[BACK]Return to kanExport1.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport1.c, Revision 1.4

1.4     ! takayama    1: /* $OpenXM$ */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: static int Message = 1;
                     13: extern int KanGBmessage;
                     14:
                     15: /** :kan, :ring */
                     16: struct object Kreduction(f,set)
1.2       takayama   17:      struct object f;
                     18:      struct object set;
1.1       maekawa    19: {
                     20:   POLY r;
                     21:   struct gradedPolySet *grG;
                     22:   struct syz0 syz;
                     23:   struct object rob;
                     24:   int flag;
                     25:   extern int ReduceLowerTerms;
                     26:
                     27:   if (f.tag != Spoly) errorKan1("%s\n","Kreduction(): the first argument must be a polynomial.");
                     28:
                     29:   if (ectag(set) == CLASSNAME_GradedPolySet) {
                     30:     grG = KopGradedPolySet(set);
                     31:     flag = 1;
                     32:   }else{
                     33:     if (set.tag != Sarray) errorKan1("%s\n","Kreduction(): the second argument must be a set of polynomials.");
                     34:     grG = arrayToGradedPolySet(set);
                     35:     flag = 0;
                     36:   }
                     37:   if (ReduceLowerTerms) {
                     38:     r = (*reductionCdr)(f.lc.poly,grG,1,&syz);
                     39:   }else{
                     40:     r = (*reduction)(f.lc.poly,grG,1,&syz);
                     41:   }
                     42:   if (flag) {
                     43:     rob = newObjectArray(3);
                     44:     putoa(rob,0,KpoPOLY(r));
                     45:     putoa(rob,1,KpoPOLY(syz.cf));
                     46:     putoa(rob,2,syzPolyToArray(countGradedPolySet(grG),syz.syz,grG));
                     47:   }else {
                     48:     rob = newObjectArray(4);
                     49:     putoa(rob,0,KpoPOLY(r));
                     50:     putoa(rob,1,KpoPOLY(syz.cf));
                     51:     putoa(rob,2,syzPolyToArray(getoaSize(set),syz.syz,grG));
                     52:     putoa(rob,3,gradedPolySetToArray(grG,1));
                     53:   }
                     54:   return(rob);
                     55: }
                     56:
                     57: struct object Kgroebner(ob)
1.2       takayama   58:      struct object ob;
1.1       maekawa    59: {
                     60:   int needSyz = 0;
                     61:   int needBack = 0;
                     62:   int needInput = 0;
                     63:   int countDown = 0;
                     64:   int cdflag = 0;
                     65:   struct object ob1,ob2,ob2c;
                     66:   int i;
                     67:   struct gradedPolySet *grG;
                     68:   struct pair *grP;
                     69:   struct arrayOfPOLY *a;
                     70:   struct object rob;
                     71:   struct gradedPolySet *grBases;
                     72:   struct matrixOfPOLY *mp;
                     73:   struct matrixOfPOLY *backwardMat;
                     74:   struct object ob1New;
                     75:   extern char *F_groebner;
                     76:   extern int CheckHomogenization;
                     77:   extern int StopDegree;
                     78:   int sdflag = 0;
                     79:   int forceReduction = 0;
                     80:
                     81:   int ob1Size, ob2Size, noZeroEntry;
                     82:   int *ob1ToOb2;
                     83:   int *ob1ZeroPos;
                     84:   int method;
                     85:   int j,k;
                     86:   struct object rob2;
                     87:   struct object rob3;
                     88:   struct object rob4;
                     89:   struct ring *myring;
                     90:   POLY f;
                     91:   struct object orgB;
                     92:   struct object newB;
                     93:   struct object orgC;
                     94:   struct object newC;
                     95:   static struct object paddingVector(struct object ob, int table[], int m);
                     96:   static struct object unitVector(int pos, int size,struct ring *r);
                     97:   extern struct ring *CurrentRingp;
                     98:
                     99:   StopDegree = 0x7fff;
                    100:
                    101:   if (ob.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array.");
                    102:   switch(getoaSize(ob)) {
                    103:   case 1:
                    104:     needBack = 0; needSyz = 0; needInput = 0;
                    105:     ob1 = getoa(ob,0);
                    106:     break;
                    107:   case 2:
                    108:     ob1 = getoa(ob,0);
                    109:     ob2 = getoa(ob,1);
                    110:     if (ob2.tag != Sarray) {
                    111:       errorKan1("%s\n","Kgroebner(): The options must be given by an array.");
                    112:     }
                    113:     for (i=0; i<getoaSize(ob2); i++) {
                    114:       ob2c = getoa(ob2,i);
                    115:       if (ob2c.tag == Sdollar) {
1.2       takayama  116:         if (strcmp(ob2c.lc.str,"needBack")==0) {
                    117:           needBack = 1;
                    118:         }else if (strcmp(ob2c.lc.str,"needSyz")==0) {
                    119:           if (!needBack) {
                    120:             /* warningKan("Kgroebner(): needBack is automatically set."); */
                    121:           }
                    122:           needSyz = needBack = 1;
                    123:         }else if (strcmp(ob2c.lc.str,"forceReduction")==0) {
                    124:           forceReduction = 1;
                    125:         }else if (strcmp(ob2c.lc.str,"countDown")==0) {
                    126:           countDown = 1; cdflag = 1;
                    127:           if (needSyz) {
                    128:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    129:             needSyz = 0;
                    130:           }
                    131:         }else if (strcmp(ob2c.lc.str,"StopDegree")==0) {
                    132:           StopDegree = 0; sdflag = 1;
                    133:           if (needSyz) {
                    134:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    135:             needSyz = 0;
                    136:           }
