Annotation of OpenXM/src/kan96xx/Kan/order.c, Revision 1.13
1.13 ! takayama 1: /* $OpenXM: OpenXM/src/kan96xx/Kan/order.c,v 1.12 2004/05/15 12:00:48 takayama Exp $ */
1.1 maekawa 2: #include <stdio.h>
3: #include "datatype.h"
4: #include "stackm.h"
5: #include "extern.h"
6: #include "extern2.h"
7:
8: /* The format of order.
9: Example: graded lexicographic order
10: x_{N-1} x_{N-2} ... x_0 D_{N-1} .... D_{0}
11: 1 1 1 1 1
12: 1 0 0 0 0
13: 0 1 0 0 0
14: ..............................................
15:
16: (ringp->order)[i][j] should be (ringp->order)[i*2*N+j].
17: All order matrix is generated by functions in smacro.sm1
18: */
19:
20: static void warningOrder(char *s);
21: static void errorOrder(char *s);
22:
23: void setOrderByMatrix(order,n,c,l,omsize)
1.4 takayama 24: int order[];
25: int n,c,l,omsize;
1.1 maekawa 26: {
27: int i,j;
28: int *Order;
29: extern struct ring *CurrentRingp;
30:
31: switch_mmLarger("default");
1.4 takayama 32: /* q-case */
1.1 maekawa 33: if ( l-c > 0) {
34: switch_mmLarger("qmatrix");
35: }
36:
37: Order = (int *)sGC_malloc(sizeof(int)*(2*n)*(omsize));
38: if (Order == (int *)NULL) errorOrder("No memory.");
39: CurrentRingp->order = Order;
40: CurrentRingp->orderMatrixSize = omsize;
41: for (i=0; i<omsize; i++) {
42: for (j=0; j<2*n; j++) {
43: Order[i*2*n+j] = order[i*2*n+j];
44: }
45: }
46: }
47:
48: void showRing(level,ringp)
1.4 takayama 49: int level;
50: struct ring *ringp;
1.1 maekawa 51: {
52: int i,j;
53: FILE *fp;
54: char tmp[100];
55: int N,M,L,C,NN,MM,LL,CC;
56: char **TransX,**TransD;
57: int *Order;
58: int P;
59: char *mtype;
60: extern char *F_isSameComponent;
1.5 takayama 61: POLY f;
1.6 takayama 62: POLY fx;
63: POLY fd;
64: POLY rf;
1.1 maekawa 65: fp = stdout;
66:
67: N=ringp->n; M = ringp->m; L = ringp->l; C = ringp->c;
68: NN=ringp->nn; MM = ringp->mm; LL = ringp->ll; CC = ringp->cc;
69: TransX = ringp->x; TransD = ringp->D;
70: Order = ringp->order;
71: P = ringp->p;
72:
73:
74: fprintf(fp,"\n---------- the current ring ---- name: %s------\n",ringp->name);
75: fprintf(fp,"Characteristic is %d. ",P);
76: fprintf(fp,"N0=%d N=%d NN=%d M=%d MM=%d L=%d LL=%d C=%d CC=%d omsize=%d\n",N0,N,NN,M,MM,L,LL,C,CC,ringp->orderMatrixSize);
77: fprintf(fp,"\n");
78:
79: /* print identifier names */
80: if (N-M >0) {
81: fprintf(fp,"Differential variables: ");
82: for (i=M; i<N; i++) fprintf(fp," %4s ",TransX[i]);
83: for (i=M; i<N; i++) fprintf(fp," %4s ",TransD[i]);
84: fprintf(fp,"\n");
85: fprintf(fp,"where ");
86: for (i=M; i<N; i++) {
1.6 takayama 87: fx = cxx(1,i,1,ringp); fd = cdd(1,i,1,ringp);
88: rf = ppSub(ppMult(fd,fx),ppMult(fx,fd));
89: fprintf(fp," %s %s - %s %s = %s, ",TransD[i],TransX[i],
90: TransX[i],TransD[i],POLYToString(rf,'*',0));
1.1 maekawa 91: }
92: fprintf(fp,"\n\n");
93: }
94: if (M-L >0) {
95: fprintf(fp,"Difference variables: ");
96: for (i=L; i<M; i++) fprintf(fp," %4s ",TransX[i]);
97: for (i=L; i<M; i++) fprintf(fp," %4s ",TransD[i]);
98: fprintf(fp,"\n");
99: fprintf(fp,"where ");
100: for (i=L; i<M; i++) {
1.5 takayama 101: fprintf(fp," %s %s - %s %s = ",TransD[i],TransX[i],
102: TransX[i],TransD[i]);
103: f=ppSub(ppMult(cdd(1,i,1,ringp),cxx(1,i,1,ringp)),
104: ppMult(cxx(1,i,1,ringp),cdd(1,i,1,ringp)));
105: fprintf(fp," %s, ",POLYToString(f,'*',0));
1.1 maekawa 106: }
107: fprintf(fp,"\n\n");
108: }
109: if (L-C >0) {
110: fprintf(fp,"q-Difference variables: ");
111: for (i=C; i<L; i++) fprintf(fp," %4s ",TransX[i]);
112: for (i=C; i<L; i++) fprintf(fp," %4s ",TransD[i]);
113: fprintf(fp,"\n");
114: fprintf(fp,"where ");
115: for (i=C; i<L; i++) {
116: fprintf(fp," %s %s = %s %s %s, ",TransD[i],TransX[i],
1.4 takayama 117: TransX[0],
118: TransX[i],TransD[i]);
1.1 maekawa 119: }
120: fprintf(fp,"\n\n");
121: }
122: if (C>0) {
123: fprintf(fp,"Commutative variables: ");
124: for (i=0; i<C; i++) fprintf(fp," %4s ",TransX[i]);
