[BACK]Return to kanExport1.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / Kan

Annotation of OpenXM/src/kan96xx/Kan/kanExport1.c, Revision 1.5

1.5     ! takayama    1: /* $OpenXM: OpenXM/src/kan96xx/Kan/kanExport1.c,v 1.4 2003/07/13 07:53:17 takayama Exp $ */
1.1       maekawa     2: #include <stdio.h>
                      3: #include "datatype.h"
                      4: #include "stackm.h"
                      5: #include "extern.h"
                      6: #include "extern2.h"
                      7: #include "lookup.h"
                      8: #include "matrix.h"
                      9: #include "gradedset.h"
                     10: #include "kclass.h"
                     11:
                     12: static int Message = 1;
                     13: extern int KanGBmessage;
                     14:
1.5     ! takayama   15: struct object DegreeShifto;
        !            16: int DegreeShifto_size = 0;
        !            17: int *DegreeShifto_vec = NULL;
        !            18:
1.1       maekawa    19: /** :kan, :ring */
                     20: struct object Kreduction(f,set)
1.2       takayama   21:      struct object f;
                     22:      struct object set;
1.1       maekawa    23: {
                     24:   POLY r;
                     25:   struct gradedPolySet *grG;
                     26:   struct syz0 syz;
                     27:   struct object rob;
                     28:   int flag;
                     29:   extern int ReduceLowerTerms;
                     30:
                     31:   if (f.tag != Spoly) errorKan1("%s\n","Kreduction(): the first argument must be a polynomial.");
                     32:
                     33:   if (ectag(set) == CLASSNAME_GradedPolySet) {
                     34:     grG = KopGradedPolySet(set);
                     35:     flag = 1;
                     36:   }else{
                     37:     if (set.tag != Sarray) errorKan1("%s\n","Kreduction(): the second argument must be a set of polynomials.");
                     38:     grG = arrayToGradedPolySet(set);
                     39:     flag = 0;
                     40:   }
                     41:   if (ReduceLowerTerms) {
                     42:     r = (*reductionCdr)(f.lc.poly,grG,1,&syz);
                     43:   }else{
                     44:     r = (*reduction)(f.lc.poly,grG,1,&syz);
                     45:   }
                     46:   if (flag) {
                     47:     rob = newObjectArray(3);
                     48:     putoa(rob,0,KpoPOLY(r));
                     49:     putoa(rob,1,KpoPOLY(syz.cf));
                     50:     putoa(rob,2,syzPolyToArray(countGradedPolySet(grG),syz.syz,grG));
                     51:   }else {
                     52:     rob = newObjectArray(4);
                     53:     putoa(rob,0,KpoPOLY(r));
                     54:     putoa(rob,1,KpoPOLY(syz.cf));
                     55:     putoa(rob,2,syzPolyToArray(getoaSize(set),syz.syz,grG));
                     56:     putoa(rob,3,gradedPolySetToArray(grG,1));
                     57:   }
                     58:   return(rob);
                     59: }
                     60:
                     61: struct object Kgroebner(ob)
1.2       takayama   62:      struct object ob;
1.1       maekawa    63: {
                     64:   int needSyz = 0;
                     65:   int needBack = 0;
                     66:   int needInput = 0;
                     67:   int countDown = 0;
                     68:   int cdflag = 0;
                     69:   struct object ob1,ob2,ob2c;
                     70:   int i;
                     71:   struct gradedPolySet *grG;
                     72:   struct pair *grP;
                     73:   struct arrayOfPOLY *a;
                     74:   struct object rob;
                     75:   struct gradedPolySet *grBases;
                     76:   struct matrixOfPOLY *mp;
                     77:   struct matrixOfPOLY *backwardMat;
                     78:   struct object ob1New;
                     79:   extern char *F_groebner;
                     80:   extern int CheckHomogenization;
                     81:   extern int StopDegree;
                     82:   int sdflag = 0;
                     83:   int forceReduction = 0;
                     84:
                     85:   int ob1Size, ob2Size, noZeroEntry;
                     86:   int *ob1ToOb2;
                     87:   int *ob1ZeroPos;
                     88:   int method;
                     89:   int j,k;
                     90:   struct object rob2;
                     91:   struct object rob3;
                     92:   struct object rob4;
                     93:   struct ring *myring;
                     94:   POLY f;
                     95:   struct object orgB;
                     96:   struct object newB;
                     97:   struct object orgC;
                     98:   struct object newC;
                     99:   static struct object paddingVector(struct object ob, int table[], int m);
                    100:   static struct object unitVector(int pos, int size,struct ring *r);
                    101:   extern struct ring *CurrentRingp;
                    102:
                    103:   StopDegree = 0x7fff;
                    104:
                    105:   if (ob.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array.");
                    106:   switch(getoaSize(ob)) {
                    107:   case 1:
                    108:     needBack = 0; needSyz = 0; needInput = 0;
                    109:     ob1 = getoa(ob,0);
                    110:     break;
                    111:   case 2:
                    112:     ob1 = getoa(ob,0);
                    113:     ob2 = getoa(ob,1);
                    114:     if (ob2.tag != Sarray) {
                    115:       errorKan1("%s\n","Kgroebner(): The options must be given by an array.");
                    116:     }
                    117:     for (i=0; i<getoaSize(ob2); i++) {
                    118:       ob2c = getoa(ob2,i);
                    119:       if (ob2c.tag == Sdollar) {
1.2       takayama  120:         if (strcmp(ob2c.lc.str,"needBack")==0) {
                    121:           needBack = 1;
                    122:         }else if (strcmp(ob2c.lc.str,"needSyz")==0) {
                    123:           if (!needBack) {
                    124:             /* warningKan("Kgroebner(): needBack is automatically set."); */
                    125:           }
                    126:           needSyz = needBack = 1;
                    127:         }else if (strcmp(ob2c.lc.str,"forceReduction")==0) {
                    128:           forceReduction = 1;
                    129:         }else if (strcmp(ob2c.lc.str,"countDown")==0) {
                    130:           countDown = 1; cdflag = 1;
                    131:           if (needSyz) {