                    137:         }else {
                    138:           warningKan("Unknown keyword for options.");
                    139:         }
1.1       maekawa   140:       }else if (ob2c.tag == Sinteger) {
1.2       takayama  141:         if (cdflag) {
                    142:           cdflag = 0;
                    143:           countDown = KopInteger(ob2c);
                    144:         }else if (sdflag) {
                    145:           sdflag = 0;
                    146:           StopDegree = KopInteger(ob2c);
                    147:         }
1.1       maekawa   148:       }
                    149:     }
                    150:     break;
                    151:   default:
                    152:     errorKan1("%s\n","Kgroebner(): [ [polynomials] ] or [[polynomials] [options]].");
                    153:   }
1.2       takayama  154:
1.1       maekawa   155:   if (ob1.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array. Example: [ [$x-1$ . $x y -2$ .] [$needBack$ $needSyz$ $needInput$]] ");
                    156:   ob1New = newObjectArray(getoaSize(ob1));
                    157:   for (i=0; i< getoaSize(ob1); i++) {
                    158:     if (getoa(ob1,i).tag == Spoly) {
                    159:       putoa(ob1New,i,getoa(ob1,i));
                    160:     }else if (getoa(ob1,i).tag == Sarray) {
                    161:       /* If the generater is given as an array, flatten it. */
                    162:       putoa(ob1New,i,KpoPOLY( arrayToPOLY(getoa(ob1,i))));
                    163:     }else{
                    164:       errorKan1("%s\n","Kgroebner(): The elements must be polynomials or array of polynomials.");
                    165:     }
                    166:     /* getoa(ob1,i) is poly, now check the homogenization. */
                    167:     if (CheckHomogenization) {
                    168:       if ((strcmp(F_groebner,"standard")==0) &&
1.2       takayama  169:           !isHomogenized(KopPOLY(getoa(ob1New,i)))) {
                    170:         fprintf(stderr,"\n%s",KPOLYToString(KopPOLY(getoa(ob1New,i))));
                    171:         errorKan1("%s\n","Kgroebner(): The above polynomial is not homogenized. cf. homogenize.");
1.1       maekawa   172:       }
                    173:     }
                    174:   }
                    175:   ob1 = ob1New;
                    176:
                    177:   /* To handle the input with zero entries. For debug, debug/gr.sm1*/
                    178:   ob1Size = getoaSize(ob1);
                    179:   ob2Size = 0; myring = CurrentRingp;
                    180:   for (i=0; i<ob1Size; i++) {
                    181:     if (KopPOLY(getoa(ob1,i)) != POLYNULL) ob2Size++;
                    182:   }
                    183:   if (ob2Size == ob1Size) noZeroEntry = 1;
                    184:   else noZeroEntry = 0;
                    185:   if (ob1Size == 0)  {
                    186:     if (needBack && needSyz) {
                    187:       rob = newObjectArray(3);
                    188:       putoa(rob,0,newObjectArray(0));
                    189:       putoa(rob,1,newObjectArray(0));
                    190:       putoa(rob,2,newObjectArray(0));
                    191:     }else if (needBack) {
                    192:       rob = newObjectArray(2);
                    193:       putoa(rob,0,newObjectArray(0));
                    194:       putoa(rob,1,newObjectArray(0));
                    195:     }else {
                    196:       rob = newObjectArray(1);
                    197:       putoa(rob,0,newObjectArray(0));
                    198:     }
                    199:     return(rob);
                    200:   }
                    201:   /* Assume ob1size > 0 */
                    202:   if (ob2Size == 0) {
                    203:     rob2 = newObjectArray(1); putoa(rob2,0,KpoPOLY(POLYNULL));
                    204:     if (needBack && needSyz) {
                    205:       rob = newObjectArray(3);
                    206:       putoa(rob,0,rob2);
                    207:       rob3 = newObjectArray(1);
                    208:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    209:       putoa(rob,1,rob3);
                    210:       rob4 = newObjectArray(ob1Size);
                    211:       for (i=0; i<ob1Size; i++) {
1.2       takayama  212:         putoa(rob4,i,unitVector(i,ob1Size,myring));
1.1       maekawa   213:       }
                    214:       putoa(rob,2,rob4);
                    215:     }else if (needBack) {
                    216:       rob = newObjectArray(2);
                    217:       putoa(rob,0,rob2);
                    218:       rob3 = newObjectArray(1);
                    219:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    220:       putoa(rob,1,rob3);
                    221:     }else {
                    222:       rob = newObjectArray(1);
                    223:       putoa(rob,0,rob2);
                    224:     }
                    225:     return(rob);
                    226:   }
                    227:   /* Assume ob1Size , ob2Size > 0 */
                    228:   ob2 = newObjectArray(ob2Size);
                    229:   ob1ToOb2 =   (int *)GC_malloc(sizeof(int)*ob1Size);
                    230:   ob1ZeroPos = (int *)GC_malloc(sizeof(int)*(ob1Size-ob2Size+1));
                    231:   if (ob1ToOb2 == NULL || ob1ZeroPos == NULL) errorKan1("%s\n","No more memory.");
                    232:   j = 0; k = 0;
                    233:   for (i=0; i<ob1Size; i++) {
                    234:     f = KopPOLY(getoa(ob1,i));
                    235:     if (f != POLYNULL) {
                    236:       myring = f->m->ringp;
                    237:       putoa(ob2,j,KpoPOLY(f));
                    238:       ob1ToOb2[i] = j; j++;
                    239:     }else{
                    240:       ob1ToOb2[i] = -1;
                    241:       ob1ZeroPos[k] = i; k++;
                    242:     }
                    243:   }
                    244:
                    245:   a = arrayToArrayOfPOLY(ob2);
                    246:   grG = (*groebner)(a,needBack,needSyz,&grP,countDown,forceReduction);
                    247:
                    248:   if (strcmp(F_groebner,"gm") == 0 && (needBack || needSyz)) {
                    249:     warningKan("The options needBack and needSyz are ignored.");
                    250:     needBack = needSyz = 0;
                    251:   }
                    252:
                    253:   /*return(gradedPolySetToGradedArray(grG,0));*/
                    254:   if (needBack && needSyz) {
                    255:     rob = newObjectArray(3);
