[BACK]Return to kanExport1.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport1.c, Revision 1.18

1.18    ! takayama    1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport1.c,v 1.17 2005/06/09 04:09:22 takayama Exp $ */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: static int Message = 1;
                     13: extern int KanGBmessage;
                     14:
1.18    ! takayama   15: struct object DegreeShifto = OINIT;
1.5       takayama   16: int DegreeShifto_size = 0;
                     17: int *DegreeShifto_vec = NULL;
1.18    ! takayama   18: struct object DegreeShiftD = OINIT;
1.9       takayama   19: int DegreeShiftD_size = 0;
                     20: int *DegreeShiftD_vec = NULL;
1.5       takayama   21:
1.1       maekawa    22: /** :kan, :ring */
                     23: struct object Kreduction(f,set)
1.2       takayama   24:      struct object f;
                     25:      struct object set;
1.1       maekawa    26: {
                     27:   POLY r;
                     28:   struct gradedPolySet *grG;
                     29:   struct syz0 syz;
1.18    ! takayama   30:   struct object rob = OINIT;
1.1       maekawa    31:   int flag;
                     32:   extern int ReduceLowerTerms;
                     33:
                     34:   if (f.tag != Spoly) errorKan1("%s\n","Kreduction(): the first argument must be a polynomial.");
                     35:
                     36:   if (ectag(set) == CLASSNAME_GradedPolySet) {
                     37:     grG = KopGradedPolySet(set);
                     38:     flag = 1;
                     39:   }else{
                     40:     if (set.tag != Sarray) errorKan1("%s\n","Kreduction(): the second argument must be a set of polynomials.");
                     41:     grG = arrayToGradedPolySet(set);
                     42:     flag = 0;
                     43:   }
                     44:   if (ReduceLowerTerms) {
                     45:     r = (*reductionCdr)(f.lc.poly,grG,1,&syz);
                     46:   }else{
                     47:     r = (*reduction)(f.lc.poly,grG,1,&syz);
                     48:   }
1.6       takayama   49:   /* outputGradedPolySet(grG,0); */
1.1       maekawa    50:   if (flag) {
                     51:     rob = newObjectArray(3);
                     52:     putoa(rob,0,KpoPOLY(r));
                     53:     putoa(rob,1,KpoPOLY(syz.cf));
                     54:     putoa(rob,2,syzPolyToArray(countGradedPolySet(grG),syz.syz,grG));
                     55:   }else {
                     56:     rob = newObjectArray(4);
                     57:     putoa(rob,0,KpoPOLY(r));
                     58:     putoa(rob,1,KpoPOLY(syz.cf));
                     59:     putoa(rob,2,syzPolyToArray(getoaSize(set),syz.syz,grG));
                     60:     putoa(rob,3,gradedPolySetToArray(grG,1));
                     61:   }
                     62:   return(rob);
                     63: }
                     64:
                     65: struct object Kgroebner(ob)
1.2       takayama   66:      struct object ob;
1.1       maekawa    67: {
                     68:   int needSyz = 0;
                     69:   int needBack = 0;
                     70:   int needInput = 0;
                     71:   int countDown = 0;
                     72:   int cdflag = 0;
1.18    ! takayama   73:   struct object ob1 = OINIT;
        !            74:   struct object ob2 = OINIT;
        !            75:   struct object ob2c = OINIT;
1.1       maekawa    76:   int i;
                     77:   struct gradedPolySet *grG;
                     78:   struct pair *grP;
                     79:   struct arrayOfPOLY *a;
1.18    ! takayama   80:   struct object rob = OINIT;
1.1       maekawa    81:   struct gradedPolySet *grBases;
                     82:   struct matrixOfPOLY *mp;
                     83:   struct matrixOfPOLY *backwardMat;
1.18    ! takayama   84:   struct object ob1New = OINIT;
1.1       maekawa    85:   extern char *F_groebner;
                     86:   extern int CheckHomogenization;
                     87:   extern int StopDegree;
                     88:   int sdflag = 0;
                     89:   int forceReduction = 0;
1.17      takayama   90:   int reduceOnly = 0;
1.1       maekawa    91:
                     92:   int ob1Size, ob2Size, noZeroEntry;
                     93:   int *ob1ToOb2;
                     94:   int *ob1ZeroPos;
                     95:   int method;
                     96:   int j,k;
1.18    ! takayama   97:   struct object rob2 = OINIT;
        !            98:   struct object rob3 = OINIT;
        !            99:   struct object rob4 = OINIT;
1.1       maekawa   100:   struct ring *myring;
                    101:   POLY f;
1.18    ! takayama  102:   struct object orgB = OINIT;
        !           103:   struct object newB = OINIT;
        !           104:   struct object orgC = OINIT;
        !           105:   struct object newC = OINIT;
1.1       maekawa   106:   static struct object paddingVector(struct object ob, int table[], int m);
                    107:   static struct object unitVector(int pos, int size,struct ring *r);
                    108:   extern struct ring *CurrentRingp;
                    109:
                    110:   StopDegree = 0x7fff;
                    111:
                    112:   if (ob.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array.");
                    113:   switch(getoaSize(ob)) {
                    114:   case 1:
                    115:     needBack = 0; needSyz = 0; needInput = 0;
                    116:     ob1 = getoa(ob,0);
                    117:     break;
                    118:   case 2:
                    119:     ob1 = getoa(ob,0);
                    120:     ob2 = getoa(ob,1);
                    121:     if (ob2.tag != Sarray) {
                    122:       errorKan1("%s\n","Kgroebner(): The options must be given by an array.");
                    123:     }
                    124:     for (i=0; i<getoaSize(ob2); i++) {
                    125:       ob2c = getoa(ob2,i);
                    126:       if (ob2c.tag == Sdollar) {
1.2       takayama  127:         if (strcmp(ob2c.lc.str,"needBack")==0) {
                    128:           needBack = 1;
                    129:         }else if (strcmp(ob2c.lc.str,"needSyz")==0) {
                    130:           if (!needBack) {
                    131:             /* warningKan("Kgroebner(): needBack is automatically set."); */
                    132:           }
                    133:           needSyz = needBack = 1;
                    134:         }else if (strcmp(ob2c.lc.str,"forceReduction")==0) {
                    135:           forceReduction = 1;
1.17      takayama  136:         }else if (strcmp(ob2c.lc.str,"reduceOnly")==0) {
                    137:           reduceOnly = 1;
1.2       takayama  138:         }else if (strcmp(ob2c.lc.str,"countDown")==0) {
                    139:           countDown = 1; cdflag = 1;
                    140:           if (needSyz) {
                    141:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    142:             needSyz = 0;
                    143:           }
                    144:         }else if (strcmp(ob2c.lc.str,"StopDegree")==0) {
                    145:           StopDegree = 0; sdflag = 1;
                    146:           if (needSyz) {
                    147:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    148:             needSyz = 0;
                    149:           }
                    150:         }else {
                    151:           warningKan("Unknown keyword for options.");
                    152:         }
1.1       maekawa   153:       }else if (ob2c.tag == Sinteger) {
1.2       takayama  154:         if (cdflag) {
                    155:           cdflag = 0;
                    156:           countDown = KopInteger(ob2c);
                    157:         }else if (sdflag) {
                    158:           sdflag = 0;
                    159:           StopDegree = KopInteger(ob2c);
                    160:         }
1.1       maekawa   161:       }
                    162:     }
                    163:     break;
                    164:   default:
                    165:     errorKan1("%s\n","Kgroebner(): [ [polynomials] ] or [[polynomials] [options]].");
                    166:   }
1.2       takayama  167:
1.1       maekawa   168:   if (ob1.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array. Example: [ [$x-1$ . $x y -2$ .] [$needBack$ $needSyz$ $needInput$]] ");
                    169:   ob1New = newObjectArray(getoaSize(ob1));
                    170:   for (i=0; i< getoaSize(ob1); i++) {
                    171:     if (getoa(ob1,i).tag == Spoly) {
                    172:       putoa(ob1New,i,getoa(ob1,i));
                    173:     }else if (getoa(ob1,i).tag == Sarray) {
                    174:       /* If the generater is given as an array, flatten it. */
                    175:       putoa(ob1New,i,KpoPOLY( arrayToPOLY(getoa(ob1,i))));
                    176:     }else{
                    177:       errorKan1("%s\n","Kgroebner(): The elements must be polynomials or array of polynomials.");
                    178:     }
                    179:     /* getoa(ob1,i) is poly, now check the homogenization. */
                    180:     if (CheckHomogenization) {
                    181:       if ((strcmp(F_groebner,"standard")==0) &&
1.2       takayama  182:           !isHomogenized(KopPOLY(getoa(ob1New,i)))) {
                    183:         fprintf(stderr,"\n%s",KPOLYToString(KopPOLY(getoa(ob1New,i))));
                    184:         errorKan1("%s\n","Kgroebner(): The above polynomial is not homogenized. cf. homogenize.");
1.1       maekawa   185:       }
                    186:     }
                    187:   }
                    188:   ob1 = ob1New;
                    189:
                    190:   /* To handle the input with zero entries. For debug, debug/gr.sm1*/
                    191:   ob1Size = getoaSize(ob1);
                    192:   ob2Size = 0; myring = CurrentRingp;
                    193:   for (i=0; i<ob1Size; i++) {
                    194:     if (KopPOLY(getoa(ob1,i)) != POLYNULL) ob2Size++;