125: for (i=0; i<C; i++) fprintf(fp," %4s ",TransD[i]);
126: fprintf(fp,"\n\n");
127: }
128:
129: if (strcmp(F_isSameComponent,"x") == 0) {
130: fprintf(fp,"Integral or summation or graduation variables are : ");
131: for (i=CC; i<C; i++) fprintf(fp," %4s ",TransX[i]);
132: for (i=LL; i<L; i++) fprintf(fp," %4s ",TransX[i]);
133: for (i=MM; i<M; i++) fprintf(fp," %4s ",TransX[i]);
134: for (i=NN; i<N; i++) fprintf(fp," %4s ",TransX[i]);
135: fprintf(fp,"\n");
136: }else if (strcmp(F_isSameComponent,"xd") == 0) {
137: fprintf(fp,"Graduation variables are : ");
138: for (i=CC; i<C; i++) fprintf(fp," %4s ",TransX[i]);
139: for (i=LL; i<L; i++) fprintf(fp," %4s ",TransX[i]);
140: for (i=MM; i<M; i++) fprintf(fp," %4s ",TransX[i]);
141: for (i=NN; i<N; i++) fprintf(fp," %4s ",TransX[i]);
142: for (i=CC; i<C; i++) fprintf(fp," %4s ",TransD[i]);
143: for (i=LL; i<L; i++) fprintf(fp," %4s ",TransD[i]);
144: for (i=MM; i<M; i++) fprintf(fp," %4s ",TransD[i]);
145: for (i=NN; i<N; i++) fprintf(fp," %4s ",TransD[i]);
146: fprintf(fp,"\n");
147: }else {
148: fprintf(fp,"Unknown graduation variable specification.\n\n");
149: }
150: fprintf(fp,"The homogenization variable is : ");
151: fprintf(fp," %4s ",TransD[0]);
152: fprintf(fp,"\n");
153:
154:
155:
156: fprintf(fp,"-------------------------------------------\n");
157: fprintf(fp,"Output order : ");
158: for (i=0; i<2*N; i++) {
159: if (ringp->outputOrder[i] < N) {
160: fprintf(fp,"%s ",TransX[ringp->outputOrder[i]]);
161: }else{
162: fprintf(fp,"%s ",TransD[(ringp->outputOrder[i])-N]);
163: }
164: }
165: fprintf(fp,"\n");
166:
167: if (ringp->multiplication == mpMult_poly) {
168: mtype = "poly";
169: }else if (ringp->multiplication == mpMult_diff) {
170: mtype = "diff";
171: }else if (ringp->multiplication == mpMult_difference) {
172: mtype = "difference";
173: }else {
174: mtype = "unknown";
175: }
176: fprintf(fp,"Multiplication function --%s(%xH).\n",
1.4 takayama 177: mtype,(unsigned int) ringp->multiplication);
1.1 maekawa 178: if (ringp->schreyer) {
179: fprintf(fp,"schreyer=1, gbListTower=");
180: printObjectList((struct object *)(ringp->gbListTower));
181: fprintf(fp,"\n");
182: }
1.7 takayama 183: if (ringp->degreeShiftSize) {
1.8 takayama 184: fprintf(fp,"degreeShift vector (N=%d,Size=%d)= \n[\n",ringp->degreeShiftN,ringp->degreeShiftSize);
1.7 takayama 185: {
1.8 takayama 186: int i,j;
187: for (i=0; i<ringp->degreeShiftN; i++) {
188: fprintf(fp," [");
189: for (j=0; j< ringp->degreeShiftSize; j++) {
190: fprintf(fp," %d ",ringp->degreeShift[i*(ringp->degreeShiftSize)+j]);
191: }
192: fprintf(fp,"]\n");
1.7 takayama 193: }
194: }
195: fprintf(fp,"]\n");
196: }
197: fprintf(fp,"--- weight vectors ---\n");
1.1 maekawa 198: if (level) printOrder(ringp);
1.13 ! takayama 199:
! 200: if (ringp->partialEcart) {
! 201: fprintf(fp,"--- partialEcartGlobalVarX ---\n");
! 202: for (i=0; i<ringp->partialEcart; i++) {
! 203: fprintf(fp," %4s ",TransX[ringp->partialEcartGlobalVarX[i]]);
! 204: }
! 205: fprintf(fp,"\n");
! 206: }
1.1 maekawa 207:
208: if (ringp->next != (struct ring *)NULL) {
209: fprintf(fp,"\n\n-------- The next ring is .... --------------\n");
210: showRing(level,ringp->next);
211: }
212: }
213:
214: /***************************************************************
215: functions related to order
216: ******************************************************************/
217: #define xtoi(k) ((N-1)-(k))
218: #define dtoi(k) ((2*N-1)-(k))
219: #define itox(k) ((N-1)-(k))
220: #define itod(k) ((2*N-1)-(k))
221: #define isX(i) (i<N? 1: 0)
222: #define isD(i) (i<N? 0: 1)
223: /****************************************************
224: i : 0 1 N-1 N 2N-1
225: x :x_{N-1} x_{N-2} x_0
226: d : D_{N-1} D_{0}
227: if (isX(i)) x_{itox(i)}
228: if (isD(i)) D_{itod(i)}
229: ******************************************************/
230: /* xtoi(0):N-1 xtoi(1):N-2 ....