                    256:     if (Message && KanGBmessage) {
                    257:       printf("Computing the backward transformation   ");
                    258:       fflush(stdout);
                    259:     }
                    260:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    261:     if (KanGBmessage) printf("Done.\n");
                    262:
                    263:     /* Computing the syzygies. */
                    264:     if (Message && KanGBmessage) {
                    265:       printf("Computing the syzygies    ");
                    266:       fflush(stdout);
                    267:     }
                    268:     mp = getSyzygy(grG,grP->next,&grBases,&backwardMat);
                    269:     if (KanGBmessage) printf("Done.\n");
                    270:
                    271:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    272:     putoa(rob,1,matrixOfPOLYToArray(backwardMat));
                    273:     putoa(rob,2,matrixOfPOLYToArray(mp));
                    274:   }else if (needBack) {
                    275:     rob = newObjectArray(2);
                    276:     if (Message && KanGBmessage) {
                    277:       printf("Computing the backward transformation.....");
                    278:       fflush(stdout);
                    279:     }
                    280:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    281:     if (KanGBmessage) printf("Done.\n");
                    282:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    283:     putoa(rob,1,getBackwardArray(grG));
                    284:   }else {
                    285:     rob = newObjectArray(1);
                    286:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    287:   }
                    288:
                    289:   /* To handle zero entries in the input. */
                    290:   if (noZeroEntry) {
                    291:     return(rob);
                    292:   }
                    293:   method = getoaSize(rob);
                    294:   switch(method) {
                    295:   case 1:
                    296:     return(rob);
                    297:     break;
                    298:   case 2:
                    299:     orgB = getoa(rob,1); /* backward transformation. */
                    300:     newB = newObjectArray(getoaSize(orgB));
                    301:     for (i=0; i<getoaSize(orgB); i++) {
                    302:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    303:     }
                    304:     rob2 = newObjectArray(2);
                    305:     putoa(rob2,0,getoa(rob,0));
                    306:     putoa(rob2,1,newB);
                    307:     return(rob2);
                    308:     break;
                    309:   case 3:
                    310:     orgB = getoa(rob,1); /* backward transformation. */
                    311:     newB = newObjectArray(getoaSize(orgB));
                    312:     for (i=0; i<getoaSize(orgB); i++) {
                    313:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    314:     }
                    315:     orgC = getoa(rob,2);
                    316:     newC = newObjectArray(getoaSize(orgC)+ob1Size-ob2Size);
                    317:     for (i=0; i<getoaSize(orgC); i++) {
                    318:       putoa(newC, i, paddingVector(getoa(orgC,i),ob1ToOb2,ob1Size));
                    319:     }
                    320:     for (i = getoaSize(orgC), j = 0; i<getoaSize(orgC)+ob1Size-ob2Size; i++,j++) {
                    321:       putoa(newC,i,unitVector(ob1ZeroPos[j],ob1Size,myring));
                    322:     }
                    323:     rob2 = newObjectArray(3);
                    324:     putoa(rob2,0,getoa(rob,0));
                    325:     putoa(rob2,1,newB);
                    326:     putoa(rob2,2,newC);
                    327:     return(rob2);
                    328:     break;
                    329:   default:
                    330:     errorKan1("%s","Kgroebner: unknown method.");
                    331:   }
                    332: }
                    333:
                    334: static struct object paddingVector(struct object ob, int table[], int m)
                    335: {
                    336:   struct object rob;
                    337:   int i;
                    338:   rob = newObjectArray(m);
                    339:   for (i=0; i<m; i++) {
                    340:     if (table[i] != -1) {
                    341:       putoa(rob,i,getoa(ob,table[i]));
                    342:     }else{
                    343:       putoa(rob,i,KpoPOLY(POLYNULL));
                    344:     }
                    345:   }
                    346:   return(rob);
                    347: }
                    348:
                    349: static struct object unitVector(int pos, int size,struct ring *r)
                    350: {
                    351:   struct object rob;
                    352:   int i;
                    353:   POLY one;
                    354:   rob = newObjectArray(size);
                    355:   for (i=0; i<size; i++) {
                    356:     putoa(rob,i,KpoPOLY(POLYNULL));
                    357:   }
                    358:   if ((0 <= pos) && (pos < size)) {
                    359:     putoa(rob,pos, KpoPOLY(cxx(1,0,0,r)));
                    360:   }
                    361:   return(rob);
                    362: }
                    363:
                    364:
                    365:
                    366: /* :misc */
                    367:
                    368: #define INITGRADE 3
                    369: #define INITSIZE 0
                    370:
                    371: struct gradedPolySet *arrayToGradedPolySet(ob)
1.2       takayama  372:      struct object ob;
1.1       maekawa   373: {
                    374:   int n,i,grd,ind;
                    375:   POLY f;
                    376:   struct gradedPolySet *grG;
                    377:   int serial;
                    378:   extern int Sugar;
                    379:
                    380:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToGradedPolySet(): the argument must be array.");
                    381:   n = getoaSize(ob);
                    382:   for (i=0; i<n; i++) {
                    383:     if (getoa(ob,i).tag != Spoly)
                    384:       errorKan1("%s\n","arrayToGradedPolySet(): the elements must be polynomials.");
                    385:   }
                    386:   grG = newGradedPolySet(INITGRADE);
                    387:
                    388:   for (i=0; i<grG->lim; i++) {