                    195:   }
                    196:   if (ob2Size == ob1Size) noZeroEntry = 1;
                    197:   else noZeroEntry = 0;
                    198:   if (ob1Size == 0)  {
                    199:     if (needBack && needSyz) {
                    200:       rob = newObjectArray(3);
                    201:       putoa(rob,0,newObjectArray(0));
                    202:       putoa(rob,1,newObjectArray(0));
                    203:       putoa(rob,2,newObjectArray(0));
                    204:     }else if (needBack) {
                    205:       rob = newObjectArray(2);
                    206:       putoa(rob,0,newObjectArray(0));
                    207:       putoa(rob,1,newObjectArray(0));
                    208:     }else {
                    209:       rob = newObjectArray(1);
                    210:       putoa(rob,0,newObjectArray(0));
                    211:     }
                    212:     return(rob);
                    213:   }
                    214:   /* Assume ob1size > 0 */
                    215:   if (ob2Size == 0) {
                    216:     rob2 = newObjectArray(1); putoa(rob2,0,KpoPOLY(POLYNULL));
                    217:     if (needBack && needSyz) {
                    218:       rob = newObjectArray(3);
                    219:       putoa(rob,0,rob2);
                    220:       rob3 = newObjectArray(1);
                    221:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    222:       putoa(rob,1,rob3);
                    223:       rob4 = newObjectArray(ob1Size);
                    224:       for (i=0; i<ob1Size; i++) {
1.2       takayama  225:         putoa(rob4,i,unitVector(i,ob1Size,myring));
1.1       maekawa   226:       }
                    227:       putoa(rob,2,rob4);
                    228:     }else if (needBack) {
                    229:       rob = newObjectArray(2);
                    230:       putoa(rob,0,rob2);
                    231:       rob3 = newObjectArray(1);
                    232:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    233:       putoa(rob,1,rob3);
                    234:     }else {
                    235:       rob = newObjectArray(1);
                    236:       putoa(rob,0,rob2);
                    237:     }
                    238:     return(rob);
                    239:   }
                    240:   /* Assume ob1Size , ob2Size > 0 */
                    241:   ob2 = newObjectArray(ob2Size);
1.11      takayama  242:   ob1ToOb2 =   (int *)sGC_malloc(sizeof(int)*ob1Size);
                    243:   ob1ZeroPos = (int *)sGC_malloc(sizeof(int)*(ob1Size-ob2Size+1));
1.1       maekawa   244:   if (ob1ToOb2 == NULL || ob1ZeroPos == NULL) errorKan1("%s\n","No more memory.");
                    245:   j = 0; k = 0;
                    246:   for (i=0; i<ob1Size; i++) {
                    247:     f = KopPOLY(getoa(ob1,i));
                    248:     if (f != POLYNULL) {
                    249:       myring = f->m->ringp;
                    250:       putoa(ob2,j,KpoPOLY(f));
                    251:       ob1ToOb2[i] = j; j++;
                    252:     }else{
                    253:       ob1ToOb2[i] = -1;
                    254:       ob1ZeroPos[k] = i; k++;
                    255:     }
                    256:   }
                    257:
                    258:   a = arrayToArrayOfPOLY(ob2);
1.17      takayama  259:   grG = (*groebner)(a,needBack,needSyz,&grP,countDown,forceReduction,reduceOnly);
1.1       maekawa   260:
                    261:   if (strcmp(F_groebner,"gm") == 0 && (needBack || needSyz)) {
                    262:     warningKan("The options needBack and needSyz are ignored.");
                    263:     needBack = needSyz = 0;
                    264:   }
                    265:
                    266:   /*return(gradedPolySetToGradedArray(grG,0));*/
                    267:   if (needBack && needSyz) {
                    268:     rob = newObjectArray(3);
                    269:     if (Message && KanGBmessage) {
                    270:       printf("Computing the backward transformation   ");
                    271:       fflush(stdout);
                    272:     }
                    273:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    274:     if (KanGBmessage) printf("Done.\n");
                    275:
                    276:     /* Computing the syzygies. */
                    277:     if (Message && KanGBmessage) {
                    278:       printf("Computing the syzygies    ");
                    279:       fflush(stdout);
                    280:     }
                    281:     mp = getSyzygy(grG,grP->next,&grBases,&backwardMat);
1.10      takayama  282:        if (mp == NULL) errorKan1("%s\n","Internal error in getSyzygy(). BUG of sm1.");
1.1       maekawa   283:     if (KanGBmessage) printf("Done.\n");
                    284:
                    285:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    286:     putoa(rob,1,matrixOfPOLYToArray(backwardMat));
                    287:     putoa(rob,2,matrixOfPOLYToArray(mp));
                    288:   }else if (needBack) {
                    289:     rob = newObjectArray(2);
                    290:     if (Message && KanGBmessage) {
                    291:       printf("Computing the backward transformation.....");
                    292:       fflush(stdout);
                    293:     }
                    294:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    295:     if (KanGBmessage) printf("Done.\n");
                    296:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    297:     putoa(rob,1,getBackwardArray(grG));
                    298:   }else {
                    299:     rob = newObjectArray(1);
                    300:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    301:   }
                    302:
                    303:   /* To handle zero entries in the input. */
                    304:   if (noZeroEntry) {
                    305:     return(rob);
                    306:   }
                    307:   method = getoaSize(rob);
                    308:   switch(method) {
                    309:   case 1:
                    310:     return(rob);
                    311:     break;
                    312:   case 2:
                    313:     orgB = getoa(rob,1); /* backward transformation. */
                    314:     newB = newObjectArray(getoaSize(orgB));
                    315:     for (i=0; i<getoaSize(orgB); i++) {
                    316:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    317:     }
                    318:     rob2 = newObjectArray(2);
                    319:     putoa(rob2,0,getoa(rob,0));
                    320:     putoa(rob2,1,newB);
                    321:     return(rob2);
                    322:     break;
                    323:   case 3:
                    324:     orgB = getoa(rob,1); /* backward transformation. */
                    325:     newB = newObjectArray(getoaSize(orgB));
                    326:     for (i=0; i<getoaSize(orgB); i++) {
                    327:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    328:     }
                    329:     orgC = getoa(rob,2);
                    330:     newC = newObjectArray(getoaSize(orgC)+ob1Size-ob2Size);
                    331:     for (i=0; i<getoaSize(orgC); i++) {
                    332:       putoa(newC, i, paddingVector(getoa(orgC,i),ob1ToOb2,ob1Size));
                    333:     }
                    334:     for (i = getoaSize(orgC), j = 0; i<getoaSize(orgC)+ob1Size-ob2Size; i++,j++) {
                    335:       putoa(newC,i,unitVector(ob1ZeroPos[j],ob1Size,myring));
                    336:     }
                    337:     rob2 = newObjectArray(3);
                    338:     putoa(rob2,0,getoa(rob,0));
                    339:     putoa(rob2,1,newB);
                    340:     putoa(rob2,2,newC);
                    341:     return(rob2);
                    342:     break;
                    343:   default:
                    344:     errorKan1("%s","Kgroebner: unknown method.");
                    345:   }
                    346: }
                    347:
                    348: static struct object paddingVector(struct object ob, int table[], int m)
                    349: {
1.18    ! takayama  350:   struct object rob = OINIT;
1.1       maekawa   351:   int i;
                    352:   rob = newObjectArray(m);
                    353:   for (i=0; i<m; i++) {
                    354:     if (table[i] != -1) {
                    355:       putoa(rob,i,getoa(ob,table[i]));
                    356:     }else{
                    357:       putoa(rob,i,KpoPOLY(POLYNULL));
                    358:     }
                    359:   }
                    360:   return(rob);
                    361: }
                    362:
                    363: static struct object unitVector(int pos, int size,struct ring *r)
                    364: {
1.18    ! takayama  365:   struct object rob = OINIT;
1.1       maekawa   366:   int i;
                    367:   POLY one;
                    368:   rob = newObjectArray(size);
                    369:   for (i=0; i<size; i++) {
                    370:     putoa(rob,i,KpoPOLY(POLYNULL));
                    371:   }
                    372:   if ((0 <= pos) && (pos < size)) {
                    373:     putoa(rob,pos, KpoPOLY(cxx(1,0,0,r)));
                    374:   }
                    375:   return(rob);
                    376: }
                    377:
                    378:
                    379:
                    380: /* :misc */
                    381:
                    382: #define INITGRADE 3
                    383: #define INITSIZE 0
                    384:
                    385: struct gradedPolySet *arrayToGradedPolySet(ob)
1.2       takayama  386:      struct object ob;
1.1       maekawa   387: {
                    388:   int n,i,grd,ind;
                    389:   POLY f;
                    390:   struct gradedPolySet *grG;
                    391:   int serial;
                    392:   extern int Sugar;
                    393:
                    394:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToGradedPolySet(): the argument must be array.");