231: dtoi(0):2N-1 dtoi(1):2N-2 ...
232: itod(N):N-1 dtoi(N-1):N ...
233: */
234:
235: void printOrder(ringp)
1.4 takayama 236: struct ring *ringp;
1.1 maekawa 237: {
238: int i,j;
239: FILE *fp;
240: char tmp[100];
241: int N,M,L,C,NN,MM,LL,CC;
242: char **TransX,**TransD;
243: int *Order;
244: int P;
245: int omsize;
246: extern char *F_isSameComponent;
247:
248: N=ringp->n; M = ringp->m; L = ringp->l; C = ringp->c;
249: NN=ringp->nn; MM = ringp->mm; LL = ringp->ll; CC = ringp->cc;
250: TransX = ringp->x; TransD = ringp->D;
251: Order = ringp->order;
252: P = ringp->p;
253: omsize = ringp->orderMatrixSize;
254:
255: fp = stdout;
256:
257:
258: for (i=0; i<2*N; i++) printf("%4d",i);
259: fprintf(fp,"\n");
260:
261: /* print variables names */
262: for (i=0; i<N; i++) {
263: sprintf(tmp,"x%d",N-1-i);
264: fprintf(fp,"%4s",tmp);
265: }
266: for (i=0; i<N; i++) {
267: sprintf(tmp,"D%d",N-1-i);
268: fprintf(fp,"%4s",tmp);
269: }
270: fprintf(fp,"\n");
271:
272: /* print identifier names */
273: for (i=0; i<N; i++) fprintf(fp,"%4s",TransX[itox(i)]);
274: for (i=N; i<2*N; i++) fprintf(fp,"%4s",TransD[itod(i)]);
275: fprintf(fp,"\n");
276:
277: /* print D: differential DE: differential, should be eliminated
1.4 takayama 278: E: difference
279: Q: q-difference
280: C: commutative
1.1 maekawa 281: */
282: if (strcmp(F_isSameComponent,"x")== 0 || strcmp(F_isSameComponent,"xd")==0) {
283: for (i=0; i<N; i++) {
284: if ((NN<=itox(i)) && (itox(i)<N)) fprintf(fp,"%4s","DE");
285: if ((M<=itox(i)) && (itox(i)<NN)) fprintf(fp,"%4s","D");
286: if ((MM<=itox(i)) && (itox(i)<M)) fprintf(fp,"%4s","EE");
287: if ((L<=itox(i)) && (itox(i)<MM)) fprintf(fp,"%4s","E");
288: if ((LL<=itox(i)) && (itox(i)<L)) fprintf(fp,"%4s","QE");
289: if ((C<=itox(i)) && (itox(i)<LL)) fprintf(fp,"%4s","Q");
290: if ((CC<=itox(i)) && (itox(i)<C)) fprintf(fp,"%4s","CE");
291: if ((0<=itox(i)) && (itox(i)<CC)) fprintf(fp,"%4s","C");
292: }
293: }
294: if (strcmp(F_isSameComponent,"x")==0) {
295: for (i=N; i<2*N; i++) {
296: if ((M<=itod(i)) && (itod(i)<N)) fprintf(fp,"%4s","D");
297: if ((L<=itod(i)) && (itod(i)<M)) fprintf(fp,"%4s","E");
298: if ((C<=itod(i)) && (itod(i)<L)) fprintf(fp,"%4s","Q");
299: if ((0<=itod(i)) && (itod(i)<C)) fprintf(fp,"%4s","C");
300: }
301: }else if (strcmp(F_isSameComponent,"xd")==0) {
302: for (i=N; i<2*N; i++) {
303: if ((NN<=itod(i)) && (itod(i)<N)) fprintf(fp,"%4s","DE");
304: if ((M<=itod(i)) && (itod(i)<NN)) fprintf(fp,"%4s","D");
305: if ((MM<=itod(i)) && (itod(i)<M)) fprintf(fp,"%4s","EE");
306: if ((L<=itod(i)) && (itod(i)<MM)) fprintf(fp,"%4s","E");
307: if ((LL<=itod(i)) && (itod(i)<L)) fprintf(fp,"%4s","QE");
308: if ((C<=itod(i)) && (itod(i)<LL)) fprintf(fp,"%4s","Q");
309: if ((CC<=itod(i)) && (itod(i)<C)) fprintf(fp,"%4s","CE");
310: if ((0<=itod(i)) && (itod(i)<CC)) fprintf(fp,"%4s","C");
311: }
312: } else {
313: fprintf(fp,"Unknown graduation variable type.\n");
314: }
315: fprintf(fp,"\n");
316:
317: for (i=0; i< omsize; i++) {
318: for (j=0; j<2*N; j++) {
319: fprintf(fp,"%4d", Order[i*2*N+j]);
320: }
321: fprintf(fp,"\n");
322: }
323: fprintf(fp,"\n");
324:
325: }
326:
327: struct object oGetOrderMatrix(struct ring *ringp)
328: {
329: struct object rob,ob2;
330: int n,i,j,m;
331: int *om;
332: n = ringp->n;
333: m = ringp->orderMatrixSize;
334: om = ringp->order;
335: if (m<=0) m = 1;
336: rob = newObjectArray(m);
337: for (i=0; i<m; i++) {
338: ob2 = newObjectArray(2*n);