                    389:     grG->polys[i] = newPolySet(INITSIZE);
                    390:   }
                    391:   for (i=0; i<n; i++) {
                    392:     f = KopPOLY(getoa(ob,i));
                    393:     grd = -1; whereInG(grG,f,&grd,&ind,Sugar);
                    394:     serial = i;
                    395:     grG = putPolyInG(grG,f,grd,ind,(struct syz0 *)NULL,1,serial);
                    396:   }
                    397:   return(grG);
                    398: }
                    399:
                    400:
                    401: struct object polySetToArray(ps,keepRedundant)
1.2       takayama  402:      struct polySet *ps;
                    403:      int keepRedundant;
1.1       maekawa   404: {
                    405:   int n,i,j;
                    406:   struct object ob;
                    407:   if (ps == (struct polySet *)NULL) return(newObjectArray(0));
                    408:   n = 0;
                    409:   if (keepRedundant) {
                    410:     n = ps->size;
                    411:   }else{
                    412:     for (i=0; i<ps->size; i++) {
                    413:       if (ps->del[i] == 0) ++n;
                    414:     }
                    415:   }
                    416:   ob = newObjectArray(n);
                    417:   j = 0;
                    418:   for (i=0; i<ps->size; i++) {
                    419:     if (keepRedundant || (ps->del[i] == 0)) {
                    420:       putoa(ob,j,KpoPOLY(ps->g[i]));
                    421:       j++;
                    422:     }
                    423:   }
                    424:   return(ob);
                    425: }
                    426:
                    427:
                    428: struct object gradedPolySetToGradedArray(gps,keepRedundant)
1.2       takayama  429:      struct gradedPolySet *gps;
                    430:      int keepRedundant;
1.1       maekawa   431: {
                    432:   struct object ob,vec;
                    433:   int i;
                    434:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    435:   ob = newObjectArray(gps->maxGrade +1);
                    436:   vec = newObjectArray(gps->maxGrade);
                    437:   for (i=0; i<gps->maxGrade; i++) {
                    438:     putoa(vec,i,KpoInteger(i));
                    439:     putoa(ob,i+1,polySetToArray(gps->polys[i],keepRedundant));
                    440:   }
                    441:   putoa(ob,0,vec);
                    442:   return(ob);
                    443: }
                    444:
                    445:
                    446: struct object gradedPolySetToArray(gps,keepRedundant)
1.2       takayama  447:      struct gradedPolySet *gps;
                    448:      int keepRedundant;
1.1       maekawa   449: {
                    450:   struct object ob,vec;
                    451:   struct polySet *ps;
                    452:   int k;
                    453:   int i,j;
                    454:   int size;
                    455:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    456:   size = 0;
                    457:   for (i=0; i<gps->maxGrade; i++) {
                    458:     ps = gps->polys[i];
                    459:     if (keepRedundant) {
                    460:       size += ps->size;
                    461:     }else{
                    462:       for (j=0; j<ps->size; j++) {
1.2       takayama  463:         if (ps->del[j] == 0) ++size;
1.1       maekawa   464:       }
                    465:     }
                    466:   }
                    467:
                    468:   ob = newObjectArray(size);
                    469:   k = 0;
                    470:   for (i=0; i<gps->maxGrade; i++) {
                    471:     ps = gps->polys[i];
                    472:     for (j=0; j<ps->size; j++) {
                    473:       if (keepRedundant || (ps->del[j] == 0)) {
1.2       takayama  474:         putoa(ob,k,KpoPOLY(ps->g[j]));
                    475:         k++;
1.1       maekawa   476:       }
                    477:     }
                    478:   }
                    479:   return(ob);
                    480: }
                    481:
                    482:
                    483: /* serial == -1  :  It's not in the marix input. */
                    484: struct object syzPolyToArray(size,f,grG)
1.2       takayama  485:      int size;
                    486:      POLY f;
                    487:      struct gradedPolySet *grG;
1.1       maekawa   488: {
                    489:   struct object ob;
                    490:   int i,g0,i0,serial;
                    491:
                    492:   ob = newObjectArray(size);
                    493:   for (i=0; i<size; i++) {
                    494:     putoa(ob,i,KpoPOLY(ZERO));
                    495:   }
                    496:
                    497:   while (f != POLYNULL) {
                    498:     g0 = srGrade(f);
                    499:     i0 = srIndex(f);
                    500:     serial = grG->polys[g0]->serial[i0];
                    501:     if (serial < 0) {
                    502:       errorKan1("%s\n","syzPolyToArray(): invalid serial[i] of grG.");
                    503:     }
                    504:     if (KopPOLY(getoa(ob,serial)) != ZERO) {
                    505:       errorKan1("%s\n","syzPolyToArray(): syzygy polynomial is broken.");
                    506:     }
                    507:     putoa(ob,serial,KpoPOLY(f->coeffp->val.f));
                    508:     f = f->next;
                    509:   }
                    510:   return(ob);
                    511: }
                    512:
                    513: struct object getBackwardArray(grG)
1.2       takayama  514:      struct gradedPolySet *grG;
1.1       maekawa   515: {
                    516:   /* use serial, del.  cf. getBackwardTransformation(). */
                    517:   int inputSize,outputSize;
                    518:   int i,j,k;
                    519:   struct object ob;
                    520:   struct polySet *ps;
                    521:
                    522:   inputSize = 0; outputSize = 0;
                    523:   for (i=0; i<grG->maxGrade; i++) {
                    524:     ps = grG->polys[i];
                    525:     for (j=0; j<ps->size; j++) {
                    526:       if (ps->serial[j] >= 0) ++inputSize;
                    527:       if (ps->del[j] == 0) ++outputSize;
                    528:     }
                    529:   }
                    530:
                    531:   ob = newObjectArray(outputSize);
                    532:   k = 0;