                    132:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    133:             needSyz = 0;
                    134:           }
                    135:         }else if (strcmp(ob2c.lc.str,"StopDegree")==0) {
                    136:           StopDegree = 0; sdflag = 1;
                    137:           if (needSyz) {
                    138:             warningKan("Kgroebner(): needSyz is automatically turned off.");
                    139:             needSyz = 0;
                    140:           }
                    141:         }else {
                    142:           warningKan("Unknown keyword for options.");
                    143:         }
1.1       maekawa   144:       }else if (ob2c.tag == Sinteger) {
1.2       takayama  145:         if (cdflag) {
                    146:           cdflag = 0;
                    147:           countDown = KopInteger(ob2c);
                    148:         }else if (sdflag) {
                    149:           sdflag = 0;
                    150:           StopDegree = KopInteger(ob2c);
                    151:         }
1.1       maekawa   152:       }
                    153:     }
                    154:     break;
                    155:   default:
                    156:     errorKan1("%s\n","Kgroebner(): [ [polynomials] ] or [[polynomials] [options]].");
                    157:   }
1.2       takayama  158:
1.1       maekawa   159:   if (ob1.tag != Sarray) errorKan1("%s\n","Kgroebner(): The argument must be an array. Example: [ [$x-1$ . $x y -2$ .] [$needBack$ $needSyz$ $needInput$]] ");
                    160:   ob1New = newObjectArray(getoaSize(ob1));
                    161:   for (i=0; i< getoaSize(ob1); i++) {
                    162:     if (getoa(ob1,i).tag == Spoly) {
                    163:       putoa(ob1New,i,getoa(ob1,i));
                    164:     }else if (getoa(ob1,i).tag == Sarray) {
                    165:       /* If the generater is given as an array, flatten it. */
                    166:       putoa(ob1New,i,KpoPOLY( arrayToPOLY(getoa(ob1,i))));
                    167:     }else{
                    168:       errorKan1("%s\n","Kgroebner(): The elements must be polynomials or array of polynomials.");
                    169:     }
                    170:     /* getoa(ob1,i) is poly, now check the homogenization. */
                    171:     if (CheckHomogenization) {
                    172:       if ((strcmp(F_groebner,"standard")==0) &&
1.2       takayama  173:           !isHomogenized(KopPOLY(getoa(ob1New,i)))) {
                    174:         fprintf(stderr,"\n%s",KPOLYToString(KopPOLY(getoa(ob1New,i))));
                    175:         errorKan1("%s\n","Kgroebner(): The above polynomial is not homogenized. cf. homogenize.");
1.1       maekawa   176:       }
                    177:     }
                    178:   }
                    179:   ob1 = ob1New;
                    180:
                    181:   /* To handle the input with zero entries. For debug, debug/gr.sm1*/
                    182:   ob1Size = getoaSize(ob1);
                    183:   ob2Size = 0; myring = CurrentRingp;
                    184:   for (i=0; i<ob1Size; i++) {
                    185:     if (KopPOLY(getoa(ob1,i)) != POLYNULL) ob2Size++;
                    186:   }
                    187:   if (ob2Size == ob1Size) noZeroEntry = 1;
                    188:   else noZeroEntry = 0;
                    189:   if (ob1Size == 0)  {
                    190:     if (needBack && needSyz) {
                    191:       rob = newObjectArray(3);
                    192:       putoa(rob,0,newObjectArray(0));
                    193:       putoa(rob,1,newObjectArray(0));
                    194:       putoa(rob,2,newObjectArray(0));
                    195:     }else if (needBack) {
                    196:       rob = newObjectArray(2);
                    197:       putoa(rob,0,newObjectArray(0));
                    198:       putoa(rob,1,newObjectArray(0));
                    199:     }else {
                    200:       rob = newObjectArray(1);
                    201:       putoa(rob,0,newObjectArray(0));
                    202:     }
                    203:     return(rob);
                    204:   }
                    205:   /* Assume ob1size > 0 */
                    206:   if (ob2Size == 0) {
                    207:     rob2 = newObjectArray(1); putoa(rob2,0,KpoPOLY(POLYNULL));
                    208:     if (needBack && needSyz) {
                    209:       rob = newObjectArray(3);
                    210:       putoa(rob,0,rob2);
                    211:       rob3 = newObjectArray(1);
                    212:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    213:       putoa(rob,1,rob3);
                    214:       rob4 = newObjectArray(ob1Size);
                    215:       for (i=0; i<ob1Size; i++) {
1.2       takayama  216:         putoa(rob4,i,unitVector(i,ob1Size,myring));
1.1       maekawa   217:       }
                    218:       putoa(rob,2,rob4);
                    219:     }else if (needBack) {
                    220:       rob = newObjectArray(2);
                    221:       putoa(rob,0,rob2);
                    222:       rob3 = newObjectArray(1);
                    223:       putoa(rob3,0,unitVector(-1,ob1Size,(struct ring *)NULL));
                    224:       putoa(rob,1,rob3);
                    225:     }else {
                    226:       rob = newObjectArray(1);
                    227:       putoa(rob,0,rob2);
                    228:     }
                    229:     return(rob);
                    230:   }
                    231:   /* Assume ob1Size , ob2Size > 0 */
                    232:   ob2 = newObjectArray(ob2Size);
                    233:   ob1ToOb2 =   (int *)GC_malloc(sizeof(int)*ob1Size);
                    234:   ob1ZeroPos = (int *)GC_malloc(sizeof(int)*(ob1Size-ob2Size+1));
                    235:   if (ob1ToOb2 == NULL || ob1ZeroPos == NULL) errorKan1("%s\n","No more memory.");
                    236:   j = 0; k = 0;
                    237:   for (i=0; i<ob1Size; i++) {
                    238:     f = KopPOLY(getoa(ob1,i));
                    239:     if (f != POLYNULL) {
                    240:       myring = f->m->ringp;
                    241:       putoa(ob2,j,KpoPOLY(f));
                    242:       ob1ToOb2[i] = j; j++;
                    243:     }else{
                    244:       ob1ToOb2[i] = -1;
                    245:       ob1ZeroPos[k] = i; k++;
                    246:     }
                    247:   }
                    248:
                    249:   a = arrayToArrayOfPOLY(ob2);
                    250:   grG = (*groebner)(a,needBack,needSyz,&grP,countDown,forceReduction);
                    251:
                    252:   if (strcmp(F_groebner,"gm") == 0 && (needBack || needSyz)) {
