Annotation of OpenXM/src/kan96xx/Kan/order.c, Revision 1.7
1.7 ! takayama 1: /* $OpenXM: OpenXM/src/kan96xx/Kan/order.c,v 1.6 2002/09/08 10:49:50 takayama Exp $ */
1.1 maekawa 2: #include <stdio.h>
3: #include "datatype.h"
4: #include "stackm.h"
5: #include "extern.h"
6: #include "extern2.h"
7:
8: /* The format of order.
9: Example: graded lexicographic order
10: x_{N-1} x_{N-2} ... x_0 D_{N-1} .... D_{0}
11: 1 1 1 1 1
12: 1 0 0 0 0
13: 0 1 0 0 0
14: ..............................................
15:
16: (ringp->order)[i][j] should be (ringp->order)[i*2*N+j].
17: All order matrix is generated by functions in smacro.sm1
18: */
19:
20: static void warningOrder(char *s);
21: static void errorOrder(char *s);
22:
23: void setOrderByMatrix(order,n,c,l,omsize)
1.4 takayama 24: int order[];
25: int n,c,l,omsize;
1.1 maekawa 26: {
27: int i,j;
28: int *Order;
29: extern struct ring *CurrentRingp;
30:
31: switch_mmLarger("default");
1.4 takayama 32: /* q-case */
1.1 maekawa 33: if ( l-c > 0) {
34: switch_mmLarger("qmatrix");
35: }
36:
37: Order = (int *)sGC_malloc(sizeof(int)*(2*n)*(omsize));
38: if (Order == (int *)NULL) errorOrder("No memory.");
39: CurrentRingp->order = Order;
40: CurrentRingp->orderMatrixSize = omsize;
41: for (i=0; i<omsize; i++) {
42: for (j=0; j<2*n; j++) {
43: Order[i*2*n+j] = order[i*2*n+j];
44: }
45: }
46: }
47:
48: void showRing(level,ringp)
1.4 takayama 49: int level;
50: struct ring *ringp;
1.1 maekawa 51: {
52: int i,j;
53: FILE *fp;
54: char tmp[100];
55: int N,M,L,C,NN,MM,LL,CC;
56: char **TransX,**TransD;
57: int *Order;
58: int P;
59: char *mtype;
60: extern char *F_isSameComponent;
1.5 takayama 61: POLY f;
1.6 takayama 62: POLY fx;
63: POLY fd;
64: POLY rf;
1.1 maekawa 65: fp = stdout;
66:
67: N=ringp->n; M = ringp->m; L = ringp->l; C = ringp->c;
68: NN=ringp->nn; MM = ringp->mm; LL = ringp->ll; CC = ringp->cc;
69: TransX = ringp->x; TransD = ringp->D;
70: Order = ringp->order;
71: P = ringp->p;
72:
73:
74: fprintf(fp,"\n---------- the current ring ---- name: %s------\n",ringp->name);
75: fprintf(fp,"Characteristic is %d. ",P);
76: fprintf(fp,"N0=%d N=%d NN=%d M=%d MM=%d L=%d LL=%d C=%d CC=%d omsize=%d\n",N0,N,NN,M,MM,L,LL,C,CC,ringp->orderMatrixSize);
77: fprintf(fp,"\n");
78:
79: /* print identifier names */
80: if (N-M >0) {
81: fprintf(fp,"Differential variables: ");
82: for (i=M; i<N; i++) fprintf(fp," %4s ",TransX[i]);
83: for (i=M; i<N; i++) fprintf(fp," %4s ",TransD[i]);
84: fprintf(fp,"\n");
85: fprintf(fp,"where ");
86: for (i=M; i<N; i++) {
1.6 takayama 87: fx = cxx(1,i,1,ringp); fd = cdd(1,i,1,ringp);
88: rf = ppSub(ppMult(fd,fx),ppMult(fx,fd));
89: fprintf(fp," %s %s - %s %s = %s, ",TransD[i],TransX[i],
90: TransX[i],TransD[i],POLYToString(rf,'*',0));
1.1 maekawa 91: }
92: fprintf(fp,"\n\n");
93: }
94: if (M-L >0) {
95: fprintf(fp,"Difference variables: ");
96: for (i=L; i<M; i++) fprintf(fp," %4s ",TransX[i]);
97: for (i=L; i<M; i++) fprintf(fp," %4s ",TransD[i]);
98: fprintf(fp,"\n");
99: fprintf(fp,"where ");
100: for (i=L; i<M; i++) {
1.5 takayama 101: fprintf(fp," %s %s - %s %s = ",TransD[i],TransX[i],
102: TransX[i],TransD[i]);
103: f=ppSub(ppMult(cdd(1,i,1,ringp),cxx(1,i,1,ringp)),
104: ppMult(cxx(1,i,1,ringp),cdd(1,i,1,ringp)));
105: fprintf(fp," %s, ",POLYToString(f,'*',0));
1.1 maekawa 106: }
107: fprintf(fp,"\n\n");
108: }
109: if (L-C >0) {
110: fprintf(fp,"q-Difference variables: ");
111: for (i=C; i<L; i++) fprintf(fp," %4s ",TransX[i]);
112: for (i=C; i<L; i++) fprintf(fp," %4s ",TransD[i]);
113: fprintf(fp,"\n");
114: fprintf(fp,"where ");
115: for (i=C; i<L; i++) {
116: fprintf(fp," %s %s = %s %s %s, ",TransD[i],TransX[i],