                    533:   for (i=0; i<grG->maxGrade; i++) {
                    534:     ps = grG->polys[i];
                    535:     for (j=0; j<ps->size; j++) {
                    536:       if (ps->del[j] == 0) {
1.2       takayama  537:         putoa(ob,k,syzPolyToArray(inputSize,ps->syz[j]->syz,grG));
                    538:         k++;
1.1       maekawa   539:       }
                    540:     }
                    541:   }
                    542:   return(ob);
                    543: }
                    544:
                    545:
                    546: POLY arrayToPOLY(ob)
1.2       takayama  547:      struct object ob;
1.1       maekawa   548: {
                    549:   int size,i;
                    550:   struct object f;
                    551:   POLY r;
                    552:   static int nn,mm,ll,cc,n,m,l,c;
                    553:   static struct ring *cr = (struct ring *)NULL;
                    554:   POLY ff,ee;
                    555:   MONOMIAL tf;
                    556:
                    557:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToPOLY(): The argument must be an array.");
                    558:   size = getoaSize(ob);
                    559:   r = ZERO;
                    560:   for (i=0; i<size; i++) {
                    561:     f = getoa(ob,i);
                    562:     if (f.tag != Spoly) errorKan1("%s\n","arrayToPOLY(): The elements must be polynomials.");
                    563:     ff = KopPOLY(f);
                    564:     if (ff != ZERO) {
                    565:       tf = ff->m;
                    566:       if (tf->ringp != cr) {
1.2       takayama  567:         n = tf->ringp->n;
                    568:         m = tf->ringp->m;
                    569:         l = tf->ringp->l;
                    570:         c = tf->ringp->c;
                    571:         nn = tf->ringp->nn;
                    572:         mm = tf->ringp->mm;
                    573:         ll = tf->ringp->ll;
                    574:         cc = tf->ringp->cc;
                    575:         cr = tf->ringp;
1.1       maekawa   576:       }
                    577:       if (n-nn >0) ee = cxx(1,n-1,i,tf->ringp);
                    578:       else if (m-mm >0) ee = cxx(1,m-1,i,tf->ringp);
                    579:       else if (l-ll >0) ee = cxx(1,l-1,i,tf->ringp);
                    580:       else if (c-cc >0) ee = cxx(1,c-1,i,tf->ringp);
                    581:       else ee = ZERO;
                    582:       r = ppAddv(r,ppMult(ee,ff));
                    583:     }
                    584:   }
                    585:   return(r);
                    586: }
                    587:
                    588: struct object POLYToArray(ff)
1.2       takayama  589:      POLY ff;
1.1       maekawa   590: {
                    591:
                    592:   static int nn,mm,ll,cc,n,m,l,c;
                    593:   static struct ring *cr = (struct ring *)NULL;
                    594:   POLY ee;
                    595:   MONOMIAL tf;
                    596:   int k,i,matn,size;
                    597:   struct matrixOfPOLY *mat;
                    598:   POLY ex,sizep;
                    599:   struct object ob;
                    600:
                    601:   if (ff != ZERO) {
                    602:     tf = ff->m;
                    603:     if (tf->ringp != cr) {
                    604:       n = tf->ringp->n;
                    605:       m = tf->ringp->m;
                    606:       l = tf->ringp->l;
                    607:       c = tf->ringp->c;
                    608:       nn = tf->ringp->nn;
                    609:       mm = tf->ringp->mm;
                    610:       ll = tf->ringp->ll;
                    611:       cc = tf->ringp->cc;
                    612:       cr = tf->ringp;
                    613:     }
                    614:     if (n-nn >0) ee = cxx(1,n-1,1,tf->ringp);
                    615:     else if (m-mm >0) ee = cxx(1,m-1,1,tf->ringp);
                    616:     else if (l-ll >0) ee = cxx(1,l-1,1,tf->ringp);
                    617:     else if (c-cc >0) ee = cxx(1,c-1,1,tf->ringp);
                    618:     else ee = ZERO;
                    619:   }else{
                    620:     ob = newObjectArray(1);
                    621:     getoa(ob,0) = KpoPOLY(ZERO);
                    622:     return(ob);
                    623:   }
                    624:   mat = parts(ff,ee);
                    625:   matn = mat->n;
                    626:   sizep = getMatrixOfPOLY(mat,0,0);
                    627:   if (sizep == ZERO) size = 1;
                    628:   else size = coeffToInt(sizep->coeffp)+1;
                    629:   ob = newObjectArray(size);
                    630:   for (i=0; i<size; i++) getoa(ob,i) = KpoPOLY(ZERO);
                    631:   for (i=0; i<matn; i++) {
                    632:     ex = getMatrixOfPOLY(mat,0,i);
                    633:     if (ex == ZERO) k = 0;
                    634:     else {
                    635:       k = coeffToInt(ex->coeffp);
                    636:     }
                    637:     getoa(ob,k) = KpoPOLY(getMatrixOfPOLY(mat,1,i));
                    638:   }
                    639:   return(ob);
                    640: }
                    641:
                    642: static int isThereh(f)
1.2       takayama  643:      POLY f;
1.1       maekawa   644: {
                    645:   POLY t;
                    646:   if (f == 0) return(0);
                    647:   t = f;
                    648:   while (t != POLYNULL) {
                    649:     if (t->m->e[0].D) return(1);
                    650:     t = t->next;
                    651:   }
                    652:   return(0);
                    653: }
                    654:
                    655: struct object homogenizeObject(ob,gradep)
1.2       takayama  656:      struct object ob;
                    657:      int *gradep;
1.1       maekawa   658: {
                    659:   struct object rob,ob1;
                    660:   int maxg;
                    661:   int gr,flag,i,d,size;
                    662:   struct ring *rp;
                    663:   POLY f;
                    664:   extern struct ring *CurrentRingp;
                    665:   extern int Homogenize_vec;
                    666:
                    667:   if (!Homogenize_vec) return(homogenizeObject_vec(ob,gradep));
                    668:
                    669:   switch(ob.tag) {
                    670:   case Spoly:
                    671:     if (isThereh(KopPOLY(ob))) {