339: for (j=0; j<2*n; j++) {
340: putoa(ob2,j,KpoInteger(om[2*n*i+j]));
341: }
342: putoa(rob,i,ob2);
343: }
344: return(rob);
345: }
346:
347:
348: int mmLarger_matrix(ff,gg)
1.4 takayama 349: POLY ff; POLY gg;
1.1 maekawa 350: {
351: int exp[2*N0]; /* exponents */
352: int i,k;
353: int sum,flag;
354: int *Order;
355: int N;
356: MONOMIAL f,g;
357: struct ring *rp;
358: int in2;
359: int *from, *to;
360: int omsize;
1.7 takayama 361: int dssize;
1.8 takayama 362: int dsn;
1.7 takayama 363: int *degreeShiftVector;
1.1 maekawa 364:
365: if (ff == POLYNULL ) {
366: if (gg == POLYNULL) return( 2 );
367: else return( 0 );
368: }
369: if (gg == POLYNULL) {
370: if (ff == POLYNULL) return( 2 );
371: else return( 1 );
372: }
373: f = ff->m; g=gg->m;
374:
375: rp = f->ringp;
376: Order = rp->order;
377: N = rp->n;
378: from = rp->from;
379: to = rp->to;
380: omsize = rp->orderMatrixSize;
1.7 takayama 381: if (dssize = rp->degreeShiftSize) {
382: degreeShiftVector = rp->degreeShift; /* Note. 2003.06.26 */
1.8 takayama 383: dsn = rp->degreeShiftN;
1.7 takayama 384: }
1.1 maekawa 385:
386: flag = 1;
387: for (i=N-1,k=0; i>=0; i--,k++) {
388: exp[k] = (f->e[i].x) - (g->e[i].x);
389: exp[k+N] = (f->e[i].D) - (g->e[i].D);
390: if ((exp[k] != 0) || (exp[k+N] != 0)) flag =0;
391: }
392: if (flag==1) return(2);
393: /* exp > 0 <---> f>g
394: exp = 0 <---> f=g
395: exp < 0 <---> f<g
396: */
397: for (i=0; i< omsize; i++) {
398: sum = 0; in2 = i*2*N;
399: /* for (k=0; k<2*N; k++) sum += exp[k]*Order[in2+k]; */
400: for (k=from[i]; k<to[i]; k++) sum += exp[k]*Order[in2+k];
1.8 takayama 401: if (dssize && ( i < dsn)) { /* Note, 2003.06.26 */
1.7 takayama 402: if ((f->e[N-1].x < dssize) && (f->e[N-1].x >= 0) &&
403: (g->e[N-1].x < dssize) && (g->e[N-1].x >= 0)) {
1.8 takayama 404: sum += degreeShiftVector[i*dssize+ (f->e[N-1].x)]
405: -degreeShiftVector[i*dssize+ (g->e[N-1].x)];
1.7 takayama 406: }else{
1.9 takayama 407: /*warningOrder("Size mismatch in the degree shift vector. It is ignored.");*/
1.7 takayama 408: }
409: }
1.1 maekawa 410: if (sum > 0) return(1);
411: if (sum < 0) return(0);
412: }
413: return(2);
414: }
415:
416: /* This should be used in case of q */
417: int mmLarger_qmatrix(ff,gg)
1.4 takayama 418: POLY ff; POLY gg;
1.1 maekawa 419: {
420: int exp[2*N0]; /* exponents */
421: int i,k;
422: int sum,flag;
423: int *Order;
424: int N;
425: MONOMIAL f,g;
426: int omsize;
427:
428: if (ff == POLYNULL ) {
429: if (gg == POLYNULL) return( 2 );
430: else return( 0 );
431: }
432: if (gg == POLYNULL) {
433: if (ff == POLYNULL) return( 2 );
434: else return( 1 );
435: }
436: f = ff->m; g = gg->m;
437: Order = f->ringp->order;
438: N = f->ringp->n;
439: omsize = f->ringp->orderMatrixSize;
440:
441: flag = 1;
442: for (i=N-1,k=0; i>=0; i--,k++) {
443: exp[k] = (f->e[i].x) - (g->e[i].x);
444: exp[k+N] = (f->e[i].D) - (g->e[i].D);
445: if ((exp[k] != 0) || (exp[k+N] != 0)) flag =0;
446: }
447: if (flag==1) return(2);
448: /* exp > 0 <---> f>g
449: exp = 0 <---> f=g
450: exp < 0 <---> f<g
451: */
452: for (i=0; i< omsize; i++) {
453: sum = 0;
454: /* In case of q, you should do as follows */
455: for (k=0; k<N-1; k++) sum += exp[k]*Order[i*2*N+k]; /* skip k= N-1 -->q */
456: for (k=N; k<2*N-1; k++) sum += exp[k]*Order[i*2*N+k]; /* SKip k= 2*N-1 */
457: if (sum > 0) return(1);
458: else if (sum < 0) return(0);
459: }
460: if (exp[N-1] > 0) return(1);
461: else if (exp[N-1] < 0) return(0);