                    395:   n = getoaSize(ob);
                    396:   for (i=0; i<n; i++) {
                    397:     if (getoa(ob,i).tag != Spoly)
                    398:       errorKan1("%s\n","arrayToGradedPolySet(): the elements must be polynomials.");
                    399:   }
                    400:   grG = newGradedPolySet(INITGRADE);
                    401:
                    402:   for (i=0; i<grG->lim; i++) {
                    403:     grG->polys[i] = newPolySet(INITSIZE);
                    404:   }
                    405:   for (i=0; i<n; i++) {
                    406:     f = KopPOLY(getoa(ob,i));
                    407:     grd = -1; whereInG(grG,f,&grd,&ind,Sugar);
                    408:     serial = i;
                    409:     grG = putPolyInG(grG,f,grd,ind,(struct syz0 *)NULL,1,serial);
                    410:   }
                    411:   return(grG);
                    412: }
                    413:
                    414:
                    415: struct object polySetToArray(ps,keepRedundant)
1.2       takayama  416:      struct polySet *ps;
                    417:      int keepRedundant;
1.1       maekawa   418: {
                    419:   int n,i,j;
1.18    ! takayama  420:   struct object ob = OINIT;
1.1       maekawa   421:   if (ps == (struct polySet *)NULL) return(newObjectArray(0));
                    422:   n = 0;
                    423:   if (keepRedundant) {
                    424:     n = ps->size;
                    425:   }else{
                    426:     for (i=0; i<ps->size; i++) {
                    427:       if (ps->del[i] == 0) ++n;
                    428:     }
                    429:   }
                    430:   ob = newObjectArray(n);
                    431:   j = 0;
                    432:   for (i=0; i<ps->size; i++) {
                    433:     if (keepRedundant || (ps->del[i] == 0)) {
                    434:       putoa(ob,j,KpoPOLY(ps->g[i]));
                    435:       j++;
                    436:     }
                    437:   }
                    438:   return(ob);
                    439: }
                    440:
                    441:
                    442: struct object gradedPolySetToGradedArray(gps,keepRedundant)
1.2       takayama  443:      struct gradedPolySet *gps;
                    444:      int keepRedundant;
1.1       maekawa   445: {
1.18    ! takayama  446:   struct object ob = OINIT;
        !           447:   struct object vec = OINIT;
1.1       maekawa   448:   int i;
                    449:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    450:   ob = newObjectArray(gps->maxGrade +1);
                    451:   vec = newObjectArray(gps->maxGrade);
                    452:   for (i=0; i<gps->maxGrade; i++) {
                    453:     putoa(vec,i,KpoInteger(i));
                    454:     putoa(ob,i+1,polySetToArray(gps->polys[i],keepRedundant));
                    455:   }
                    456:   putoa(ob,0,vec);
                    457:   return(ob);
                    458: }
                    459:
                    460:
                    461: struct object gradedPolySetToArray(gps,keepRedundant)
1.2       takayama  462:      struct gradedPolySet *gps;
                    463:      int keepRedundant;
1.1       maekawa   464: {
1.18    ! takayama  465:   struct object ob = OINIT;
        !           466:   struct object vec = OINIT;
1.1       maekawa   467:   struct polySet *ps;
                    468:   int k;
                    469:   int i,j;
                    470:   int size;
                    471:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    472:   size = 0;
                    473:   for (i=0; i<gps->maxGrade; i++) {
                    474:     ps = gps->polys[i];
                    475:     if (keepRedundant) {
                    476:       size += ps->size;
                    477:     }else{
                    478:       for (j=0; j<ps->size; j++) {
1.2       takayama  479:         if (ps->del[j] == 0) ++size;
1.1       maekawa   480:       }
                    481:     }
                    482:   }
                    483:
                    484:   ob = newObjectArray(size);
                    485:   k = 0;
                    486:   for (i=0; i<gps->maxGrade; i++) {
                    487:     ps = gps->polys[i];
                    488:     for (j=0; j<ps->size; j++) {
                    489:       if (keepRedundant || (ps->del[j] == 0)) {
1.2       takayama  490:         putoa(ob,k,KpoPOLY(ps->g[j]));
                    491:         k++;
1.1       maekawa   492:       }
                    493:     }
                    494:   }
                    495:   return(ob);
                    496: }
                    497:
                    498:
                    499: /* serial == -1  :  It's not in the marix input. */
                    500: struct object syzPolyToArray(size,f,grG)
1.2       takayama  501:      int size;
                    502:      POLY f;
                    503:      struct gradedPolySet *grG;
1.1       maekawa   504: {
1.18    ! takayama  505:   struct object ob = OINIT;
1.1       maekawa   506:   int i,g0,i0,serial;
                    507:
                    508:   ob = newObjectArray(size);
                    509:   for (i=0; i<size; i++) {
                    510:     putoa(ob,i,KpoPOLY(ZERO));
                    511:   }
                    512:
                    513:   while (f != POLYNULL) {
                    514:     g0 = srGrade(f);
1.6       takayama  515:     i0 = srIndex(f);
1.1       maekawa   516:     serial = grG->polys[g0]->serial[i0];
                    517:     if (serial < 0) {
                    518:       errorKan1("%s\n","syzPolyToArray(): invalid serial[i] of grG.");
                    519:     }
                    520:     if (KopPOLY(getoa(ob,serial)) != ZERO) {
                    521:       errorKan1("%s\n","syzPolyToArray(): syzygy polynomial is broken.");
                    522:     }
                    523:     putoa(ob,serial,KpoPOLY(f->coeffp->val.f));
                    524:     f = f->next;
                    525:   }
                    526:   return(ob);
                    527: }
                    528:
                    529: struct object getBackwardArray(grG)
1.2       takayama  530:      struct gradedPolySet *grG;
1.1       maekawa   531: {
                    532:   /* use serial, del.  cf. getBackwardTransformation(). */
                    533:   int inputSize,outputSize;
                    534:   int i,j,k;
1.18    ! takayama  535:   struct object ob = OINIT;
1.1       maekawa   536:   struct polySet *ps;
                    537:
                    538:   inputSize = 0; outputSize = 0;
                    539:   for (i=0; i<grG->maxGrade; i++) {
                    540:     ps = grG->polys[i];
                    541:     for (j=0; j<ps->size; j++) {
                    542:       if (ps->serial[j] >= 0) ++inputSize;
                    543:       if (ps->del[j] == 0) ++outputSize;
                    544:     }
                    545:   }
                    546:
                    547:   ob = newObjectArray(outputSize);
                    548:   k = 0;
                    549:   for (i=0; i<grG->maxGrade; i++) {
                    550:     ps = grG->polys[i];
                    551:     for (j=0; j<ps->size; j++) {
                    552:       if (ps->del[j] == 0) {
1.2       takayama  553:         putoa(ob,k,syzPolyToArray(inputSize,ps->syz[j]->syz,grG));
                    554:         k++;
1.1       maekawa   555:       }
                    556:     }
                    557:   }
                    558:   return(ob);
                    559: }
                    560:
                    561:
                    562: POLY arrayToPOLY(ob)
1.2       takayama  563:      struct object ob;
1.1       maekawa   564: {
                    565:   int size,i;
1.18    ! takayama  566:   struct object f = OINIT;
1.1       maekawa   567:   POLY r;
                    568:   static int nn,mm,ll,cc,n,m,l,c;
                    569:   static struct ring *cr = (struct ring *)NULL;
                    570:   POLY ff,ee;
                    571:   MONOMIAL tf;
                    572:
                    573:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToPOLY(): The argument must be an array.");
                    574:   size = getoaSize(ob);
                    575:   r = ZERO;
                    576:   for (i=0; i<size; i++) {
                    577:     f = getoa(ob,i);
                    578:     if (f.tag != Spoly) errorKan1("%s\n","arrayToPOLY(): The elements must be polynomials.");
                    579:     ff = KopPOLY(f);
                    580:     if (ff != ZERO) {
                    581:       tf = ff->m;
                    582:       if (tf->ringp != cr) {
1.2       takayama  583:         n = tf->ringp->n;
                    584:         m = tf->ringp->m;
                    585:         l = tf->ringp->l;
                    586:         c = tf->ringp->c;
                    587:         nn = tf->ringp->nn;
                    588:         mm = tf->ringp->mm;
                    589:         ll = tf->ringp->ll;
                    590:         cc = tf->ringp->cc;
                    591:         cr = tf->ringp;
1.1       maekawa   592:       }
                    593:       if (n-nn >0) ee = cxx(1,n-1,i,tf->ringp);
                    594:       else if (m-mm >0) ee = cxx(1,m-1,i,tf->ringp);
                    595:       else if (l-ll >0) ee = cxx(1,l-1,i,tf->ringp);
                    596:       else if (c-cc >0) ee = cxx(1,c-1,i,tf->ringp);
                    597:       else ee = ZERO;
                    598:       r = ppAddv(r,ppMult(ee,ff));
                    599:     }
                    600:   }
                    601:   return(r);
                    602: }
                    603:
                    604: struct object POLYToArray(ff)
1.2       takayama  605:      POLY ff;
1.1       maekawa   606: {
                    607:
                    608:   static int nn,mm,ll,cc,n,m,l,c;
                    609:   static struct ring *cr = (struct ring *)NULL;