1.4 takayama 117: TransX[0],
118: TransX[i],TransD[i]);
1.1 maekawa 119: }
120: fprintf(fp,"\n\n");
121: }
122: if (C>0) {
123: fprintf(fp,"Commutative variables: ");
124: for (i=0; i<C; i++) fprintf(fp," %4s ",TransX[i]);
125: for (i=0; i<C; i++) fprintf(fp," %4s ",TransD[i]);
126: fprintf(fp,"\n\n");
127: }
128:
129: if (strcmp(F_isSameComponent,"x") == 0) {
130: fprintf(fp,"Integral or summation or graduation variables are : ");
131: for (i=CC; i<C; i++) fprintf(fp," %4s ",TransX[i]);
132: for (i=LL; i<L; i++) fprintf(fp," %4s ",TransX[i]);
133: for (i=MM; i<M; i++) fprintf(fp," %4s ",TransX[i]);
134: for (i=NN; i<N; i++) fprintf(fp," %4s ",TransX[i]);
135: fprintf(fp,"\n");
136: }else if (strcmp(F_isSameComponent,"xd") == 0) {
137: fprintf(fp,"Graduation variables are : ");
138: for (i=CC; i<C; i++) fprintf(fp," %4s ",TransX[i]);
139: for (i=LL; i<L; i++) fprintf(fp," %4s ",TransX[i]);
140: for (i=MM; i<M; i++) fprintf(fp," %4s ",TransX[i]);
141: for (i=NN; i<N; i++) fprintf(fp," %4s ",TransX[i]);
142: for (i=CC; i<C; i++) fprintf(fp," %4s ",TransD[i]);
143: for (i=LL; i<L; i++) fprintf(fp," %4s ",TransD[i]);
144: for (i=MM; i<M; i++) fprintf(fp," %4s ",TransD[i]);
145: for (i=NN; i<N; i++) fprintf(fp," %4s ",TransD[i]);
146: fprintf(fp,"\n");
147: }else {
148: fprintf(fp,"Unknown graduation variable specification.\n\n");
149: }
150: fprintf(fp,"The homogenization variable is : ");
151: fprintf(fp," %4s ",TransD[0]);
152: fprintf(fp,"\n");
153:
154:
155:
156: fprintf(fp,"-------------------------------------------\n");
157: fprintf(fp,"Output order : ");
158: for (i=0; i<2*N; i++) {
159: if (ringp->outputOrder[i] < N) {
160: fprintf(fp,"%s ",TransX[ringp->outputOrder[i]]);
161: }else{
162: fprintf(fp,"%s ",TransD[(ringp->outputOrder[i])-N]);
163: }
164: }
165: fprintf(fp,"\n");
166:
167: if (ringp->multiplication == mpMult_poly) {
168: mtype = "poly";
169: }else if (ringp->multiplication == mpMult_diff) {
170: mtype = "diff";
171: }else if (ringp->multiplication == mpMult_difference) {
172: mtype = "difference";
173: }else {
174: mtype = "unknown";
175: }
176: fprintf(fp,"Multiplication function --%s(%xH).\n",
1.4 takayama 177: mtype,(unsigned int) ringp->multiplication);
1.1 maekawa 178: if (ringp->schreyer) {
179: fprintf(fp,"schreyer=1, gbListTower=");
180: printObjectList((struct object *)(ringp->gbListTower));
181: fprintf(fp,"\n");
182: }
1.7 ! takayama 183: if (ringp->degreeShiftSize) {
! 184: fprintf(fp,"degreeShift vector = [");
! 185: {
! 186: int i;
! 187: for (i=0; i<ringp->degreeShiftSize; i++) {
! 188: fprintf(fp," %d ",ringp->degreeShift[i]);
! 189: }
! 190: }
! 191: fprintf(fp,"]\n");
! 192: }
! 193: fprintf(fp,"--- weight vectors ---\n");
1.1 maekawa 194: if (level) printOrder(ringp);
195:
196: if (ringp->next != (struct ring *)NULL) {
197: fprintf(fp,"\n\n-------- The next ring is .... --------------\n");
198: showRing(level,ringp->next);
199: }
200: }
201:
202: /***************************************************************
203: functions related to order
204: ******************************************************************/
205: #define xtoi(k) ((N-1)-(k))
206: #define dtoi(k) ((2*N-1)-(k))
207: #define itox(k) ((N-1)-(k))
208: #define itod(k) ((2*N-1)-(k))
209: #define isX(i) (i<N? 1: 0)
210: #define isD(i) (i<N? 0: 1)
211: /****************************************************
212: i : 0 1 N-1 N 2N-1
213: x :x_{N-1} x_{N-2} x_0
214: d : D_{N-1} D_{0}
215: if (isX(i)) x_{itox(i)}
216: if (isD(i)) D_{itod(i)}
217: ******************************************************/
218: /* xtoi(0):N-1 xtoi(1):N-2 ....