462: else return(2);
463: }
464:
465: /* x(N-1)>x(N-2)>....>D(N-1)>....>D(0) */
466: mmLarger_pureLexicographic(f,g)
1.4 takayama 467: POLY f;
468: POLY g;
1.1 maekawa 469: {
470: int i,r;
471: int n;
472: MONOMIAL fm,gm;
473: /* Note that this function ignores the order matrix of the given
474: ring. */
475: if (f == POLYNULL ) {
476: if (g == POLYNULL) return( 2 );
477: else return( 0 );
478: }
479: if (g == POLYNULL) {
480: if (f == POLYNULL) return( 2 );
481: else return( 1 );
482: }
483:
484:
485: fm = f->m; gm = g->m;
486: n = fm->ringp->n;
487: for (i=n-1; i>=0; i--) {
488: r = (fm->e[i].x) - (gm->e[i].x);
489: if (r > 0) return(1);
490: else if (r < 0) return(0);
491: else ;
492: }
493:
494: for (i=n-1; i>=0; i--) {
495: r = (fm->e[i].D) - (gm->e[i].D);
496: if (r > 0) return(1);
497: else if (r < 0) return(0);
498: else ;
499: }
500:
501: return(2);
502:
503: }
504:
505:
506: void setFromTo(ringp)
1.4 takayama 507: struct ring *ringp;
1.1 maekawa 508: {
509: int n;
510: int i,j,oasize;
511: if (ringp->order == (int *)NULL) errorOrder("setFromTo(); no order matrix.");
512: n = (ringp->n)*2;
513: oasize = ringp->orderMatrixSize;
514: ringp->from = (int *)sGC_malloc(sizeof(int)*oasize);
515: ringp->to = (int *)sGC_malloc(sizeof(int)*oasize);
516: if (ringp->from == (int *)NULL || ringp->to == (int *)NULL) {
517: errorOrder("setFromTo(): No memory.");
518: }
519: for (i=0; i<oasize; i++) {
520: ringp->from[i] = 0; ringp->to[i] = n;
521: for (j=0; j<n; j++) {
522: if (ringp->order[i*n+j] != 0) {
1.4 takayama 523: ringp->from[i] = j;
524: break;
1.1 maekawa 525: }
526: }
527: for (j=n-1; j>=0; j--) {
528: if (ringp->order[i*n+j] != 0) {
1.4 takayama 529: ringp->to[i] = j+1;
530: break;
1.1 maekawa 531: }
532: }
533: }
534: }
535:
536: /* It ignores h and should be used with mmLarger_tower */
537: /* cf. mmLarger_matrix. h always must be checked at last. */
538: static int mmLarger_matrix_schreyer(ff,gg)
1.4 takayama 539: POLY ff; POLY gg;
1.1 maekawa 540: {
541: int exp[2*N0]; /* exponents */
542: int i,k;
543: int sum,flag;
544: int *Order;
545: int N;
546: MONOMIAL f,g;
547: struct ring *rp;
548: int in2;
549: int *from, *to;
550: int omsize;
551:
552: if (ff == POLYNULL ) {
553: if (gg == POLYNULL) return( 2 );
554: else return( 0 );
555: }
556: if (gg == POLYNULL) {
557: if (ff == POLYNULL) return( 2 );
558: else return( 1 );
559: }
560: f = ff->m; g=gg->m;
561:
562: rp = f->ringp;
563: Order = rp->order;
564: N = rp->n;
565: from = rp->from;
566: to = rp->to;
567: omsize = rp->orderMatrixSize;
568:
569: flag = 1;
570: for (i=N-1,k=0; i>0; i--,k++) {
571: exp[k] = (f->e[i].x) - (g->e[i].x);
572: exp[k+N] = (f->e[i].D) - (g->e[i].D);
573: if ((exp[k] != 0) || (exp[k+N] != 0)) flag =0;
574: }
575: exp[N-1] = (f->e[0].x) - (g->e[0].x);
576: exp[2*N-1] = 0; /* f->e[0].D - g->e[0].D. Ignore h! */
577: if ((exp[N-1] != 0) || (exp[2*N-1] != 0)) flag =0;
578:
579: if (flag==1) return(2);
580: /* exp > 0 <---> f>g
581: exp = 0 <---> f=g
582: exp < 0 <---> f<g
583: */
584: for (i=0; i< omsize; i++) {
585: sum = 0; in2 = i*2*N;
586: /* for (k=0; k<2*N; k++) sum += exp[k]*Order[in2+k]; */
587: for (k=from[i]; k<to[i]; k++) sum += exp[k]*Order[in2+k];
588: if (sum > 0) return(1);
589: if (sum < 0) return(0);
590: }
591: return(2);
592: }
593:
594: int mmLarger_tower(POLY f,POLY g) {
595: struct object *gbList;
596: int r;
597: if (f == POLYNULL) {
598: if (g == POLYNULL) return(2);