                    253:     warningKan("The options needBack and needSyz are ignored.");
                    254:     needBack = needSyz = 0;
                    255:   }
                    256:
                    257:   /*return(gradedPolySetToGradedArray(grG,0));*/
                    258:   if (needBack && needSyz) {
                    259:     rob = newObjectArray(3);
                    260:     if (Message && KanGBmessage) {
                    261:       printf("Computing the backward transformation   ");
                    262:       fflush(stdout);
                    263:     }
                    264:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    265:     if (KanGBmessage) printf("Done.\n");
                    266:
                    267:     /* Computing the syzygies. */
                    268:     if (Message && KanGBmessage) {
                    269:       printf("Computing the syzygies    ");
                    270:       fflush(stdout);
                    271:     }
                    272:     mp = getSyzygy(grG,grP->next,&grBases,&backwardMat);
                    273:     if (KanGBmessage) printf("Done.\n");
                    274:
                    275:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    276:     putoa(rob,1,matrixOfPOLYToArray(backwardMat));
                    277:     putoa(rob,2,matrixOfPOLYToArray(mp));
                    278:   }else if (needBack) {
                    279:     rob = newObjectArray(2);
                    280:     if (Message && KanGBmessage) {
                    281:       printf("Computing the backward transformation.....");
                    282:       fflush(stdout);
                    283:     }
                    284:     getBackwardTransformation(grG); /* mark and syz is modified. */
                    285:     if (KanGBmessage) printf("Done.\n");
                    286:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    287:     putoa(rob,1,getBackwardArray(grG));
                    288:   }else {
                    289:     rob = newObjectArray(1);
                    290:     putoa(rob,0,gradedPolySetToArray(grG,0));
                    291:   }
                    292:
                    293:   /* To handle zero entries in the input. */
                    294:   if (noZeroEntry) {
                    295:     return(rob);
                    296:   }
                    297:   method = getoaSize(rob);
                    298:   switch(method) {
                    299:   case 1:
                    300:     return(rob);
                    301:     break;
                    302:   case 2:
                    303:     orgB = getoa(rob,1); /* backward transformation. */
                    304:     newB = newObjectArray(getoaSize(orgB));
                    305:     for (i=0; i<getoaSize(orgB); i++) {
                    306:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    307:     }
                    308:     rob2 = newObjectArray(2);
                    309:     putoa(rob2,0,getoa(rob,0));
                    310:     putoa(rob2,1,newB);
                    311:     return(rob2);
                    312:     break;
                    313:   case 3:
                    314:     orgB = getoa(rob,1); /* backward transformation. */
                    315:     newB = newObjectArray(getoaSize(orgB));
                    316:     for (i=0; i<getoaSize(orgB); i++) {
                    317:       putoa(newB,i,paddingVector(getoa(orgB,i),ob1ToOb2,ob1Size));
                    318:     }
                    319:     orgC = getoa(rob,2);
                    320:     newC = newObjectArray(getoaSize(orgC)+ob1Size-ob2Size);
                    321:     for (i=0; i<getoaSize(orgC); i++) {
                    322:       putoa(newC, i, paddingVector(getoa(orgC,i),ob1ToOb2,ob1Size));
                    323:     }
                    324:     for (i = getoaSize(orgC), j = 0; i<getoaSize(orgC)+ob1Size-ob2Size; i++,j++) {
                    325:       putoa(newC,i,unitVector(ob1ZeroPos[j],ob1Size,myring));
                    326:     }
                    327:     rob2 = newObjectArray(3);
                    328:     putoa(rob2,0,getoa(rob,0));
                    329:     putoa(rob2,1,newB);
                    330:     putoa(rob2,2,newC);
                    331:     return(rob2);
                    332:     break;
                    333:   default:
                    334:     errorKan1("%s","Kgroebner: unknown method.");
                    335:   }
                    336: }
                    337:
                    338: static struct object paddingVector(struct object ob, int table[], int m)
                    339: {
                    340:   struct object rob;
                    341:   int i;
                    342:   rob = newObjectArray(m);
                    343:   for (i=0; i<m; i++) {
                    344:     if (table[i] != -1) {
                    345:       putoa(rob,i,getoa(ob,table[i]));
                    346:     }else{
                    347:       putoa(rob,i,KpoPOLY(POLYNULL));
                    348:     }
                    349:   }
                    350:   return(rob);
                    351: }
                    352:
                    353: static struct object unitVector(int pos, int size,struct ring *r)
                    354: {
                    355:   struct object rob;
                    356:   int i;
                    357:   POLY one;
                    358:   rob = newObjectArray(size);
                    359:   for (i=0; i<size; i++) {
                    360:     putoa(rob,i,KpoPOLY(POLYNULL));
                    361:   }
                    362:   if ((0 <= pos) && (pos < size)) {
                    363:     putoa(rob,pos, KpoPOLY(cxx(1,0,0,r)));
                    364:   }
                    365:   return(rob);
                    366: }
                    367:
                    368:
                    369:
                    370: /* :misc */
                    371:
                    372: #define INITGRADE 3
                    373: #define INITSIZE 0
                    374:
                    375: struct gradedPolySet *arrayToGradedPolySet(ob)
1.2       takayama  376:      struct object ob;
1.1       maekawa   377: {
                    378:   int n,i,grd,ind;
                    379:   POLY f;
                    380:   struct gradedPolySet *grG;
                    381:   int serial;
                    382:   extern int Sugar;
                    383:
                    384:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToGradedPolySet(): the argument must be array.");
                    385:   n = getoaSize(ob);
                    386:   for (i=0; i<n; i++) {
                    387:     if (getoa(ob,i).tag != Spoly)
                    388:       errorKan1("%s\n","arrayToGradedPolySet(): the elements must be polynomials.");