                    610:   POLY ee;
                    611:   MONOMIAL tf;
                    612:   int k,i,matn,size;
                    613:   struct matrixOfPOLY *mat;
                    614:   POLY ex,sizep;
1.18    ! takayama  615:   struct object ob = OINIT;
1.1       maekawa   616:
                    617:   if (ff != ZERO) {
                    618:     tf = ff->m;
                    619:     if (tf->ringp != cr) {
                    620:       n = tf->ringp->n;
                    621:       m = tf->ringp->m;
                    622:       l = tf->ringp->l;
                    623:       c = tf->ringp->c;
                    624:       nn = tf->ringp->nn;
                    625:       mm = tf->ringp->mm;
                    626:       ll = tf->ringp->ll;
                    627:       cc = tf->ringp->cc;
                    628:       cr = tf->ringp;
                    629:     }
                    630:     if (n-nn >0) ee = cxx(1,n-1,1,tf->ringp);
                    631:     else if (m-mm >0) ee = cxx(1,m-1,1,tf->ringp);
                    632:     else if (l-ll >0) ee = cxx(1,l-1,1,tf->ringp);
                    633:     else if (c-cc >0) ee = cxx(1,c-1,1,tf->ringp);
                    634:     else ee = ZERO;
                    635:   }else{
                    636:     ob = newObjectArray(1);
                    637:     getoa(ob,0) = KpoPOLY(ZERO);
                    638:     return(ob);
                    639:   }
                    640:   mat = parts(ff,ee);
                    641:   matn = mat->n;
                    642:   sizep = getMatrixOfPOLY(mat,0,0);
                    643:   if (sizep == ZERO) size = 1;
                    644:   else size = coeffToInt(sizep->coeffp)+1;
                    645:   ob = newObjectArray(size);
                    646:   for (i=0; i<size; i++) getoa(ob,i) = KpoPOLY(ZERO);
                    647:   for (i=0; i<matn; i++) {
                    648:     ex = getMatrixOfPOLY(mat,0,i);
                    649:     if (ex == ZERO) k = 0;
                    650:     else {
                    651:       k = coeffToInt(ex->coeffp);
                    652:     }
                    653:     getoa(ob,k) = KpoPOLY(getMatrixOfPOLY(mat,1,i));
                    654:   }
                    655:   return(ob);
                    656: }
                    657:
                    658: static int isThereh(f)
1.2       takayama  659:      POLY f;
1.1       maekawa   660: {
                    661:   POLY t;
                    662:   if (f == 0) return(0);
                    663:   t = f;
                    664:   while (t != POLYNULL) {
                    665:     if (t->m->e[0].D) return(1);
                    666:     t = t->next;
                    667:   }
                    668:   return(0);
                    669: }
                    670:
                    671: struct object homogenizeObject(ob,gradep)
1.2       takayama  672:      struct object ob;
                    673:      int *gradep;
1.1       maekawa   674: {
1.18    ! takayama  675:   struct object rob = OINIT;
        !           676:   struct object ob1 = OINIT;
1.1       maekawa   677:   int maxg;
                    678:   int gr,flag,i,d,size;
                    679:   struct ring *rp;
                    680:   POLY f;
                    681:   extern struct ring *CurrentRingp;
                    682:   extern int Homogenize_vec;
                    683:
                    684:   if (!Homogenize_vec) return(homogenizeObject_vec(ob,gradep));
                    685:
                    686:   switch(ob.tag) {
                    687:   case Spoly:
                    688:     if (isThereh(KopPOLY(ob))) {
                    689:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    690:       errorKan1("%s\n","homogenizeObject(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    691:     }
                    692:     f = homogenize( KopPOLY(ob) );
                    693:     *gradep = (*grade)(f);
                    694:     return(KpoPOLY(f));
                    695:     break;
                    696:   case Sarray:
                    697:     size = getoaSize(ob);
                    698:     if (size == 0) {
                    699:       errorKan1("%s\n","homogenizeObject() is called for the empty array.");
                    700:     }
                    701:     rob = newObjectArray(size);
                    702:     flag = 0;
                    703:     ob1 = getoa(ob,0);
1.5       takayama  704:     if (ob1.tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   705:     ob1 = homogenizeObject(ob1,&gr);
                    706:     maxg = gr;
                    707:     getoa(rob,0) = ob1;
                    708:     for (i=1; i<size; i++) {
                    709:       ob1 = getoa(ob,i);
                    710:       ob1 = homogenizeObject(ob1,&gr);
                    711:       if (gr > maxg) {
1.2       takayama  712:         maxg = gr;
1.1       maekawa   713:       }
                    714:       getoa(rob,i) = ob1;
                    715:     }
                    716:     maxg = maxg+size-1;
                    717:     if (1) {
                    718:       rp = oRingp(rob);
                    719:       if (rp == (struct ring *)NULL) rp = CurrentRingp;
                    720:       for (i=0; i<size; i++) {
1.2       takayama  721:         gr = oGrade(getoa(rob,i));
                    722:         /**printf("maxg=%d, gr=%d(i=%d) ",maxg,gr,i); fflush(stdout);**/
                    723:         if (maxg > gr) {
                    724:           f = cdd(1,0,maxg-gr-i,rp); /* h^{maxg-gr-i} */
                    725:           getoa(rob,i) = KooMult(KpoPOLY(f),getoa(rob,i));
                    726:         }
1.1       maekawa   727:       }
                    728:     }
                    729:     *gradep = maxg;
                    730:     return(rob);
                    731:     break;
                    732:   default:
                    733:     errorKan1("%s\n","homogenizeObject(): Invalid argument data type.");
                    734:     break;
                    735:   }
                    736: }
                    737:
                    738: struct object homogenizeObject_vec(ob,gradep)
1.2       takayama  739:      struct object ob;
                    740:      int *gradep;
1.1       maekawa   741: {
1.18    ! takayama  742:   struct object rob = OINIT;
        !           743:   struct object ob1 = OINIT;
1.1       maekawa   744:   int maxg;
                    745:   int gr,i,size;
                    746:   POLY f;
                    747:   extern struct ring *CurrentRingp;
                    748:
                    749:   switch(ob.tag) {
                    750:   case Spoly:
                    751:     if (isThereh(KopPOLY(ob))) {
                    752:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    753:       errorKan1("%s\n","homogenizeObject_vec(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    754:     }
                    755:     if (containVectorVariable(KopPOLY(ob))) {
                    756:       errorKan1("%s\n","homogenizedObject_vec(): The given polynomial contains a variable to express a vector component.");
                    757:     }
                    758:     f = homogenize( KopPOLY(ob) );
                    759:     *gradep = (*grade)(f);
                    760:     return(KpoPOLY(f));
                    761:     break;
                    762:   case Sarray:
                    763:     size = getoaSize(ob);
                    764:     if (size == 0) {
                    765:       errorKan1("%s\n","homogenizeObject_vec() is called for the empty array.");
                    766:     }
1.5       takayama  767:     if (getoa(ob,0).tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   768:     rob = newObjectArray(size);
                    769:     for (i=0; i<size; i++) {
                    770:       ob1 = getoa(ob,i);
                    771:       ob1 = homogenizeObject_vec(ob1,&gr);
                    772:       if (i==0) maxg = gr;
                    773:       else {
1.2       takayama  774:         maxg = (maxg > gr? maxg: gr);
1.1       maekawa   775:       }
                    776:       putoa(rob,i,ob1);
                    777:     }
                    778:     *gradep = maxg;
                    779:     return(rob);
                    780:     break;
                    781:   default:
                    782:     errorKan1("%s\n","homogenizeObject_vec(): Invalid argument data type.");
                    783:     break;
                    784:   }
                    785: }
                    786:
1.9       takayama  787: void KresetDegreeShift() {
                    788:   DegreeShifto = NullObject;
                    789:   DegreeShifto_vec = (int *)NULL;
                    790:   DegreeShifto_size = 0;
                    791:   DegreeShiftD = NullObject;
                    792:   DegreeShiftD_vec = (int *)NULL;
                    793:   DegreeShiftD_size = 0;
                    794: }
                    795:
1.3       takayama  796: struct object homogenizeObject_go(struct object ob,int *gradep) {
                    797:   int size,i,dssize,j;
1.18    ! takayama  798:   struct object ob0 = OINIT;
        !           799:   struct object ob1 = OINIT;
        !           800:   struct object ob2 = OINIT;
        !           801:   struct object rob = OINIT;
        !           802:   struct object tob = OINIT;
        !           803:   struct object ob1t = OINIT;
1.3       takayama  804:   int *ds;
                    805:   POLY f;
1.9       takayama  806:   int onlyS;
                    807:
                    808:   onlyS = 0;  /* default value */
1.3       takayama  809:   rob = NullObject;
1.9       takayama  810:   /*printf("[%d,%d]\n",DegreeShiftD_size,DegreeShifto_size);*/
                    811:   if (DegreeShifto_size == 0) DegreeShifto = NullObject;
                    812:   if (DegreeShiftD_size == 0) DegreeShiftD = NullObject;
                    813:   /*
                    814:       DegreeShiftD : Degree shift vector for (0,1)-h-homogenization,
                    815:                      which is {\vec n} in G-O paper.