599: else return(0);
600: }
601: if (g == POLYNULL) {
602: if (f == POLYNULL) return(2);
603: else return(1);
604: }
605: if (!(f->m->ringp->schreyer) || !(g->m->ringp->schreyer))
606: return(mmLarger_matrix(f,g));
1.4 takayama 607: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 608: gbList = (struct object *)(g->m->ringp->gbListTower);
609: if (gbList == NULL) return(mmLarger_matrix(f,g));
1.4 takayama 610: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 611: if (gbList->tag != Slist) {
612: warningOrder("mmLarger_tower(): gbList must be in Slist.\n");
613: return(1);
614: }
615: if (klength(gbList) ==0) return(mmLarger_matrix(f,g));
1.4 takayama 616: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 617:
618: r = mmLarger_tower3(f,g,gbList);
619: /* printf("mmLarger_tower3(%s,%s) --> %d\n",POLYToString(head(f),'*',1),POLYToString(head(g),'*',1),r); */
620: if (r == 2) { /* Now, compare by h */
621: if (f->m->e[0].D > g->m->e[0].D) return(1);
622: else if (f->m->e[0].D < g->m->e[0].D) return(0);
623: else return(2);
624: }else{
625: return(r);
626: }
627: }
628:
629: int mmLarger_tower3(POLY f,POLY g,struct object *gbList)
630: { /* gbList is assumed to be Slist */
631: int n,fv,gv,t,r,nn;
632: POLY fm;
633: POLY gm;
634: struct object gb;
635:
636: if (f == POLYNULL) {
637: if (g == POLYNULL) return(2);
638: else return(0);
639: }
640: if (g == POLYNULL) {
641: if (f == POLYNULL) return(2);
642: else return(1); /* It assumes the zero is the minimum element!! */
643: }
644: n = f->m->ringp->n;
645: nn = f->m->ringp->nn;
646: /* critical and modifiable */ /* m e_u > m e_v <==> m g_u > m g_v */
1.4 takayama 647: /* or equal and u < v */
1.1 maekawa 648: fv = f->m->e[nn].x ; /* extract component (vector) number of f! */
649: gv = g->m->e[nn].x ;
650: if (fv == gv) { /* They have the same component number. */
651: return(mmLarger_matrix_schreyer(f,g));
652: }
653:
654: if (gbList == NULL) return(mmLarger_matrix_schreyer(f,g));
1.4 takayama 655: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 656: if (gbList->tag != Slist) {
657: warningOrder("mmLarger_tower(): gbList must be in Slist.\n");
658: return(1);
659: }
660: if (klength(gbList) ==0) return(mmLarger_matrix(f,g));
1.4 takayama 661: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 662: gb = car(gbList); /* each entry must be monomials */
663: if (gb.tag != Sarray) {
664: warningOrder("mmLarger_tower3(): car(gbList) must be an array.\n");
665: return(1);
666: }
667: t = getoaSize(gb);
668: if (t == 0) return(mmLarger_tower3(f,g,cdr(gbList)));
669:
670: fm = pmCopy(head(f)); fm->m->e[nn].x = 0; /* f is not modified. */
671: gm = pmCopy(head(g)); gm->m->e[nn].x = 0;
672: if (fv >= t || gv >= t) {
673: warningOrder("mmLarger_tower3(): incompatible input and gbList.\n");
674: printf("Length of gb is %d, f is %s, g is %s\n",t,KPOLYToString(f),
1.4 takayama 675: KPOLYToString(g));
1.3 takayama 676: KSexecuteString(" show_ring ");
1.1 maekawa 677: return(1);
678: }
679: /* mpMult_poly is too expensive to call. @@@*/
680: r = mmLarger_tower3(mpMult_poly(fm,KopPOLY(getoa(gb,fv))),
681: mpMult_poly(gm,KopPOLY(getoa(gb,gv))),
682: cdr(gbList));
683: if (r != 2) return(r);
684: else if (fv == gv) return(2);
685: else if (fv > gv) return(0); /* modifiable */
686: else if (fv < gv) return(1); /* modifiable */
687: }
1.11 takayama 688:
689: static struct object auxPruneZeroRow(struct object ob) {
690: int i,m,size;
691: struct object obt;