                    389:   }
                    390:   grG = newGradedPolySet(INITGRADE);
                    391:
                    392:   for (i=0; i<grG->lim; i++) {
                    393:     grG->polys[i] = newPolySet(INITSIZE);
                    394:   }
                    395:   for (i=0; i<n; i++) {
                    396:     f = KopPOLY(getoa(ob,i));
                    397:     grd = -1; whereInG(grG,f,&grd,&ind,Sugar);
                    398:     serial = i;
                    399:     grG = putPolyInG(grG,f,grd,ind,(struct syz0 *)NULL,1,serial);
                    400:   }
                    401:   return(grG);
                    402: }
                    403:
                    404:
                    405: struct object polySetToArray(ps,keepRedundant)
1.2       takayama  406:      struct polySet *ps;
                    407:      int keepRedundant;
1.1       maekawa   408: {
                    409:   int n,i,j;
                    410:   struct object ob;
                    411:   if (ps == (struct polySet *)NULL) return(newObjectArray(0));
                    412:   n = 0;
                    413:   if (keepRedundant) {
                    414:     n = ps->size;
                    415:   }else{
                    416:     for (i=0; i<ps->size; i++) {
                    417:       if (ps->del[i] == 0) ++n;
                    418:     }
                    419:   }
                    420:   ob = newObjectArray(n);
                    421:   j = 0;
                    422:   for (i=0; i<ps->size; i++) {
                    423:     if (keepRedundant || (ps->del[i] == 0)) {
                    424:       putoa(ob,j,KpoPOLY(ps->g[i]));
                    425:       j++;
                    426:     }
                    427:   }
                    428:   return(ob);
                    429: }
                    430:
                    431:
                    432: struct object gradedPolySetToGradedArray(gps,keepRedundant)
1.2       takayama  433:      struct gradedPolySet *gps;
                    434:      int keepRedundant;
1.1       maekawa   435: {
                    436:   struct object ob,vec;
                    437:   int i;
                    438:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    439:   ob = newObjectArray(gps->maxGrade +1);
                    440:   vec = newObjectArray(gps->maxGrade);
                    441:   for (i=0; i<gps->maxGrade; i++) {
                    442:     putoa(vec,i,KpoInteger(i));
                    443:     putoa(ob,i+1,polySetToArray(gps->polys[i],keepRedundant));
                    444:   }
                    445:   putoa(ob,0,vec);
                    446:   return(ob);
                    447: }
                    448:
                    449:
                    450: struct object gradedPolySetToArray(gps,keepRedundant)
1.2       takayama  451:      struct gradedPolySet *gps;
                    452:      int keepRedundant;
1.1       maekawa   453: {
                    454:   struct object ob,vec;
                    455:   struct polySet *ps;
                    456:   int k;
                    457:   int i,j;
                    458:   int size;
                    459:   if (gps == (struct gradedPolySet *)NULL) return(NullObject);
                    460:   size = 0;
                    461:   for (i=0; i<gps->maxGrade; i++) {
                    462:     ps = gps->polys[i];
                    463:     if (keepRedundant) {
                    464:       size += ps->size;
                    465:     }else{
                    466:       for (j=0; j<ps->size; j++) {
1.2       takayama  467:         if (ps->del[j] == 0) ++size;
1.1       maekawa   468:       }
                    469:     }
                    470:   }
                    471:
                    472:   ob = newObjectArray(size);
                    473:   k = 0;
                    474:   for (i=0; i<gps->maxGrade; i++) {
                    475:     ps = gps->polys[i];
                    476:     for (j=0; j<ps->size; j++) {
                    477:       if (keepRedundant || (ps->del[j] == 0)) {
1.2       takayama  478:         putoa(ob,k,KpoPOLY(ps->g[j]));
                    479:         k++;
1.1       maekawa   480:       }
                    481:     }
                    482:   }
                    483:   return(ob);
                    484: }
                    485:
                    486:
                    487: /* serial == -1  :  It's not in the marix input. */
                    488: struct object syzPolyToArray(size,f,grG)
1.2       takayama  489:      int size;
                    490:      POLY f;
                    491:      struct gradedPolySet *grG;
1.1       maekawa   492: {
                    493:   struct object ob;
                    494:   int i,g0,i0,serial;
                    495:
                    496:   ob = newObjectArray(size);
                    497:   for (i=0; i<size; i++) {
                    498:     putoa(ob,i,KpoPOLY(ZERO));
                    499:   }
                    500:
                    501:   while (f != POLYNULL) {
                    502:     g0 = srGrade(f);
                    503:     i0 = srIndex(f);
                    504:     serial = grG->polys[g0]->serial[i0];
                    505:     if (serial < 0) {
                    506:       errorKan1("%s\n","syzPolyToArray(): invalid serial[i] of grG.");
                    507:     }
                    508:     if (KopPOLY(getoa(ob,serial)) != ZERO) {
                    509:       errorKan1("%s\n","syzPolyToArray(): syzygy polynomial is broken.");
                    510:     }
                    511:     putoa(ob,serial,KpoPOLY(f->coeffp->val.f));
                    512:     f = f->next;
                    513:   }
                    514:   return(ob);
                    515: }
                    516:
                    517: struct object getBackwardArray(grG)
1.2       takayama  518:      struct gradedPolySet *grG;
1.1       maekawa   519: {
                    520:   /* use serial, del.  cf. getBackwardTransformation(). */
                    521:   int inputSize,outputSize;
                    522:   int i,j,k;
                    523:   struct object ob;
                    524:   struct polySet *ps;
                    525:
                    526:   inputSize = 0; outputSize = 0;
                    527:   for (i=0; i<grG->maxGrade; i++) {
                    528:     ps = grG->polys[i];
                    529:     for (j=0; j<ps->size; j++) {
                    530:       if (ps->serial[j] >= 0) ++inputSize;
                    531:       if (ps->del[j] == 0) ++outputSize;
                    532:     }
                    533:   }
                    534:
                    535:   ob = newObjectArray(outputSize);
                    536:   k = 0;