                    816:                      It is used in dGrade1()  redm.c
                    817:       DegreeShifto : Degree shift vector for (u,v)-s-homogenization
                    818:                      which is used only in ecart division and (u,v) is
                    819:                      usually (-1,1).
                    820:                      This shift vector is written {\vec v} in G-O paper.
                    821:                      It may differ from the degree shift for the ring,
                    822:                      which is used to get (minimal) Schreyer resolution.
                    823:                      This shift vector is denoted by {\vec m} in G-O paper.
                    824:                      It is often used as an argument for uvGrade1 and
                    825:                      goHomogenize*
                    826:    */
1.3       takayama  827:   if (ob.tag != Sarray) errorKan1("%s\n","homogenizeObject_go(): Invalid argument data type.");
                    828:
                    829:   size = getoaSize(ob);
                    830:   if (size == 0) errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    831:   ob0 = getoa(ob,0);
                    832:   if (ob0.tag != Sdollar) {
                    833:     errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    834:   }
                    835:   if (strcmp(KopString(ob0),"degreeShift") == 0) {
1.5       takayama  836:     if (size < 2)
1.9       takayama  837:       errorKan1("%s\n","homogenizeObject_go(): [(degreeShift) shift-vector obj] or [(degreeShift) shift-vector] or [(degreeShift) (value)] homogenize.\nshift-vector=(0,1)-shift vector or [(0,1)-shift vector, (u,v)-shift vector].");
1.5       takayama  838:     ob1 = getoa(ob,1);
                    839:        if (ob1.tag != Sarray) {
1.9       takayama  840:          if ((ob1.tag == Sdollar) && (strcmp(KopString(ob1),"value")==0)) {
                    841:         /* Reporting the value. It is done below. */
                    842:          }else if ((ob1.tag == Sdollar) && (strcmp(KopString(ob1),"reset")==0)) {
                    843:                KresetDegreeShift();
                    844:          }
                    845:          rob = newObjectArray(2);
                    846:          putoa(rob,0,DegreeShiftD);
                    847:          putoa(rob,1,DegreeShifto);
                    848:          return rob;
                    849:        }
                    850:
                    851:        if (getoaSize(ob1) == 2) {
                    852:          /* [(degreeShift) [ [1 2]   [3 4] ]  ...] homogenize */
                    853:       /*                  (0,1)-h (u,v)-s                  */
                    854:          DegreeShiftD = getoa(ob1,0);
                    855:          dssize = getoaSize(DegreeShiftD);
                    856:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    857:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    858:          for (i=0; i<dssize; i++) {
                    859:                ds[i] = objToInteger(getoa(DegreeShiftD,i));
                    860:          }
                    861:       DegreeShiftD_size = dssize;
                    862:          DegreeShiftD_vec = ds;
                    863:
                    864:          DegreeShifto = getoa(ob1,1);
                    865:          dssize = getoaSize(DegreeShifto);
                    866:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    867:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    868:          for (i=0; i<dssize; i++) {
                    869:                ds[i] = objToInteger(getoa(DegreeShifto,i));
1.3       takayama  870:          }
1.9       takayama  871:       DegreeShifto_size = dssize;
                    872:          DegreeShifto_vec = ds;
                    873:        }else if (getoaSize(ob1) == 1) {
                    874:          /* Set only  for (0,1)-h */
                    875:          DegreeShiftD = getoa(ob1,0);
                    876:          dssize = getoaSize(DegreeShiftD);
                    877:          ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    878:          if (ds == NULL) errorKan1("%s\n","no more memory.");
                    879:          for (i=0; i<dssize; i++) {
                    880:                ds[i] = objToInteger(getoa(DegreeShiftD,i));
                    881:          }
                    882:       DegreeShiftD_size = dssize;
                    883:          DegreeShiftD_vec = ds;
1.3       takayama  884:        }
1.9       takayama  885:
                    886:        ds = DegreeShifto_vec;
                    887:        dssize = DegreeShifto_size;
                    888:
1.5       takayama  889:     if (size == 2) {
1.9       takayama  890:          rob = newObjectArray(2);
                    891:          putoa(rob,0,DegreeShiftD);
                    892:          putoa(rob,1,DegreeShifto);
                    893:          return rob;
1.5       takayama  894:     }else{
                    895:       ob2 = getoa(ob,2);
                    896:       if (ob2.tag == Spoly) {
1.9       takayama  897:         f = goHomogenize11(KopPOLY(ob2),ds,dssize,-1,onlyS);
1.5       takayama  898:         rob = KpoPOLY(f);
                    899:       }else if (ob2.tag == SuniversalNumber) {
                    900:         rob = ob2;
                    901:       }else if (ob2.tag == Sarray) {
1.9       takayama  902:                int mm;
                    903:                mm = getoaSize(ob2);
                    904:                f = objArrayToPOLY(ob2);
                    905:         f = goHomogenize11(f,ds,dssize,-1,onlyS);
                    906:         rob = POLYtoObjArray(f,mm);
1.5       takayama  907:       }else{
                    908:         errorKan1("%s\n","homogenizeObject_go(): invalid object for the third element.");
                    909:       }
                    910:     }
1.3       takayama  911:   }else{
1.5       takayama  912:       errorKan1("%s\n","homogenizeObject_go(): unknown key word.");
1.3       takayama  913:   }
1.5       takayama  914:   return( rob );
1.3       takayama  915: }
                    916:
                    917:
1.1       maekawa   918: struct ring *oRingp(ob)
1.2       takayama  919:      struct object ob;
1.1       maekawa   920: {
                    921:   struct ring *rp,*rptmp;
                    922:   int i,size;
                    923:   POLY f;
                    924:   switch(ob.tag) {
                    925:   case Spoly:
                    926:     f = KopPOLY(ob);
                    927:     if (f == ZERO) return((struct ring *)NULL);
                    928:     return( f->m->ringp);
                    929:     break;
                    930:   case Sarray:
                    931:     size = getoaSize(ob);
                    932:     rp = (struct ring *)NULL;
                    933:     for (i=0; i<size; i++) {
                    934:       rptmp = oRingp(getoa(ob,i));
                    935:       if (rptmp != (struct ring *)NULL) rp = rptmp;
                    936:       return(rp);
                    937:     }
                    938:     break;
                    939:   default:
                    940:     errorKan1("%s\n","oRingp(): Invalid argument data type.");
                    941:     break;
                    942:   }
                    943: }
                    944:
                    945: int oGrade(ob)
1.2       takayama  946:      struct object ob;
1.1       maekawa   947: {
                    948:   int i,size;
                    949:   POLY f;
                    950:   int maxg,tmpg;
                    951:   switch(ob.tag) {
                    952:   case Spoly:
                    953:     f = KopPOLY(ob);
                    954:     return( (*grade)(f) );
                    955:     break;
                    956:   case Sarray:
                    957:     size = getoaSize(ob);
                    958:     if (size == 0) return(0);
                    959:     maxg = oGrade(getoa(ob,0));
                    960:     for (i=1; i<size; i++) {
                    961:       tmpg = oGrade(getoa(ob,i));
                    962:       if (tmpg > maxg) maxg = tmpg;
                    963:     }
                    964:     return(maxg);
                    965:     break;
                    966:   default:
                    967:     errorKan1("%s\n","oGrade(): Invalid data type for the argument.");
                    968:     break;
                    969:   }
                    970: }
                    971:
                    972:
                    973: struct object oPrincipalPart(ob)
1.2       takayama  974:      struct object ob;
1.1       maekawa   975: {
                    976:   POLY f;
1.18    ! takayama  977:   struct object rob = OINIT;
1.1       maekawa   978:
                    979:   switch(ob.tag) {
                    980:   case Spoly:
                    981:     f = KopPOLY(ob);