692: struct object rob;
693: m = getoaSize(ob);
694: size=0;
695: for (i=0; i<m; i++) {
696: obt = getoa(ob,i);
697: if (getoaSize(obt) != 0) size++;
698: }
699: if (size == m) return ob;
700: rob = newObjectArray(size);
701: for (i=0, size=0; i<m; i++) {
702: obt = getoa(ob,i);
703: if (getoaSize(obt) != 0) {
704: putoa(rob,size,obt); size++;
705: }
706: }
707: return rob;
708: }
1.12 takayama 709: static struct object oRingToOXringStructure_long(struct ring *ringp)
1.10 takayama 710: {
711: struct object rob,ob2;
712: struct object obMat;
713: struct object obV;
714: struct object obShift;
715: struct object obt;
716: char **TransX; char **TransD;
717: int n,i,j,m,p,nonzero;
718: int *om;
719: n = ringp->n;
720: m = ringp->orderMatrixSize;
721: om = ringp->order;
722: TransX = ringp->x; TransD = ringp->D;
723: if (m<=0) m = 1;
724: /*test: (1). getRing /rr set rr (oxRingStructure) dc */
725: obMat = newObjectArray(m);
726: for (i=0; i<m; i++) {
727: nonzero = 0;
728: for (j=0; j<2*n; j++) {
729: if (om[2*n*i+j] != 0) nonzero++;
730: }
731: ob2 = newObjectArray(nonzero*2);
732: nonzero=0;
733: for (j=0; j<2*n; j++) {
734: /* fprintf(stderr,"%d, ",nonzero); */
735: if (om[2*n*i+j] != 0) {
736: if (j < n) {
737: putoa(ob2,nonzero,KpoString(TransX[n-1-j])); nonzero++;
738: }else{
739: putoa(ob2,nonzero,KpoString(TransD[n-1-(j-n)])); nonzero++;
740: }
741: putoa(ob2,nonzero,KpoUniversalNumber(newUniversalNumber(om[2*n*i+j]))); nonzero++;
742: }
743: }
744: /* printObject(ob2,0,stderr); fprintf(stderr,".\n"); */
745: putoa(obMat,i,ob2);
746: }
1.11 takayama 747: obMat = auxPruneZeroRow(obMat);
1.10 takayama 748: /* printObject(obMat,0,stderr); */
749:
750: obV = newObjectArray(2*n);
751: for (i=0; i<n; i++) putoa(obV,i,KpoString(TransX[n-1-i]));
752: for (i=0; i<n; i++) putoa(obV,i+n,KpoString(TransD[n-1-i]));
753: /* printObject(obV,0,stderr); */
754:
755: if (ringp->degreeShiftSize) {
756: /*test:
757: [(x) ring_of_differential_operators [[(x)]] weight_vector 0
758: [(weightedHomogenization) 1 (degreeShift) [[1 2 1]]] ] define_ring ;
759: (1). getRing /rr set rr (oxRingStructure) dc message
760: */
761: obShift = newObjectArray(ringp->degreeShiftN);
762: for (i=0; i<ringp->degreeShiftN; i++) {
763: obt = newObjectArray(ringp->degreeShiftSize);
764: for (j=0; j< ringp->degreeShiftSize; j++) {
765: putoa(obt,j,KpoUniversalNumber(newUniversalNumber(ringp->degreeShift[i*(ringp->degreeShiftSize)+j])));
766: }
767: putoa(obShift,i,obt);
768: }
769: /* printObject(obShift,0,stderr); */
770: }
771:
772: p = 0;
773: if (ringp->degreeShiftSize) {
774: rob = newObjectArray(3);
775: obt = newObjectArray(2);
776: putoa(obt,0,KpoString("degreeShift"));
777: putoa(obt,1,obShift);
778: putoa(rob,p, obt); p++;
779: }else {
780: rob = newObjectArray(2);
781: }
782:
783: obt = newObjectArray(2);
784: putoa(obt,0,KpoString("v"));
785: putoa(obt,1,obV);
786: putoa(rob,p, obt); p++;
787:
788: obt = newObjectArray(2);
789: putoa(obt,0,KpoString("order"));
790: putoa(obt,1,obMat);
791: putoa(rob,p, obt); p++;
792:
1.12 takayama 793: return(rob);
794: }
795: static int auxEffectiveVar(int idx,int n) {
796: int x;
797: if (idx < n) x=1; else x=0;
798: if (x) {
799: if ((idx >= 1) && (idx < n-1)) return 1;
800: else return 0;
801: }else{
802: if ( 1 <= idx-n ) return 1;
803: else return 0;
804: }
805: }
806: /*test:
807: [(x,y) ring_of_differential_operators [[(Dx) 1 (Dy) 1]]
808: weight_vector 0] define_ring
