult_poly(cxx(1,nn,i,rp), g);
                   1357:       if (!isOrdered(g)) {
1.2       takayama 1358:         errorKan1("%s\n","KvectorToSchreyer_es(): given polynomial is not ordered properly by the given Schreyer order.");
1.1       maekawa  1359:       }
                   1360:       f = ppAdd(f,g);
                   1361:     }
                   1362:   }
                   1363:   return(KpoPOLY(f));
1.3       takayama 1364: }
                   1365:
                   1366: int objToInteger(struct object ob) {
                   1367:   if (ob.tag == Sinteger) {
1.5       takayama 1368:     return KopInteger(ob);
1.3       takayama 1369:   }else if (ob.tag == SuniversalNumber) {
1.5       takayama 1370:     return(coeffToInt(KopUniversalNumber(ob)));
1.3       takayama 1371:   }else {
1.5       takayama 1372:     errorKan1("%s\n","objToInteger(): invalid argument.");
1.3       takayama 1373:   }
1.12      takayama 1374: }
                   1375:
                   1376: struct object KgetExponents(struct object obPoly,struct object otype) {
                   1377:   int type,asize,i;
                   1378:   POLY f;
                   1379:   POLY ff;
                   1380:   MONOMIAL tf;
                   1381:   struct object rob;
                   1382:   struct object tob;
                   1383:   static int nn,mm,ll,cc,n,m,l,c;
                   1384:   static struct ring *cr = (struct ring *)NULL;
                   1385:   extern struct ring *CurrentRingp;
                   1386:   int size,hsize,fsize,p,r;
                   1387:
                   1388:   if (otype.tag == Sinteger) {
                   1389:     type = KopInteger(otype);
                   1390:   }else if (otype.tag == SuniversalNumber) {
                   1391:     type = coeffToInt(KopUniversalNumber(otype));
                   1392:   }else {
                   1393:     errorKan1("%s\n","KgetExponents(): invalid translation type.");
                   1394:   }
                   1395:
                   1396:   if (obPoly.tag == Spoly) {
                   1397:     f = KopPOLY(obPoly);
                   1398:   }else if (obPoly.tag == Sarray) {
                   1399:     asize = getoaSize(obPoly);
                   1400:     rob = newObjectArray(asize);
                   1401:     for (i=0; i<asize; i++) {
                   1402:       tob = KgetExponents(getoa(obPoly,i),otype);
                   1403:       putoa(rob,i,tob);
                   1404:     }
1.13      takayama 1405:        return rob;
1.12      takayama 1406:   }else{
                   1407:     errorKan1("%s\n","KgetExponents(): argument must be a polynomial.");
                   1408:   }
                   1409:
                   1410:   /* type == 0    x,y,Dx,Dy     (no commutative, no vector)
1.16      takayama 1411:      type == 1    x,y,Dx,Dy,h,H (commutative & no vector)
1.12      takayama 1412:      type == 2    x,y,Dx,Dy,h   (commutative & no vector)
                   1413:   */
                   1414:   if (f ISZERO) {
                   1415:     cr = CurrentRingp;
                   1416:   }else{
                   1417:     tf = f->m;
                   1418:   }
                   1419:   if (tf->ringp != cr) {
                   1420:     n = tf->ringp->n;
                   1421:     m = tf->ringp->m;
                   1422:     l = tf->ringp->l;
                   1423:     c = tf->ringp->c;
                   1424:     nn = tf->ringp->nn;
                   1425:     mm = tf->ringp->mm;
                   1426:     ll = tf->ringp->ll;
                   1427:     cc = tf->ringp->cc;
                   1428:     cr = tf->ringp;
                   1429:   }
                   1430:   if (type == 0) {
                   1431:     size = 0;
                   1432:     for (i=c; i<ll; i++) size += 2;
                   1433:     for (i=l; i<mm; i++) size += 2;
                   1434:     for (i=m; i<nn; i++) size += 2;
                   1435:   }else if (type == 1) {
                   1436:     size = 0;
                   1437:     for (i=0; i<cc; i++) size += 2;
                   1438:     for (i=c; i<ll; i++) size += 2;
                   1439:     for (i=l; i<mm; i++) size += 2;
                   1440:     for (i=m; i<nn; i++) size += 2;
                   1441:   }else if (type == 2) {
                   1442:     size = 0;
                   1443:     for (i=0; i<cc; i++) size += 1;
                   1444:     for (i=c; i<ll; i++) size += 2;
                   1445:     for (i=l; i<mm; i++) size += 2;
                   1446:     for (i=m; i<nn; i++) size += 2;
                   1447:   }else{
                   1448:     errorKan1("%s\n","KgetExponent, unknown type.");
                   1449:   }
1.16      takayama 1450:   if (type == 1 || type == 2) {
                   1451:     hsize = (size-cc)/2;
                   1452:   }else{
                   1453:     hsize = size/2;
                   1454:   }
1.12      takayama 1455:   if (f ISZERO) {
                   1456:     tob = newObjectArray(size);
                   1457:     for (i=0; i<size; i++) {
                   1458:       putoa(tob,i,KpoInteger(0));
                   1459:     }
                   1460:     rob = newObjectArray(1);
                   1461:     putoa(rob,0,tob);
                   1462:     return rob;
                   1463:   }
                   1464:   fsize = 0;
                   1465:   ff = f;
                   1466:   while (ff != POLYNULL) {
                   1467:     fsize++;
                   1468:     ff = ff->next;
                   1469:   }
                   1470:   rob = newObjectArray(fsize);
                   1471:
                   1472:   ff = f;
                   1473:   p = 0;
                   1474:   while (ff != POLYNULL) {
                   1475:     r = 0;
                   1476:     tob = newObjectArray(size);
                   1477:        tf = ff->m;
                   1478:     for (i=ll-1; i>=c; i--) {
                   1479:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1480:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1481:       r++;
                   1482:     }
                   1483:     for (i=mm-1; i>=l; i--) {
                   1484:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1485:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1486:       r++;
                   1487:     }
                   1488:     for (i=nn-1; i>=m; i--) {
                   1489:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1490:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1491:       r++;
                   1492:     }
                   1493:     if (type == 1) {
                   1494:       for (i=cc-1; i>=0; i--) {
1.16      takayama 1495:         putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1496:         r++;
1.12      takayama 1497:         putoa(tob,hsize+r,KpoInteger(tf->e[i].x));
                   1498:         r++;
                   1499:       }
                   1500:     }else if (type == 2) {
                   1501:       for (i=cc-1; i>=0; i--) {
                   1502:         putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1503:         r++;
                   1504:       }
                   1505:        }
                   1506:
                   1507:     putoa(rob,p,tob);
                   1508:     p++;
                   1509:     ff = ff->next;
                   1510:   }
                   1511:   return rob;
1.1       maekawa  1512: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>