                    672:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    673:       errorKan1("%s\n","homogenizeObject(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    674:     }
                    675:     f = homogenize( KopPOLY(ob) );
                    676:     *gradep = (*grade)(f);
                    677:     return(KpoPOLY(f));
                    678:     break;
                    679:   case Sarray:
                    680:     size = getoaSize(ob);
                    681:     if (size == 0) {
                    682:       errorKan1("%s\n","homogenizeObject() is called for the empty array.");
                    683:     }
                    684:     rob = newObjectArray(size);
                    685:     flag = 0;
                    686:     ob1 = getoa(ob,0);
1.3       takayama  687:        if (ob1.tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   688:     ob1 = homogenizeObject(ob1,&gr);
                    689:     maxg = gr;
                    690:     getoa(rob,0) = ob1;
                    691:     for (i=1; i<size; i++) {
                    692:       ob1 = getoa(ob,i);
                    693:       ob1 = homogenizeObject(ob1,&gr);
                    694:       if (gr > maxg) {
1.2       takayama  695:         maxg = gr;
1.1       maekawa   696:       }
                    697:       getoa(rob,i) = ob1;
                    698:     }
                    699:     maxg = maxg+size-1;
                    700:     if (1) {
                    701:       rp = oRingp(rob);
                    702:       if (rp == (struct ring *)NULL) rp = CurrentRingp;
                    703:       for (i=0; i<size; i++) {
1.2       takayama  704:         gr = oGrade(getoa(rob,i));
                    705:         /**printf("maxg=%d, gr=%d(i=%d) ",maxg,gr,i); fflush(stdout);**/
                    706:         if (maxg > gr) {
                    707:           f = cdd(1,0,maxg-gr-i,rp); /* h^{maxg-gr-i} */
                    708:           getoa(rob,i) = KooMult(KpoPOLY(f),getoa(rob,i));
                    709:         }
1.1       maekawa   710:       }
                    711:     }
                    712:     *gradep = maxg;
                    713:     return(rob);
                    714:     break;
                    715:   default:
                    716:     errorKan1("%s\n","homogenizeObject(): Invalid argument data type.");
                    717:     break;
                    718:   }
                    719: }
                    720:
                    721: struct object homogenizeObject_vec(ob,gradep)
1.2       takayama  722:      struct object ob;
                    723:      int *gradep;
1.1       maekawa   724: {
                    725:   struct object rob,ob1;
                    726:   int maxg;
                    727:   int gr,i,size;
                    728:   POLY f;
                    729:   extern struct ring *CurrentRingp;
                    730:
                    731:   switch(ob.tag) {
                    732:   case Spoly:
                    733:     if (isThereh(KopPOLY(ob))) {
                    734:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    735:       errorKan1("%s\n","homogenizeObject_vec(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    736:     }
                    737:     if (containVectorVariable(KopPOLY(ob))) {
                    738:       errorKan1("%s\n","homogenizedObject_vec(): The given polynomial contains a variable to express a vector component.");
                    739:     }
                    740:     f = homogenize( KopPOLY(ob) );
                    741:     *gradep = (*grade)(f);
                    742:     return(KpoPOLY(f));
                    743:     break;
                    744:   case Sarray:
                    745:     size = getoaSize(ob);
                    746:     if (size == 0) {
                    747:       errorKan1("%s\n","homogenizeObject_vec() is called for the empty array.");
                    748:     }
1.3       takayama  749:        if (getoa(ob,0).tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   750:     rob = newObjectArray(size);
                    751:     for (i=0; i<size; i++) {
                    752:       ob1 = getoa(ob,i);
                    753:       ob1 = homogenizeObject_vec(ob1,&gr);
                    754:       if (i==0) maxg = gr;
                    755:       else {
1.2       takayama  756:         maxg = (maxg > gr? maxg: gr);
1.1       maekawa   757:       }
                    758:       putoa(rob,i,ob1);
                    759:     }
                    760:     *gradep = maxg;
                    761:     return(rob);
                    762:     break;
                    763:   default:
                    764:     errorKan1("%s\n","homogenizeObject_vec(): Invalid argument data type.");
                    765:     break;
                    766:   }
                    767: }
                    768:
1.3       takayama  769: struct object homogenizeObject_go(struct object ob,int *gradep) {
                    770:   int size,i,dssize,j;
                    771:   struct object ob0;
                    772:   struct object ob1;
                    773:   struct object ob2;
                    774:   struct object rob;
                    775:   struct object tob;
                    776:   struct object ob1t;
                    777:   int *ds;
                    778:   POLY f;
                    779:   rob = NullObject;
                    780:   if (ob.tag != Sarray) errorKan1("%s\n","homogenizeObject_go(): Invalid argument data type.");
                    781:
                    782:   size = getoaSize(ob);
                    783:   if (size == 0) errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    784:   ob0 = getoa(ob,0);
                    785:   if (ob0.tag != Sdollar) {
                    786:     errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    787:   }
                    788:   if (strcmp(KopString(ob0),"degreeShift") == 0) {
                    789:        if (size != 3)
                    790:          errorKan1("%s\n","homogenizeObject_go(): [(degreeShift) shift-vector obj]");
                    791:        ob1 = getoa(ob,1); ob2 = getoa(ob,2);
                    792:        dssize = getoaSize(ob1);
                    793:        ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
                    794:        for (i=0; i<dssize; i++) {
                    795:          ds[i] = objToInteger(getoa(ob1,i));
                    796:        }
                    797:        if (ob2.tag == Spoly) {
                    798:          f = goHomogenize11(KopPOLY(ob2),ds,dssize,-1);
                    799:          rob = KpoPOLY(f);