809: (x). getRing (oxRingStructure) dc ::
810: */
811: static struct object oRingToOXringStructure_short(struct ring *ringp)
812: {
813: struct object rob,ob2;
814: struct object obMat;
815: struct object obV;
816: struct object obShift;
817: struct object obt;
818: char **TransX; char **TransD;
819: int n,i,j,m,p,nonzero;
820: int *om;
821: n = ringp->n;
822: m = ringp->orderMatrixSize;
823: om = ringp->order;
824: TransX = ringp->x; TransD = ringp->D;
825: if (m<=0) m = 1;
826: /*test: (1). getRing /rr set rr (oxRingStructure) dc */
827: obMat = newObjectArray(m);
828: for (i=0; i<m; i++) {
829: nonzero = 0;
830: for (j=0; j<2*n; j++) {
831: if ((om[2*n*i+j] != 0) && auxEffectiveVar(j,n)) nonzero++;
832: }
833: ob2 = newObjectArray(nonzero*2);
834: nonzero=0;
835: for (j=0; j<2*n; j++) {
836: /* fprintf(stderr,"%d, ",nonzero); */
837: if ((om[2*n*i+j] != 0) && auxEffectiveVar(j,n)) {
838: if (j < n) {
839: putoa(ob2,nonzero,KpoString(TransX[n-1-j])); nonzero++;
840: }else{
841: putoa(ob2,nonzero,KpoString(TransD[n-1-(j-n)])); nonzero++;
842: }
843: putoa(ob2,nonzero,KpoUniversalNumber(newUniversalNumber(om[2*n*i+j]))); nonzero++;
844: }
845: }
846: /* printObject(ob2,0,stderr); fprintf(stderr,".\n"); */
847: putoa(obMat,i,ob2);
848: }
849: obMat = auxPruneZeroRow(obMat);
850: /* printObject(obMat,0,stderr); */
851:
852: obV = newObjectArray(2*n-3);
853: for (i=0; i<n-2; i++) putoa(obV,i,KpoString(TransX[n-1-i-1]));
854: for (i=0; i<n-1; i++) putoa(obV,i+n-2,KpoString(TransD[n-1-i-1]));
855: /* printObject(obV,0,stderr); */
856:
857: if (ringp->degreeShiftSize) {
858: /*test:
859: [(x) ring_of_differential_operators [[(x)]] weight_vector 0
860: [(weightedHomogenization) 1 (degreeShift) [[1 2 1]]] ] define_ring ;
861: (1). getRing /rr set rr (oxRingStructure) dc message
862: */
863: obShift = newObjectArray(ringp->degreeShiftN);
864: for (i=0; i<ringp->degreeShiftN; i++) {
865: obt = newObjectArray(ringp->degreeShiftSize);
866: for (j=0; j< ringp->degreeShiftSize; j++) {
867: putoa(obt,j,KpoUniversalNumber(newUniversalNumber(ringp->degreeShift[i*(ringp->degreeShiftSize)+j])));
868: }
869: putoa(obShift,i,obt);
870: }
871: /* printObject(obShift,0,stderr); */
872: }
873:
874: p = 0;
875: if (ringp->degreeShiftSize) {
876: rob = newObjectArray(3);
877: obt = newObjectArray(2);
878: putoa(obt,0,KpoString("degreeShift"));
879: putoa(obt,1,obShift);
880: putoa(rob,p, obt); p++;
881: }else {
882: rob = newObjectArray(2);
883: }
884:
885: obt = newObjectArray(2);
886: putoa(obt,0,KpoString("v"));
887: putoa(obt,1,obV);
888: putoa(rob,p, obt); p++;
889:
890: obt = newObjectArray(2);
891: putoa(obt,0,KpoString("order"));
892: putoa(obt,1,obMat);
893: putoa(rob,p, obt); p++;
894:
895: return(rob);
896: }
897: struct object oRingToOXringStructure(struct ring *ringp)
898: {
899: struct object rob;
900: struct object tob;
901: rob = newObjectArray(2);
902: tob = oRingToOXringStructure_short(ringp);
903: putoa(rob,0,tob);
904: tob = oRingToOXringStructure_long(ringp);
905: putoa(rob,1,tob);
1.10 takayama 906: return(rob);
907: }
908:
1.1 maekawa 909: static void warningOrder(s)
1.4 takayama 910: char *s;
1.1 maekawa 911: {
912: fprintf(stderr,"Warning in order.c: %s\n",s);
913: }
914:
915: static void errorOrder(s)
1.4 takayama 916: char *s;
1.1 maekawa 917: {
918: fprintf(stderr,"order.c: %s\n",s);
919: exit(14);
920: }
921:
922:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>