                    537:   for (i=0; i<grG->maxGrade; i++) {
                    538:     ps = grG->polys[i];
                    539:     for (j=0; j<ps->size; j++) {
                    540:       if (ps->del[j] == 0) {
1.2       takayama  541:         putoa(ob,k,syzPolyToArray(inputSize,ps->syz[j]->syz,grG));
                    542:         k++;
1.1       maekawa   543:       }
                    544:     }
                    545:   }
                    546:   return(ob);
                    547: }
                    548:
                    549:
                    550: POLY arrayToPOLY(ob)
1.2       takayama  551:      struct object ob;
1.1       maekawa   552: {
                    553:   int size,i;
                    554:   struct object f;
                    555:   POLY r;
                    556:   static int nn,mm,ll,cc,n,m,l,c;
                    557:   static struct ring *cr = (struct ring *)NULL;
                    558:   POLY ff,ee;
                    559:   MONOMIAL tf;
                    560:
                    561:   if (ob.tag != Sarray) errorKan1("%s\n","arrayToPOLY(): The argument must be an array.");
                    562:   size = getoaSize(ob);
                    563:   r = ZERO;
                    564:   for (i=0; i<size; i++) {
                    565:     f = getoa(ob,i);
                    566:     if (f.tag != Spoly) errorKan1("%s\n","arrayToPOLY(): The elements must be polynomials.");
                    567:     ff = KopPOLY(f);
                    568:     if (ff != ZERO) {
                    569:       tf = ff->m;
                    570:       if (tf->ringp != cr) {
1.2       takayama  571:         n = tf->ringp->n;
                    572:         m = tf->ringp->m;
                    573:         l = tf->ringp->l;
                    574:         c = tf->ringp->c;
                    575:         nn = tf->ringp->nn;
                    576:         mm = tf->ringp->mm;
                    577:         ll = tf->ringp->ll;
                    578:         cc = tf->ringp->cc;
                    579:         cr = tf->ringp;
1.1       maekawa   580:       }
                    581:       if (n-nn >0) ee = cxx(1,n-1,i,tf->ringp);
                    582:       else if (m-mm >0) ee = cxx(1,m-1,i,tf->ringp);
                    583:       else if (l-ll >0) ee = cxx(1,l-1,i,tf->ringp);
                    584:       else if (c-cc >0) ee = cxx(1,c-1,i,tf->ringp);
                    585:       else ee = ZERO;
                    586:       r = ppAddv(r,ppMult(ee,ff));
                    587:     }
                    588:   }
                    589:   return(r);
                    590: }
                    591:
                    592: struct object POLYToArray(ff)
1.2       takayama  593:      POLY ff;
1.1       maekawa   594: {
                    595:
                    596:   static int nn,mm,ll,cc,n,m,l,c;
                    597:   static struct ring *cr = (struct ring *)NULL;
                    598:   POLY ee;
                    599:   MONOMIAL tf;
                    600:   int k,i,matn,size;
                    601:   struct matrixOfPOLY *mat;
                    602:   POLY ex,sizep;
                    603:   struct object ob;
                    604:
                    605:   if (ff != ZERO) {
                    606:     tf = ff->m;
                    607:     if (tf->ringp != cr) {
                    608:       n = tf->ringp->n;
                    609:       m = tf->ringp->m;
                    610:       l = tf->ringp->l;
                    611:       c = tf->ringp->c;
                    612:       nn = tf->ringp->nn;
                    613:       mm = tf->ringp->mm;
                    614:       ll = tf->ringp->ll;
                    615:       cc = tf->ringp->cc;
                    616:       cr = tf->ringp;
                    617:     }
                    618:     if (n-nn >0) ee = cxx(1,n-1,1,tf->ringp);
                    619:     else if (m-mm >0) ee = cxx(1,m-1,1,tf->ringp);
                    620:     else if (l-ll >0) ee = cxx(1,l-1,1,tf->ringp);
                    621:     else if (c-cc >0) ee = cxx(1,c-1,1,tf->ringp);
                    622:     else ee = ZERO;
                    623:   }else{
                    624:     ob = newObjectArray(1);
                    625:     getoa(ob,0) = KpoPOLY(ZERO);
                    626:     return(ob);
                    627:   }
                    628:   mat = parts(ff,ee);
                    629:   matn = mat->n;
                    630:   sizep = getMatrixOfPOLY(mat,0,0);
                    631:   if (sizep == ZERO) size = 1;
                    632:   else size = coeffToInt(sizep->coeffp)+1;
                    633:   ob = newObjectArray(size);
                    634:   for (i=0; i<size; i++) getoa(ob,i) = KpoPOLY(ZERO);
                    635:   for (i=0; i<matn; i++) {
                    636:     ex = getMatrixOfPOLY(mat,0,i);
                    637:     if (ex == ZERO) k = 0;
                    638:     else {
                    639:       k = coeffToInt(ex->coeffp);
                    640:     }
                    641:     getoa(ob,k) = KpoPOLY(getMatrixOfPOLY(mat,1,i));
                    642:   }
                    643:   return(ob);
                    644: }
                    645:
                    646: static int isThereh(f)
1.2       takayama  647:      POLY f;
1.1       maekawa   648: {
                    649:   POLY t;
                    650:   if (f == 0) return(0);
                    651:   t = f;
                    652:   while (t != POLYNULL) {
                    653:     if (t->m->e[0].D) return(1);
                    654:     t = t->next;
                    655:   }
                    656:   return(0);
                    657: }
                    658:
                    659: struct object homogenizeObject(ob,gradep)
1.2       takayama  660:      struct object ob;
                    661:      int *gradep;
1.1       maekawa   662: {
                    663:   struct object rob,ob1;
                    664:   int maxg;
                    665:   int gr,flag,i,d,size;
                    666:   struct ring *rp;
                    667:   POLY f;
                    668:   extern struct ring *CurrentRingp;
                    669:   extern int Homogenize_vec;
                    670:
                    671:   if (!Homogenize_vec) return(homogenizeObject_vec(ob,gradep));
                    672:
                    673:   switch(ob.tag) {
                    674:   case Spoly:
                    675:     if (isThereh(KopPOLY(ob))) {
                    676:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    677:       errorKan1("%s\n","homogenizeObject(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    678:     }
                    679:     f = homogenize( KopPOLY(ob) );
                    680:     *gradep = (*grade)(f);