                    800:        }else if (ob2.tag == SuniversalNumber) {
                    801:          rob = ob2;
                    802:        }else if (ob2.tag == Sarray) {
                    803:          rob = newObjectArray(getoaSize(ob2));
                    804:          for (i=0; i<getoaSize(ob2); i++) {
                    805:                tob = newObjectArray(3);
                    806:                ob1t = newObjectArray(dssize);
                    807:                if (getoa(ob2,i).tag == Spoly) {
                    808:                  for (j=0; j<dssize; j++) getoa(ob1t,j) = KpoInteger(0);
                    809:                  for (j=0; j<dssize-i; j++) getoa(ob1t,j) = getoa(ob1,j+i);
                    810:                }else{
                    811:                  ob1t = ob1;
                    812:                }
                    813:                getoa(tob,0) = ob0; getoa(tob,1) = ob1t; getoa(tob,2) = getoa(ob2,i);
                    814:                getoa(rob,i) = homogenizeObject_go(tob,gradep);
                    815:          }
                    816:        }else{
                    817:          errorKan1("%s\n","homogenizeObject_go(): invalid object for the third element.");
                    818:        }
                    819:   }else{
                    820:          errorKan1("%s\n","homogenizeObject_go(): unknown key word.");
                    821:   }
                    822:   return( rob );
                    823: }
                    824:
                    825:
1.1       maekawa   826: struct ring *oRingp(ob)
1.2       takayama  827:      struct object ob;
1.1       maekawa   828: {
                    829:   struct ring *rp,*rptmp;
                    830:   int i,size;
                    831:   POLY f;
                    832:   switch(ob.tag) {
                    833:   case Spoly:
                    834:     f = KopPOLY(ob);
                    835:     if (f == ZERO) return((struct ring *)NULL);
                    836:     return( f->m->ringp);
                    837:     break;
                    838:   case Sarray:
                    839:     size = getoaSize(ob);
                    840:     rp = (struct ring *)NULL;
                    841:     for (i=0; i<size; i++) {
                    842:       rptmp = oRingp(getoa(ob,i));
                    843:       if (rptmp != (struct ring *)NULL) rp = rptmp;
                    844:       return(rp);
                    845:     }
                    846:     break;
                    847:   default:
                    848:     errorKan1("%s\n","oRingp(): Invalid argument data type.");
                    849:     break;
                    850:   }
                    851: }
                    852:
                    853: int oGrade(ob)
1.2       takayama  854:      struct object ob;
1.1       maekawa   855: {
                    856:   int i,size;
                    857:   POLY f;
                    858:   int maxg,tmpg;
                    859:   switch(ob.tag) {
                    860:   case Spoly:
                    861:     f = KopPOLY(ob);
                    862:     return( (*grade)(f) );
                    863:     break;
                    864:   case Sarray:
                    865:     size = getoaSize(ob);
                    866:     if (size == 0) return(0);
                    867:     maxg = oGrade(getoa(ob,0));
                    868:     for (i=1; i<size; i++) {
                    869:       tmpg = oGrade(getoa(ob,i));
                    870:       if (tmpg > maxg) maxg = tmpg;
                    871:     }
                    872:     return(maxg);
                    873:     break;
                    874:   default:
                    875:     errorKan1("%s\n","oGrade(): Invalid data type for the argument.");
                    876:     break;
                    877:   }
                    878: }
                    879:
                    880:
                    881: struct object oPrincipalPart(ob)
1.2       takayama  882:      struct object ob;
1.1       maekawa   883: {
                    884:   POLY f;
                    885:   struct object rob;
                    886:
                    887:   switch(ob.tag) {
                    888:   case Spoly:
                    889:     f = KopPOLY(ob);
                    890:     return( KpoPOLY(POLYToPrincipalPart(f)));
                    891:     break;
                    892:   default:
                    893:     errorKan1("%s\n","oPrincipalPart(): Invalid data type for the argument.");
                    894:     break;
                    895:   }
                    896: }
                    897: struct object oInitW(ob,oWeight)
1.2       takayama  898:      struct object ob;
                    899:      struct object oWeight;
1.1       maekawa   900: {
                    901:   POLY f;
                    902:   struct object rob;
                    903:   int w[2*N0];
                    904:   int n,i;
                    905:   struct object ow;
                    906:
                    907:   if (oWeight.tag != Sarray) {
                    908:     errorKan1("%s\n","oInitW(): the second argument must be array.");
                    909:   }
                    910:   n = getoaSize(oWeight);
                    911:   if (n >= 2*N0) errorKan1("%s\n","oInitW(): the size of the second argument is invalid.");
                    912:   for (i=0; i<n; i++) {
                    913:     ow = getoa(oWeight,i);
                    914:     if (ow.tag != Sinteger) {
                    915:       errorKan1("%s\n","oInitW(): the entries of the second argument must be integers.");
                    916:     }
                    917:     w[i] = KopInteger(ow);
                    918:   }
                    919:   switch(ob.tag) {
                    920:   case Spoly:
                    921:     f = KopPOLY(ob);
                    922:     return( KpoPOLY(POLYToInitW(f,w)));
                    923:     break;
                    924:   default:
                    925:     errorKan1("%s\n","oInitW(): Argument must be polynomial.");
                    926:     break;
                    927:   }
                    928: }
                    929:
                    930: int KpolyLength(POLY f) {
                    931:   int size;
                    932:   if (f == POLYNULL) return(1);
                    933:   size = 0;
                    934:   while (f != POLYNULL) {
                    935:     f = f->next;
                    936:     size++;
                    937:   }
                    938:   return(size);