219: dtoi(0):2N-1 dtoi(1):2N-2 ...
220: itod(N):N-1 dtoi(N-1):N ...
221: */
222:
223: void printOrder(ringp)
1.4 takayama 224: struct ring *ringp;
1.1 maekawa 225: {
226: int i,j;
227: FILE *fp;
228: char tmp[100];
229: int N,M,L,C,NN,MM,LL,CC;
230: char **TransX,**TransD;
231: int *Order;
232: int P;
233: int omsize;
234: extern char *F_isSameComponent;
235:
236: N=ringp->n; M = ringp->m; L = ringp->l; C = ringp->c;
237: NN=ringp->nn; MM = ringp->mm; LL = ringp->ll; CC = ringp->cc;
238: TransX = ringp->x; TransD = ringp->D;
239: Order = ringp->order;
240: P = ringp->p;
241: omsize = ringp->orderMatrixSize;
242:
243: fp = stdout;
244:
245:
246: for (i=0; i<2*N; i++) printf("%4d",i);
247: fprintf(fp,"\n");
248:
249: /* print variables names */
250: for (i=0; i<N; i++) {
251: sprintf(tmp,"x%d",N-1-i);
252: fprintf(fp,"%4s",tmp);
253: }
254: for (i=0; i<N; i++) {
255: sprintf(tmp,"D%d",N-1-i);
256: fprintf(fp,"%4s",tmp);
257: }
258: fprintf(fp,"\n");
259:
260: /* print identifier names */
261: for (i=0; i<N; i++) fprintf(fp,"%4s",TransX[itox(i)]);
262: for (i=N; i<2*N; i++) fprintf(fp,"%4s",TransD[itod(i)]);
263: fprintf(fp,"\n");
264:
265: /* print D: differential DE: differential, should be eliminated
1.4 takayama 266: E: difference
267: Q: q-difference
268: C: commutative
1.1 maekawa 269: */
270: if (strcmp(F_isSameComponent,"x")== 0 || strcmp(F_isSameComponent,"xd")==0) {
271: for (i=0; i<N; i++) {
272: if ((NN<=itox(i)) && (itox(i)<N)) fprintf(fp,"%4s","DE");
273: if ((M<=itox(i)) && (itox(i)<NN)) fprintf(fp,"%4s","D");
274: if ((MM<=itox(i)) && (itox(i)<M)) fprintf(fp,"%4s","EE");
275: if ((L<=itox(i)) && (itox(i)<MM)) fprintf(fp,"%4s","E");
276: if ((LL<=itox(i)) && (itox(i)<L)) fprintf(fp,"%4s","QE");
277: if ((C<=itox(i)) && (itox(i)<LL)) fprintf(fp,"%4s","Q");
278: if ((CC<=itox(i)) && (itox(i)<C)) fprintf(fp,"%4s","CE");
279: if ((0<=itox(i)) && (itox(i)<CC)) fprintf(fp,"%4s","C");
280: }
281: }
282: if (strcmp(F_isSameComponent,"x")==0) {
283: for (i=N; i<2*N; i++) {
284: if ((M<=itod(i)) && (itod(i)<N)) fprintf(fp,"%4s","D");
285: if ((L<=itod(i)) && (itod(i)<M)) fprintf(fp,"%4s","E");
286: if ((C<=itod(i)) && (itod(i)<L)) fprintf(fp,"%4s","Q");
287: if ((0<=itod(i)) && (itod(i)<C)) fprintf(fp,"%4s","C");
288: }
289: }else if (strcmp(F_isSameComponent,"xd")==0) {
290: for (i=N; i<2*N; i++) {
291: if ((NN<=itod(i)) && (itod(i)<N)) fprintf(fp,"%4s","DE");
292: if ((M<=itod(i)) && (itod(i)<NN)) fprintf(fp,"%4s","D");
293: if ((MM<=itod(i)) && (itod(i)<M)) fprintf(fp,"%4s","EE");
294: if ((L<=itod(i)) && (itod(i)<MM)) fprintf(fp,"%4s","E");
295: if ((LL<=itod(i)) && (itod(i)<L)) fprintf(fp,"%4s","QE");
296: if ((C<=itod(i)) && (itod(i)<LL)) fprintf(fp,"%4s","Q");
297: if ((CC<=itod(i)) && (itod(i)<C)) fprintf(fp,"%4s","CE");