                    982:     return( KpoPOLY(POLYToPrincipalPart(f)));
                    983:     break;
                    984:   default:
                    985:     errorKan1("%s\n","oPrincipalPart(): Invalid data type for the argument.");
                    986:     break;
                    987:   }
                    988: }
                    989: struct object oInitW(ob,oWeight)
1.2       takayama  990:      struct object ob;
                    991:      struct object oWeight;
1.1       maekawa   992: {
                    993:   POLY f;
1.18    ! takayama  994:   struct object rob = OINIT;
1.1       maekawa   995:   int w[2*N0];
                    996:   int n,i;
1.18    ! takayama  997:   struct object ow = OINIT;
1.7       takayama  998:   int shiftvec;
1.18    ! takayama  999:   struct object oShift = OINIT;
1.7       takayama 1000:   int *s;
                   1001:   int ssize,m;
1.1       maekawa  1002:
1.7       takayama 1003:   shiftvec = 0;
                   1004:   s = NULL;
                   1005:
1.1       maekawa  1006:   if (oWeight.tag != Sarray) {
                   1007:     errorKan1("%s\n","oInitW(): the second argument must be array.");
                   1008:   }
1.15      takayama 1009:   oWeight = Kto_int32(oWeight);
1.1       maekawa  1010:   n = getoaSize(oWeight);
1.8       takayama 1011:   if (n == 0) {
                   1012:        m = getoaSize(ob);
                   1013:        f = objArrayToPOLY(ob);
                   1014:        f = head(f);
                   1015:     return POLYtoObjArray(f,m);
                   1016:   }
1.7       takayama 1017:   if (getoa(oWeight,0).tag == Sarray) {
                   1018:        if (n != 2) errorKan1("%s\n","oInitW(): the size of the second argument should be 2.");
                   1019:        shiftvec = 1;
                   1020:        oShift = getoa(oWeight,1);
                   1021:        oWeight = getoa(oWeight,0);
                   1022:        if (oWeight.tag != Sarray) {
                   1023:          errorKan1("%s\n","oInitW(): the weight vector must be array.");
                   1024:        }
                   1025:        n = getoaSize(oWeight);
                   1026:        if (oShift.tag != Sarray) {
                   1027:          errorKan1("%s\n","oInitW(): the shift vector must be array.");
                   1028:        }
                   1029:   }
                   1030:   /* oWeight = Ksm1WeightExpressionToVec(oWeight); */
1.1       maekawa  1031:   if (n >= 2*N0) errorKan1("%s\n","oInitW(): the size of the second argument is invalid.");
                   1032:   for (i=0; i<n; i++) {
                   1033:     ow = getoa(oWeight,i);
1.7       takayama 1034:        if (ow.tag == SuniversalNumber) {
                   1035:          ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1036:        }
1.1       maekawa  1037:     if (ow.tag != Sinteger) {
                   1038:       errorKan1("%s\n","oInitW(): the entries of the second argument must be integers.");
                   1039:     }
                   1040:     w[i] = KopInteger(ow);
                   1041:   }
1.7       takayama 1042:   if (shiftvec) {
                   1043:     ssize = getoaSize(oShift);
                   1044:        s = (int *)sGC_malloc(sizeof(int)*(ssize+1));
                   1045:        if (s == NULL) errorKan1("%s\n","oInitW() no more memory.");
                   1046:        for (i=0; i<ssize; i++) {
                   1047:          ow = getoa(oShift,i);
                   1048:          if (ow.tag == SuniversalNumber) {
                   1049:                ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1050:          }
                   1051:          if (ow.tag != Sinteger) {
                   1052:                errorKan1("%s\n","oInitW(): the entries of shift vector must be integers.");
                   1053:          }
                   1054:          s[i] = KopInteger(ow);
                   1055:        }
                   1056:   }
                   1057:
1.1       maekawa  1058:   switch(ob.tag) {
                   1059:   case Spoly:
                   1060:     f = KopPOLY(ob);
1.7       takayama 1061:        if (shiftvec) {
                   1062:          return( KpoPOLY(POLYToInitWS(f,w,s)));
                   1063:        }else{
                   1064:          return( KpoPOLY(POLYToInitW(f,w)));
                   1065:        }
1.1       maekawa  1066:     break;
1.7       takayama 1067:   case Sarray:
                   1068:        m = getoaSize(ob);
                   1069:        f = objArrayToPOLY(ob);
                   1070:     /* printf("1.%s\n",POLYToString(f,'*',1)); */
                   1071:        if (shiftvec) {
                   1072:          f =  POLYToInitWS(f,w,s);
                   1073:        }else{
                   1074:          f =  POLYToInitW(f,w);
                   1075:        }
                   1076:     /* printf("2.%s\n",POLYToString(f,'*',1)); */
                   1077:
                   1078:        return POLYtoObjArray(f,m);
1.1       maekawa  1079:   default:
1.7       takayama 1080:     errorKan1("%s\n","oInitW(): Argument must be polynomial or a vector of polynomials");
1.1       maekawa  1081:     break;
                   1082:   }
                   1083: }
1.7       takayama 1084:
                   1085: POLY objArrayToPOLY(struct object ob) {
                   1086:   int m;
                   1087:   POLY f;
                   1088:   POLY t;
                   1089:   int i,n;
                   1090:   struct ring *ringp;
                   1091:   if (ob.tag != Sarray) errorKan1("%s\n", "objArrayToPOLY() the argument must be an array.");
                   1092:   m = getoaSize(ob);
                   1093:   ringp = NULL;
                   1094:   f = POLYNULL;
                   1095:   for (i=0; i<m; i++) {
                   1096:     if (getoa(ob,i).tag != Spoly) errorKan1("%s\n","objArrayToPOLY() elements must be a polynomial.");
                   1097:     t = KopPOLY(getoa(ob,i));
                   1098:     if (t ISZERO) {
                   1099:     }else{
                   1100:       if (ringp == NULL) {
                   1101:         ringp = t->m->ringp;
                   1102:         n = ringp->n;
1.8       takayama 1103:                if (n - ringp->nn <= 0) errorKan1("%s\n","Graduation variable in D is not given.");
1.7       takayama 1104:       }
                   1105:       t = (*mpMult)(cxx(1,n-1,i,ringp),t);
                   1106:       f = ppAddv(f,t);
                   1107:     }
                   1108:   }
                   1109:   return f;
                   1110: }
                   1111:
                   1112: struct object POLYtoObjArray(POLY f,int size) {
1.18    ! takayama 1113:   struct object rob = OINIT;
1.7       takayama 1114:   POLY *pa;
                   1115:   int d,n,i;
                   1116:   POLY t;
                   1117:   if (size < 0) errorKan1("%s\n","POLYtoObjArray() invalid size.");
                   1118:   rob = newObjectArray(size);
                   1119:   pa = (POLY *) sGC_malloc(sizeof(POLY)*(size+1));
                   1120:   if (pa == NULL) errorKan1("%s\n","POLYtoObjArray() no more memory.");
                   1121:   for (i=0; i<size; i++) {
                   1122:     pa[i] = POLYNULL;
                   1123:     putoa(rob,i,KpoPOLY(pa[i]));
                   1124:   }
                   1125:   if (f == POLYNULL) {
                   1126:     return rob;
                   1127:   }
                   1128:   n = f->m->ringp->n;
                   1129:   while (f != POLYNULL) {
                   1130:     d = f->m->e[n-1].x;
                   1131:     if (d >= size) errorKan1("%s\n","POLYtoObjArray() size is too small.");
1.8       takayama 1132:     t = newCell(coeffCopy(f->coeffp),monomialCopy(f->m));
1.7       takayama 1133:        i = t->m->e[n-1].x;
                   1134:     t->m->e[n-1].x = 0;
                   1135:     pa[i] = ppAddv(pa[i],t); /* slow to add from the top. */
                   1136:     f = f->next;
                   1137:   }
                   1138:   for (i=0; i<size; i++) {
                   1139:     putoa(rob,i,KpoPOLY(pa[i]));
                   1140:   }
                   1141:   return rob;
                   1142: }
                   1143:
1.8       takayama 1144: struct object KordWsAll(ob,oWeight)
                   1145:      struct object ob;
                   1146:      struct object oWeight;
                   1147: {
                   1148:   POLY f;
1.18    ! takayama 1149:   struct object rob = OINIT;
1.8       takayama 1150:   int w[2*N0];
                   1151:   int n,i;
1.18    ! takayama 1152:   struct object ow = OINIT;
1.8       takayama 1153:   int shiftvec;
1.18    ! takayama 1154:   struct object oShift = OINIT;
1.8       takayama 1155:   int *s;
                   1156:   int ssize,m;
                   1157:
                   1158:   shiftvec = 0;
                   1159:   s = NULL;