                    681:     return(KpoPOLY(f));
                    682:     break;
                    683:   case Sarray:
                    684:     size = getoaSize(ob);
                    685:     if (size == 0) {
                    686:       errorKan1("%s\n","homogenizeObject() is called for the empty array.");
                    687:     }
                    688:     rob = newObjectArray(size);
                    689:     flag = 0;
                    690:     ob1 = getoa(ob,0);
1.5     ! takayama  691:     if (ob1.tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   692:     ob1 = homogenizeObject(ob1,&gr);
                    693:     maxg = gr;
                    694:     getoa(rob,0) = ob1;
                    695:     for (i=1; i<size; i++) {
                    696:       ob1 = getoa(ob,i);
                    697:       ob1 = homogenizeObject(ob1,&gr);
                    698:       if (gr > maxg) {
1.2       takayama  699:         maxg = gr;
1.1       maekawa   700:       }
                    701:       getoa(rob,i) = ob1;
                    702:     }
                    703:     maxg = maxg+size-1;
                    704:     if (1) {
                    705:       rp = oRingp(rob);
                    706:       if (rp == (struct ring *)NULL) rp = CurrentRingp;
                    707:       for (i=0; i<size; i++) {
1.2       takayama  708:         gr = oGrade(getoa(rob,i));
                    709:         /**printf("maxg=%d, gr=%d(i=%d) ",maxg,gr,i); fflush(stdout);**/
                    710:         if (maxg > gr) {
                    711:           f = cdd(1,0,maxg-gr-i,rp); /* h^{maxg-gr-i} */
                    712:           getoa(rob,i) = KooMult(KpoPOLY(f),getoa(rob,i));
                    713:         }
1.1       maekawa   714:       }
                    715:     }
                    716:     *gradep = maxg;
                    717:     return(rob);
                    718:     break;
                    719:   default:
                    720:     errorKan1("%s\n","homogenizeObject(): Invalid argument data type.");
                    721:     break;
                    722:   }
                    723: }
                    724:
                    725: struct object homogenizeObject_vec(ob,gradep)
1.2       takayama  726:      struct object ob;
                    727:      int *gradep;
1.1       maekawa   728: {
                    729:   struct object rob,ob1;
                    730:   int maxg;
                    731:   int gr,i,size;
                    732:   POLY f;
                    733:   extern struct ring *CurrentRingp;
                    734:
                    735:   switch(ob.tag) {
                    736:   case Spoly:
                    737:     if (isThereh(KopPOLY(ob))) {
                    738:       fprintf(stderr,"\n%s\n",KPOLYToString(KopPOLY(ob)));
                    739:       errorKan1("%s\n","homogenizeObject_vec(): The above polynomial has already had a homogenization variable.\nPut the homogenization variable 1 before homogenization.\ncf. replace.");
                    740:     }
                    741:     if (containVectorVariable(KopPOLY(ob))) {
                    742:       errorKan1("%s\n","homogenizedObject_vec(): The given polynomial contains a variable to express a vector component.");
                    743:     }
                    744:     f = homogenize( KopPOLY(ob) );
                    745:     *gradep = (*grade)(f);
                    746:     return(KpoPOLY(f));
                    747:     break;
                    748:   case Sarray:
                    749:     size = getoaSize(ob);
                    750:     if (size == 0) {
                    751:       errorKan1("%s\n","homogenizeObject_vec() is called for the empty array.");
                    752:     }
1.5     ! takayama  753:     if (getoa(ob,0).tag == Sdollar) return(homogenizeObject_go(ob,gradep));
1.1       maekawa   754:     rob = newObjectArray(size);
                    755:     for (i=0; i<size; i++) {
                    756:       ob1 = getoa(ob,i);
                    757:       ob1 = homogenizeObject_vec(ob1,&gr);
                    758:       if (i==0) maxg = gr;
                    759:       else {
1.2       takayama  760:         maxg = (maxg > gr? maxg: gr);
1.1       maekawa   761:       }
                    762:       putoa(rob,i,ob1);
                    763:     }
                    764:     *gradep = maxg;
                    765:     return(rob);
                    766:     break;
                    767:   default:
                    768:     errorKan1("%s\n","homogenizeObject_vec(): Invalid argument data type.");
                    769:     break;
                    770:   }
                    771: }
                    772:
1.3       takayama  773: struct object homogenizeObject_go(struct object ob,int *gradep) {
                    774:   int size,i,dssize,j;
                    775:   struct object ob0;
                    776:   struct object ob1;
                    777:   struct object ob2;
                    778:   struct object rob;
                    779:   struct object tob;
                    780:   struct object ob1t;
                    781:   int *ds;
                    782:   POLY f;
                    783:   rob = NullObject;
                    784:   if (ob.tag != Sarray) errorKan1("%s\n","homogenizeObject_go(): Invalid argument data type.");
                    785:
                    786:   size = getoaSize(ob);
                    787:   if (size == 0) errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    788:   ob0 = getoa(ob,0);
                    789:   if (ob0.tag != Sdollar) {
                    790:     errorKan1("%s\n","homogenizeObject_go(): the first argument must be a string.");
                    791:   }
                    792:   if (strcmp(KopString(ob0),"degreeShift") == 0) {
1.5     ! takayama  793:     if (size < 2)
        !           794:       errorKan1("%s\n","homogenizeObject_go(): [(degreeShift) shift-vector obj] or [(degreeShift) shift-vector] or [(degreeShift) (value)] homogenize");
        !           795:     ob1 = getoa(ob,1);
        !           796:        if (ob1.tag != Sarray) {
        !           797:          if (DegreeShifto_size != 0) {
        !           798:                return DegreeShifto;
        !           799:          }else{
        !           800:         rob = NullObject;
        !           801:         return rob;
1.3       takayama  802:          }
                    803:        }
1.5     ! takayama  804:     dssize = getoaSize(ob1);
        !           805:     ds = (int *)sGC_malloc(sizeof(int)*(dssize>0?dssize:1));
        !           806:     for (i=0; i<dssize; i++) {
        !           807:       ds[i] = objToInteger(getoa(ob1,i));
        !           808:     }
        !           809:     if (size == 2) {