                    939: }
                    940:
                    941: int validOutputOrder(int ord[],int n) {
                    942:   int i,j,flag;
                    943:   for (i=0; i<n; i++) {
                    944:     flag = 0;
                    945:     for (j=0; j<n; j++) {
                    946:       if (ord[j] == i) flag = 1;
                    947:     }
                    948:     if (flag == 0) return(0); /* invalid */
                    949:   }
                    950:   return(1);
                    951: }
                    952:
                    953: struct object KsetOutputOrder(struct object ob, struct ring *rp)
                    954: {
                    955:   int n,i;
                    956:   struct object ox;
                    957:   struct object otmp;
                    958:   int *xxx;
                    959:   int *ddd;
                    960:   if (ob.tag  != Sarray) {
                    961:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...]");
                    962:   }
                    963:   n = rp->n;
                    964:   ox = ob;
                    965:   if (getoaSize(ox) != 2*n) {
                    966:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...] and the length of [x y z ...] must be equal to the number of x and D variables.");
                    967:   }
                    968:   xxx = (int *)sGC_malloc(sizeof(int)*n*2);
                    969:   if (xxx == NULL ) {
                    970:     errorKan1("%s\n","KsetOutputOrder(): no more memory.");
                    971:   }
                    972:   for (i=0; i<2*n; i++) {
                    973:     otmp = getoa(ox,i);
                    974:     if(otmp.tag != Sinteger) {
                    975:       errorKan1("%s\n","KsetOutputOrder(): elements must be integers.");
                    976:     }
                    977:     xxx[i] = KopInteger(otmp);
                    978:   }
                    979:   if (!validOutputOrder(xxx,2*n)) {
                    980:     errorKan1("%s\n","KsetOutputOrder(): Invalid output order for variables.");
                    981:   }
                    982:   rp->outputOrder = xxx;
                    983:   return(ob);
                    984: }
                    985:
                    986: struct object KschreyerSkelton(struct object g)
                    987: {
                    988:   struct object rob;
                    989:   struct object ij;
                    990:   struct object ab;
                    991:   struct object tt;
                    992:   struct arrayOfPOLY *ap;
                    993:   struct arrayOfMonomialSyz ans;
                    994:   int k;
                    995:   rob.tag = Snull;
                    996:   if (g.tag != Sarray) {
                    997:     errorKan1("%s\n","KschreyerSkelton(): argument must be an array of polynomials.");
                    998:   }
                    999:
                   1000:   ap = arrayToArrayOfPOLY(g);
                   1001:   ans = schreyerSkelton(*ap);
                   1002:
                   1003:   rob = newObjectArray(ans.size);
                   1004:   for (k=0; k<ans.size; k++) {
                   1005:     ij = newObjectArray(2);
                   1006:     putoa(ij,0, KpoInteger(ans.p[k]->i));
                   1007:     putoa(ij,1, KpoInteger(ans.p[k]->j));
                   1008:     ab = newObjectArray(2);
                   1009:     putoa(ab,0, KpoPOLY(ans.p[k]->a));
                   1010:     putoa(ab,1, KpoPOLY(ans.p[k]->b));
                   1011:     tt = newObjectArray(2);
                   1012:     putoa(tt,0, ij);
                   1013:     putoa(tt,1, ab);
                   1014:     putoa(rob,k,tt);
                   1015:   }
                   1016:   return(rob);
                   1017: }
                   1018:
                   1019: struct object KisOrdered(struct object of)
                   1020: {
                   1021:   if (of.tag != Spoly) {
                   1022:     errorKan1("%s\n","KisOrdered(): argument must be a polynomial.");
                   1023:   }
                   1024:   if (isOrdered(KopPOLY(of))) {
                   1025:     return(KpoInteger(1));
                   1026:   }else{
                   1027:     return(KpoInteger(0));
                   1028:   }
                   1029: }
                   1030:
                   1031: struct object KvectorToSchreyer_es(struct object obarray)
                   1032: {
                   1033:   int m,i;
                   1034:   int nn;
                   1035:   POLY f;
                   1036:   POLY g;
                   1037:   struct object ob;
                   1038:   struct ring *rp;
                   1039:   if (obarray.tag != Sarray) {
                   1040:     errorKan1("%s\n","KvectorToSchreyer_es(): argument must be an array of polynomials.");
                   1041:   }
                   1042:   m = getoaSize(obarray);
                   1043:   f = POLYNULL;
                   1044:   for (i=0; i<m; i++) {
                   1045:     ob = getoa(obarray,i);
                   1046:     if (ob.tag != Spoly) {
                   1047:       errorKan1("%s\n","KvectorToSchreyer_es(): each element of the array must be a polynomial.");
                   1048:     }
                   1049:     g = KopPOLY(ob);
                   1050:     if (g != POLYNULL) {
                   1051:       rp = g->m->ringp;
                   1052:       nn = rp->nn;
                   1053:       /*   g = es^i  g */
                   1054:       g = mpMult_poly(cxx(1,nn,i,rp), g);
                   1055:       if (!isOrdered(g)) {
1.2       takayama 1056:         errorKan1("%s\n","KvectorToSchreyer_es(): given polynomial is not ordered properly by the given Schreyer order.");
1.1       maekawa  1057:       }
                   1058:       f = ppAdd(f,g);
                   1059:     }
                   1060:   }
                   1061:   return(KpoPOLY(f));
1.3       takayama 1062: }
                   1063:
                   1064: int objToInteger(struct object ob) {
                   1065:   if (ob.tag == Sinteger) {
                   1066:        return KopInteger(ob);
                   1067:   }else if (ob.tag == SuniversalNumber) {
                   1068:        return(coeffToInt(KopUniversalNumber(ob)));
                   1069:   }else {
                   1070:        errorKan1("%s\n","objToInteger(): invalid argument.");
                   1071:   }
1.1       maekawa  1072: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>