                   1160:
                   1161:   if (oWeight.tag != Sarray) {
                   1162:     errorKan1("%s\n","ordWsAll(): the second argument must be array.");
                   1163:   }
1.15      takayama 1164:   oWeight = Kto_int32(oWeight);
1.8       takayama 1165:   n = getoaSize(oWeight);
                   1166:   if (n == 0) {
                   1167:        m = getoaSize(ob);
                   1168:        f = objArrayToPOLY(ob);
                   1169:        f = head(f);
                   1170:     return POLYtoObjArray(f,m);
                   1171:   }
                   1172:   if (getoa(oWeight,0).tag == Sarray) {
                   1173:        if (n != 2) errorKan1("%s\n","ordWsAll(): the size of the second argument should be 2.");
                   1174:        shiftvec = 1;
                   1175:        oShift = getoa(oWeight,1);
                   1176:        oWeight = getoa(oWeight,0);
                   1177:        if (oWeight.tag != Sarray) {
                   1178:          errorKan1("%s\n","ordWsAll(): the weight vector must be array.");
                   1179:        }
                   1180:        n = getoaSize(oWeight);
                   1181:        if (oShift.tag != Sarray) {
                   1182:          errorKan1("%s\n","ordWsAll(): the shift vector must be array.");
                   1183:        }
                   1184:   }
                   1185:   /* oWeight = Ksm1WeightExpressionToVec(oWeight); */
                   1186:   if (n >= 2*N0) errorKan1("%s\n","ordWsAll(): the size of the second argument is invalid.");
                   1187:   for (i=0; i<n; i++) {
                   1188:     ow = getoa(oWeight,i);
                   1189:        if (ow.tag == SuniversalNumber) {
                   1190:          ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1191:        }
                   1192:     if (ow.tag != Sinteger) {
                   1193:       errorKan1("%s\n","ordWsAll(): the entries of the second argument must be integers.");
                   1194:     }
                   1195:     w[i] = KopInteger(ow);
                   1196:   }
                   1197:   if (shiftvec) {
                   1198:     ssize = getoaSize(oShift);
                   1199:        s = (int *)sGC_malloc(sizeof(int)*(ssize+1));
                   1200:        if (s == NULL) errorKan1("%s\n","ordWsAll() no more memory.");
                   1201:        for (i=0; i<ssize; i++) {
                   1202:          ow = getoa(oShift,i);
                   1203:          if (ow.tag == SuniversalNumber) {
                   1204:                ow = KpoInteger(coeffToInt(ow.lc.universalNumber));
                   1205:          }
                   1206:          if (ow.tag != Sinteger) {
                   1207:                errorKan1("%s\n","ordWsAll(): the entries of shift vector must be integers.");
                   1208:          }
                   1209:          s[i] = KopInteger(ow);
                   1210:        }
                   1211:   }
                   1212:
                   1213:   switch(ob.tag) {
                   1214:   case Spoly:
                   1215:     f = KopPOLY(ob);
                   1216:        if (f == POLYNULL) errorKan1("%s\n","ordWsAll(): the argument is 0");
                   1217:        if (shiftvec) {
                   1218:          return( KpoInteger(ordWsAll(f,w,s)));
                   1219:        }else{
                   1220:          return( KpoInteger(ordWsAll(f,w,(int *) NULL)));
                   1221:        }
                   1222:     break;
                   1223:   case Sarray:
                   1224:        m = getoaSize(ob);
                   1225:        f = objArrayToPOLY(ob);
                   1226:        if (f == POLYNULL) errorKan1("%s\n","ordWsAll(): the argument is 0");
                   1227:        if (shiftvec) {
                   1228:          return KpoInteger(ordWsAll(f,w,s));
                   1229:        }else{
                   1230:          return KpoInteger(ordWsAll(f,w,(int *)NULL));
                   1231:        }
                   1232:   default:
                   1233:     errorKan1("%s\n","ordWsAll(): Argument must be polynomial or a vector of polynomials");
                   1234:     break;
                   1235:   }
                   1236: }
1.1       maekawa  1237:
                   1238: int KpolyLength(POLY f) {
                   1239:   int size;
                   1240:   if (f == POLYNULL) return(1);
                   1241:   size = 0;
                   1242:   while (f != POLYNULL) {
                   1243:     f = f->next;
                   1244:     size++;
                   1245:   }
                   1246:   return(size);
                   1247: }
                   1248:
                   1249: int validOutputOrder(int ord[],int n) {
                   1250:   int i,j,flag;
                   1251:   for (i=0; i<n; i++) {
                   1252:     flag = 0;
                   1253:     for (j=0; j<n; j++) {
                   1254:       if (ord[j] == i) flag = 1;
                   1255:     }
                   1256:     if (flag == 0) return(0); /* invalid */
                   1257:   }
                   1258:   return(1);
                   1259: }
                   1260:
                   1261: struct object KsetOutputOrder(struct object ob, struct ring *rp)
                   1262: {
                   1263:   int n,i;
1.18    ! takayama 1264:   struct object ox = OINIT;
        !          1265:   struct object otmp = OINIT;
1.1       maekawa  1266:   int *xxx;
                   1267:   int *ddd;
                   1268:   if (ob.tag  != Sarray) {
                   1269:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...]");
                   1270:   }
                   1271:   n = rp->n;
                   1272:   ox = ob;
                   1273:   if (getoaSize(ox) != 2*n) {
                   1274:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...] and the length of [x y z ...] must be equal to the number of x and D variables.");
                   1275:   }
                   1276:   xxx = (int *)sGC_malloc(sizeof(int)*n*2);
                   1277:   if (xxx == NULL ) {
                   1278:     errorKan1("%s\n","KsetOutputOrder(): no more memory.");
                   1279:   }
                   1280:   for (i=0; i<2*n; i++) {
                   1281:     otmp = getoa(ox,i);
                   1282:     if(otmp.tag != Sinteger) {
                   1283:       errorKan1("%s\n","KsetOutputOrder(): elements must be integers.");
                   1284:     }
                   1285:     xxx[i] = KopInteger(otmp);
                   1286:   }
                   1287:   if (!validOutputOrder(xxx,2*n)) {
                   1288:     errorKan1("%s\n","KsetOutputOrder(): Invalid output order for variables.");
                   1289:   }
                   1290:   rp->outputOrder = xxx;
                   1291:   return(ob);
                   1292: }
                   1293:
                   1294: struct object KschreyerSkelton(struct object g)
                   1295: {
1.18    ! takayama 1296:   struct object rob = OINIT;
        !          1297:   struct object ij = OINIT;
        !          1298:   struct object ab = OINIT;
        !          1299:   struct object tt = OINIT;
1.1       maekawa  1300:   struct arrayOfPOLY *ap;
                   1301:   struct arrayOfMonomialSyz ans;
                   1302:   int k;
                   1303:   rob.tag = Snull;
                   1304:   if (g.tag != Sarray) {
                   1305:     errorKan1("%s\n","KschreyerSkelton(): argument must be an array of polynomials.");
                   1306:   }
                   1307:
                   1308:   ap = arrayToArrayOfPOLY(g);
                   1309:   ans = schreyerSkelton(*ap);
                   1310:
                   1311:   rob = newObjectArray(ans.size);
                   1312:   for (k=0; k<ans.size; k++) {
                   1313:     ij = newObjectArray(2);
                   1314:     putoa(ij,0, KpoInteger(ans.p[k]->i));
                   1315:     putoa(ij,1, KpoInteger(ans.p[k]->j));
                   1316:     ab = newObjectArray(2);
                   1317:     putoa(ab,0, KpoPOLY(ans.p[k]->a));
                   1318:     putoa(ab,1, KpoPOLY(ans.p[k]->b));
                   1319:     tt = newObjectArray(2);
                   1320:     putoa(tt,0, ij);
                   1321:     putoa(tt,1, ab);
                   1322:     putoa(rob,k,tt);
                   1323:   }
                   1324:   return(rob);
                   1325: }
                   1326:
                   1327: struct object KisOrdered(struct object of)
                   1328: {
                   1329:   if (of.tag != Spoly) {
                   1330:     errorKan1("%s\n","KisOrdered(): argument must be a polynomial.");
                   1331:   }
                   1332:   if (isOrdered(KopPOLY(of))) {