        !           810:       DegreeShifto = ob1;
        !           811:       DegreeShifto_size = dssize;
        !           812:       DegreeShifto_vec = ds;
        !           813:       rob = ob1;
        !           814:     }else{
        !           815:       ob2 = getoa(ob,2);
        !           816:       if (ob2.tag == Spoly) {
        !           817:         f = goHomogenize11(KopPOLY(ob2),ds,dssize,-1,0);
        !           818:         rob = KpoPOLY(f);
        !           819:       }else if (ob2.tag == SuniversalNumber) {
        !           820:         rob = ob2;
        !           821:       }else if (ob2.tag == Sarray) {
        !           822:         rob = newObjectArray(getoaSize(ob2));
        !           823:         for (i=0; i<getoaSize(ob2); i++) {
        !           824:           tob = newObjectArray(3);
        !           825:           ob1t = newObjectArray(dssize);
        !           826:           if (getoa(ob2,i).tag == Spoly) {
        !           827:             for (j=0; j<dssize; j++) getoa(ob1t,j) = KpoInteger(0);
        !           828:             for (j=0; j<dssize-i; j++) getoa(ob1t,j) = getoa(ob1,j+i);
        !           829:           }else{
        !           830:             ob1t = ob1;
        !           831:           }
        !           832:           getoa(tob,0) = ob0; getoa(tob,1) = ob1t; getoa(tob,2) = getoa(ob2,i);
        !           833:           getoa(rob,i) = homogenizeObject_go(tob,gradep);
        !           834:         }
        !           835:       }else{
        !           836:         errorKan1("%s\n","homogenizeObject_go(): invalid object for the third element.");
        !           837:       }
        !           838:     }
1.3       takayama  839:   }else{
1.5     ! takayama  840:       errorKan1("%s\n","homogenizeObject_go(): unknown key word.");
1.3       takayama  841:   }
1.5     ! takayama  842:   return( rob );
1.3       takayama  843: }
                    844:
                    845:
1.1       maekawa   846: struct ring *oRingp(ob)
1.2       takayama  847:      struct object ob;
1.1       maekawa   848: {
                    849:   struct ring *rp,*rptmp;
                    850:   int i,size;
                    851:   POLY f;
                    852:   switch(ob.tag) {
                    853:   case Spoly:
                    854:     f = KopPOLY(ob);
                    855:     if (f == ZERO) return((struct ring *)NULL);
                    856:     return( f->m->ringp);
                    857:     break;
                    858:   case Sarray:
                    859:     size = getoaSize(ob);
                    860:     rp = (struct ring *)NULL;
                    861:     for (i=0; i<size; i++) {
                    862:       rptmp = oRingp(getoa(ob,i));
                    863:       if (rptmp != (struct ring *)NULL) rp = rptmp;
                    864:       return(rp);
                    865:     }
                    866:     break;
                    867:   default:
                    868:     errorKan1("%s\n","oRingp(): Invalid argument data type.");
                    869:     break;
                    870:   }
                    871: }
                    872:
                    873: int oGrade(ob)
1.2       takayama  874:      struct object ob;
1.1       maekawa   875: {
                    876:   int i,size;
                    877:   POLY f;
                    878:   int maxg,tmpg;
                    879:   switch(ob.tag) {
                    880:   case Spoly:
                    881:     f = KopPOLY(ob);
                    882:     return( (*grade)(f) );
                    883:     break;
                    884:   case Sarray:
                    885:     size = getoaSize(ob);
                    886:     if (size == 0) return(0);
                    887:     maxg = oGrade(getoa(ob,0));
                    888:     for (i=1; i<size; i++) {
                    889:       tmpg = oGrade(getoa(ob,i));
                    890:       if (tmpg > maxg) maxg = tmpg;
                    891:     }
                    892:     return(maxg);
                    893:     break;
                    894:   default:
                    895:     errorKan1("%s\n","oGrade(): Invalid data type for the argument.");
                    896:     break;
                    897:   }
                    898: }
                    899:
                    900:
                    901: struct object oPrincipalPart(ob)
1.2       takayama  902:      struct object ob;
1.1       maekawa   903: {
                    904:   POLY f;
                    905:   struct object rob;
                    906:
                    907:   switch(ob.tag) {
                    908:   case Spoly:
                    909:     f = KopPOLY(ob);
                    910:     return( KpoPOLY(POLYToPrincipalPart(f)));
                    911:     break;
                    912:   default:
                    913:     errorKan1("%s\n","oPrincipalPart(): Invalid data type for the argument.");
                    914:     break;
                    915:   }
                    916: }
                    917: struct object oInitW(ob,oWeight)
1.2       takayama  918:      struct object ob;
                    919:      struct object oWeight;
1.1       maekawa   920: {
                    921:   POLY f;
                    922:   struct object rob;
                    923:   int w[2*N0];
                    924:   int n,i;
                    925:   struct object ow;
                    926:
                    927:   if (oWeight.tag != Sarray) {
                    928:     errorKan1("%s\n","oInitW(): the second argument must be array.");
                    929:   }
                    930:   n = getoaSize(oWeight);
                    931:   if (n >= 2*N0) errorKan1("%s\n","oInitW(): the size of the second argument is invalid.");
                    932:   for (i=0; i<n; i++) {
                    933:     ow = getoa(oWeight,i);
                    934:     if (ow.tag != Sinteger) {
                    935:       errorKan1("%s\n","oInitW(): the entries of the second argument must be integers.");
                    936:     }
                    937:     w[i] = KopInteger(ow);
                    938:   }
                    939:   switch(ob.tag) {
                    940:   case Spoly:
                    941:     f = KopPOLY(ob);
                    942:     return( KpoPOLY(POLYToInitW(f,w)));
                    943:     break;
                    944:   default:
                    945:     errorKan1("%s\n","oInitW(): Argument must be polynomial.");
                    946:     break;
                    947:   }
                    948: }
                    949:
                    950: int KpolyLength(POLY f) {
                    951:   int size;
                    952:   if (f == POLYNULL) return(1);
                    953:   size = 0;