                   1333:     return(KpoInteger(1));
                   1334:   }else{
                   1335:     return(KpoInteger(0));
                   1336:   }
                   1337: }
                   1338:
                   1339: struct object KvectorToSchreyer_es(struct object obarray)
                   1340: {
                   1341:   int m,i;
                   1342:   int nn;
                   1343:   POLY f;
                   1344:   POLY g;
1.18    ! takayama 1345:   struct object ob = OINIT;
1.1       maekawa  1346:   struct ring *rp;
                   1347:   if (obarray.tag != Sarray) {
                   1348:     errorKan1("%s\n","KvectorToSchreyer_es(): argument must be an array of polynomials.");
                   1349:   }
                   1350:   m = getoaSize(obarray);
                   1351:   f = POLYNULL;
                   1352:   for (i=0; i<m; i++) {
                   1353:     ob = getoa(obarray,i);
                   1354:     if (ob.tag != Spoly) {
                   1355:       errorKan1("%s\n","KvectorToSchreyer_es(): each element of the array must be a polynomial.");
                   1356:     }
                   1357:     g = KopPOLY(ob);
                   1358:     if (g != POLYNULL) {
                   1359:       rp = g->m->ringp;
                   1360:       nn = rp->nn;
                   1361:       /*   g = es^i  g */
                   1362:       g = mpMult_poly(cxx(1,nn,i,rp), g);
                   1363:       if (!isOrdered(g)) {
1.2       takayama 1364:         errorKan1("%s\n","KvectorToSchreyer_es(): given polynomial is not ordered properly by the given Schreyer order.");
1.1       maekawa  1365:       }
                   1366:       f = ppAdd(f,g);
                   1367:     }
                   1368:   }
                   1369:   return(KpoPOLY(f));
1.3       takayama 1370: }
                   1371:
                   1372: int objToInteger(struct object ob) {
                   1373:   if (ob.tag == Sinteger) {
1.5       takayama 1374:     return KopInteger(ob);
1.3       takayama 1375:   }else if (ob.tag == SuniversalNumber) {
1.5       takayama 1376:     return(coeffToInt(KopUniversalNumber(ob)));
1.3       takayama 1377:   }else {
1.5       takayama 1378:     errorKan1("%s\n","objToInteger(): invalid argument.");
1.3       takayama 1379:   }
1.12      takayama 1380: }
                   1381:
                   1382: struct object KgetExponents(struct object obPoly,struct object otype) {
                   1383:   int type,asize,i;
                   1384:   POLY f;
                   1385:   POLY ff;
                   1386:   MONOMIAL tf;
1.18    ! takayama 1387:   struct object rob = OINIT;
        !          1388:   struct object tob = OINIT;
1.12      takayama 1389:   static int nn,mm,ll,cc,n,m,l,c;
                   1390:   static struct ring *cr = (struct ring *)NULL;
                   1391:   extern struct ring *CurrentRingp;
                   1392:   int size,hsize,fsize,p,r;
                   1393:
                   1394:   if (otype.tag == Sinteger) {
                   1395:     type = KopInteger(otype);
                   1396:   }else if (otype.tag == SuniversalNumber) {
                   1397:     type = coeffToInt(KopUniversalNumber(otype));
                   1398:   }else {
                   1399:     errorKan1("%s\n","KgetExponents(): invalid translation type.");
                   1400:   }
                   1401:
                   1402:   if (obPoly.tag == Spoly) {
                   1403:     f = KopPOLY(obPoly);
                   1404:   }else if (obPoly.tag == Sarray) {
                   1405:     asize = getoaSize(obPoly);
                   1406:     rob = newObjectArray(asize);
                   1407:     for (i=0; i<asize; i++) {
                   1408:       tob = KgetExponents(getoa(obPoly,i),otype);
                   1409:       putoa(rob,i,tob);
                   1410:     }
1.13      takayama 1411:        return rob;
1.12      takayama 1412:   }else{
                   1413:     errorKan1("%s\n","KgetExponents(): argument must be a polynomial.");
                   1414:   }
                   1415:
                   1416:   /* type == 0    x,y,Dx,Dy     (no commutative, no vector)
1.16      takayama 1417:      type == 1    x,y,Dx,Dy,h,H (commutative & no vector)
1.12      takayama 1418:      type == 2    x,y,Dx,Dy,h   (commutative & no vector)
                   1419:   */
                   1420:   if (f ISZERO) {
                   1421:     cr = CurrentRingp;
                   1422:   }else{
                   1423:     tf = f->m;
                   1424:   }
                   1425:   if (tf->ringp != cr) {
                   1426:     n = tf->ringp->n;
                   1427:     m = tf->ringp->m;
                   1428:     l = tf->ringp->l;
                   1429:     c = tf->ringp->c;
                   1430:     nn = tf->ringp->nn;
                   1431:     mm = tf->ringp->mm;
                   1432:     ll = tf->ringp->ll;
                   1433:     cc = tf->ringp->cc;
                   1434:     cr = tf->ringp;
                   1435:   }
                   1436:   if (type == 0) {
                   1437:     size = 0;
                   1438:     for (i=c; i<ll; i++) size += 2;
                   1439:     for (i=l; i<mm; i++) size += 2;
                   1440:     for (i=m; i<nn; i++) size += 2;
                   1441:   }else if (type == 1) {
                   1442:     size = 0;
                   1443:     for (i=0; i<cc; i++) size += 2;
                   1444:     for (i=c; i<ll; i++) size += 2;
                   1445:     for (i=l; i<mm; i++) size += 2;
                   1446:     for (i=m; i<nn; i++) size += 2;
                   1447:   }else if (type == 2) {
                   1448:     size = 0;
                   1449:     for (i=0; i<cc; i++) size += 1;
                   1450:     for (i=c; i<ll; i++) size += 2;
                   1451:     for (i=l; i<mm; i++) size += 2;
                   1452:     for (i=m; i<nn; i++) size += 2;
                   1453:   }else{
                   1454:     errorKan1("%s\n","KgetExponent, unknown type.");
                   1455:   }
1.16      takayama 1456:   if (type == 1 || type == 2) {
                   1457:     hsize = (size-cc)/2;
                   1458:   }else{
                   1459:     hsize = size/2;
                   1460:   }
1.12      takayama 1461:   if (f ISZERO) {
                   1462:     tob = newObjectArray(size);
                   1463:     for (i=0; i<size; i++) {
                   1464:       putoa(tob,i,KpoInteger(0));
                   1465:     }
                   1466:     rob = newObjectArray(1);
                   1467:     putoa(rob,0,tob);
                   1468:     return rob;
                   1469:   }
                   1470:   fsize = 0;
                   1471:   ff = f;
                   1472:   while (ff != POLYNULL) {
                   1473:     fsize++;
                   1474:     ff = ff->next;
                   1475:   }
                   1476:   rob = newObjectArray(fsize);
                   1477:
                   1478:   ff = f;
                   1479:   p = 0;
                   1480:   while (ff != POLYNULL) {
                   1481:     r = 0;
                   1482:     tob = newObjectArray(size);
                   1483:        tf = ff->m;
                   1484:     for (i=ll-1; i>=c; i--) {
                   1485:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1486:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1487:       r++;
                   1488:     }
                   1489:     for (i=mm-1; i>=l; i--) {
                   1490:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1491:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1492:       r++;
                   1493:     }
                   1494:     for (i=nn-1; i>=m; i--) {
                   1495:       putoa(tob,r,KpoInteger(tf->e[i].x));
                   1496:       putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1497:       r++;
                   1498:     }
                   1499:     if (type == 1) {
                   1500:       for (i=cc-1; i>=0; i--) {
1.16      takayama 1501:         putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1502:         r++;
1.12      takayama 1503:         putoa(tob,hsize+r,KpoInteger(tf->e[i].x));
                   1504:         r++;
                   1505:       }
                   1506:     }else if (type == 2) {
                   1507:       for (i=cc-1; i>=0; i--) {
                   1508:         putoa(tob,hsize+r,KpoInteger(tf->e[i].D));
                   1509:         r++;
                   1510:       }
                   1511:        }
                   1512:
                   1513:     putoa(rob,p,tob);
                   1514:     p++;
                   1515:     ff = ff->next;
                   1516:   }
                   1517:   return rob;
1.1       maekawa  1518: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>