                    954:   while (f != POLYNULL) {
                    955:     f = f->next;
                    956:     size++;
                    957:   }
                    958:   return(size);
                    959: }
                    960:
                    961: int validOutputOrder(int ord[],int n) {
                    962:   int i,j,flag;
                    963:   for (i=0; i<n; i++) {
                    964:     flag = 0;
                    965:     for (j=0; j<n; j++) {
                    966:       if (ord[j] == i) flag = 1;
                    967:     }
                    968:     if (flag == 0) return(0); /* invalid */
                    969:   }
                    970:   return(1);
                    971: }
                    972:
                    973: struct object KsetOutputOrder(struct object ob, struct ring *rp)
                    974: {
                    975:   int n,i;
                    976:   struct object ox;
                    977:   struct object otmp;
                    978:   int *xxx;
                    979:   int *ddd;
                    980:   if (ob.tag  != Sarray) {
                    981:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...]");
                    982:   }
                    983:   n = rp->n;
                    984:   ox = ob;
                    985:   if (getoaSize(ox) != 2*n) {
                    986:     errorKan1("%s\n","KsetOutputOrder(): the argument must be of the form [x y z ...] and the length of [x y z ...] must be equal to the number of x and D variables.");
                    987:   }
                    988:   xxx = (int *)sGC_malloc(sizeof(int)*n*2);
                    989:   if (xxx == NULL ) {
                    990:     errorKan1("%s\n","KsetOutputOrder(): no more memory.");
                    991:   }
                    992:   for (i=0; i<2*n; i++) {
                    993:     otmp = getoa(ox,i);
                    994:     if(otmp.tag != Sinteger) {
                    995:       errorKan1("%s\n","KsetOutputOrder(): elements must be integers.");
                    996:     }
                    997:     xxx[i] = KopInteger(otmp);
                    998:   }
                    999:   if (!validOutputOrder(xxx,2*n)) {
                   1000:     errorKan1("%s\n","KsetOutputOrder(): Invalid output order for variables.");
                   1001:   }
                   1002:   rp->outputOrder = xxx;
                   1003:   return(ob);
                   1004: }
                   1005:
                   1006: struct object KschreyerSkelton(struct object g)
                   1007: {
                   1008:   struct object rob;
                   1009:   struct object ij;
                   1010:   struct object ab;
                   1011:   struct object tt;
                   1012:   struct arrayOfPOLY *ap;
                   1013:   struct arrayOfMonomialSyz ans;
                   1014:   int k;
                   1015:   rob.tag = Snull;
                   1016:   if (g.tag != Sarray) {
                   1017:     errorKan1("%s\n","KschreyerSkelton(): argument must be an array of polynomials.");
                   1018:   }
                   1019:
                   1020:   ap = arrayToArrayOfPOLY(g);
                   1021:   ans = schreyerSkelton(*ap);
                   1022:
                   1023:   rob = newObjectArray(ans.size);
                   1024:   for (k=0; k<ans.size; k++) {
                   1025:     ij = newObjectArray(2);
                   1026:     putoa(ij,0, KpoInteger(ans.p[k]->i));
                   1027:     putoa(ij,1, KpoInteger(ans.p[k]->j));
                   1028:     ab = newObjectArray(2);
                   1029:     putoa(ab,0, KpoPOLY(ans.p[k]->a));
                   1030:     putoa(ab,1, KpoPOLY(ans.p[k]->b));
                   1031:     tt = newObjectArray(2);
                   1032:     putoa(tt,0, ij);
                   1033:     putoa(tt,1, ab);
                   1034:     putoa(rob,k,tt);
                   1035:   }
                   1036:   return(rob);
                   1037: }
                   1038:
                   1039: struct object KisOrdered(struct object of)
                   1040: {
                   1041:   if (of.tag != Spoly) {
                   1042:     errorKan1("%s\n","KisOrdered(): argument must be a polynomial.");
                   1043:   }
                   1044:   if (isOrdered(KopPOLY(of))) {
                   1045:     return(KpoInteger(1));
                   1046:   }else{
                   1047:     return(KpoInteger(0));
                   1048:   }
                   1049: }
                   1050:
                   1051: struct object KvectorToSchreyer_es(struct object obarray)
                   1052: {
                   1053:   int m,i;
                   1054:   int nn;
                   1055:   POLY f;
                   1056:   POLY g;
                   1057:   struct object ob;
                   1058:   struct ring *rp;
                   1059:   if (obarray.tag != Sarray) {
                   1060:     errorKan1("%s\n","KvectorToSchreyer_es(): argument must be an array of polynomials.");
                   1061:   }
                   1062:   m = getoaSize(obarray);
                   1063:   f = POLYNULL;
                   1064:   for (i=0; i<m; i++) {
                   1065:     ob = getoa(obarray,i);
                   1066:     if (ob.tag != Spoly) {
                   1067:       errorKan1("%s\n","KvectorToSchreyer_es(): each element of the array must be a polynomial.");
                   1068:     }
                   1069:     g = KopPOLY(ob);
                   1070:     if (g != POLYNULL) {
                   1071:       rp = g->m->ringp;
                   1072:       nn = rp->nn;
                   1073:       /*   g = es^i  g */
                   1074:       g = mpMult_poly(cxx(1,nn,i,rp), g);
                   1075:       if (!isOrdered(g)) {
1.2       takayama 1076:         errorKan1("%s\n","KvectorToSchreyer_es(): given polynomial is not ordered properly by the given Schreyer order.");
1.1       maekawa  1077:       }
                   1078:       f = ppAdd(f,g);
                   1079:     }
                   1080:   }
                   1081:   return(KpoPOLY(f));
1.3       takayama 1082: }
                   1083:
                   1084: int objToInteger(struct object ob) {
                   1085:   if (ob.tag == Sinteger) {
1.5     ! takayama 1086:     return KopInteger(ob);
1.3       takayama 1087:   }else if (ob.tag == SuniversalNumber) {
1.5     ! takayama 1088:     return(coeffToInt(KopUniversalNumber(ob)));
1.3       takayama 1089:   }else {
1.5     ! takayama 1090:     errorKan1("%s\n","objToInteger(): invalid argument.");
1.3       takayama 1091:   }
1.1       maekawa  1092: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>