298: if ((0<=itod(i)) && (itod(i)<CC)) fprintf(fp,"%4s","C");
299: }
300: } else {
301: fprintf(fp,"Unknown graduation variable type.\n");
302: }
303: fprintf(fp,"\n");
304:
305: for (i=0; i< omsize; i++) {
306: for (j=0; j<2*N; j++) {
307: fprintf(fp,"%4d", Order[i*2*N+j]);
308: }
309: fprintf(fp,"\n");
310: }
311: fprintf(fp,"\n");
312:
313: }
314:
315: struct object oGetOrderMatrix(struct ring *ringp)
316: {
317: struct object rob,ob2;
318: int n,i,j,m;
319: int *om;
320: n = ringp->n;
321: m = ringp->orderMatrixSize;
322: om = ringp->order;
323: if (m<=0) m = 1;
324: rob = newObjectArray(m);
325: for (i=0; i<m; i++) {
326: ob2 = newObjectArray(2*n);
327: for (j=0; j<2*n; j++) {
328: putoa(ob2,j,KpoInteger(om[2*n*i+j]));
329: }
330: putoa(rob,i,ob2);
331: }
332: return(rob);
333: }
334:
335:
336: int mmLarger_matrix(ff,gg)
1.4 takayama 337: POLY ff; POLY gg;
1.1 maekawa 338: {
339: int exp[2*N0]; /* exponents */
340: int i,k;
341: int sum,flag;
342: int *Order;
343: int N;
344: MONOMIAL f,g;
345: struct ring *rp;
346: int in2;
347: int *from, *to;
348: int omsize;
1.7 ! takayama 349: int dssize;
! 350: int *degreeShiftVector;
1.1 maekawa 351:
352: if (ff == POLYNULL ) {
353: if (gg == POLYNULL) return( 2 );
354: else return( 0 );
355: }
356: if (gg == POLYNULL) {
357: if (ff == POLYNULL) return( 2 );
358: else return( 1 );
359: }
360: f = ff->m; g=gg->m;
361:
362: rp = f->ringp;
363: Order = rp->order;
364: N = rp->n;
365: from = rp->from;
366: to = rp->to;
367: omsize = rp->orderMatrixSize;
1.7 ! takayama 368: if (dssize = rp->degreeShiftSize) {
! 369: degreeShiftVector = rp->degreeShift; /* Note. 2003.06.26 */
! 370: }
1.1 maekawa 371:
372: flag = 1;
373: for (i=N-1,k=0; i>=0; i--,k++) {
374: exp[k] = (f->e[i].x) - (g->e[i].x);
375: exp[k+N] = (f->e[i].D) - (g->e[i].D);
376: if ((exp[k] != 0) || (exp[k+N] != 0)) flag =0;
377: }
378: if (flag==1) return(2);
379: /* exp > 0 <---> f>g
380: exp = 0 <---> f=g
381: exp < 0 <---> f<g
382: */
383: for (i=0; i< omsize; i++) {
384: sum = 0; in2 = i*2*N;
385: /* for (k=0; k<2*N; k++) sum += exp[k]*Order[in2+k]; */
386: for (k=from[i]; k<to[i]; k++) sum += exp[k]*Order[in2+k];
1.7 ! takayama 387: if (dssize && ( i == 0)) { /* Note, 2003.06.26 */
! 388: if ((f->e[N-1].x < dssize) && (f->e[N-1].x >= 0) &&
! 389: (g->e[N-1].x < dssize) && (g->e[N-1].x >= 0)) {
! 390: sum += degreeShiftVector[f->e[N-1].x]
! 391: -degreeShiftVector[g->e[N-1].x];
! 392: }else{
! 393: warningOrder("Size mismatch in the degree shift vector. It is ignored.");
! 394: }
! 395: }
1.1 maekawa 396: if (sum > 0) return(1);
397: if (sum < 0) return(0);
398: }
399: return(2);
400: }
401:
402: /* This should be used in case of q */
403: int mmLarger_qmatrix(ff,gg)
1.4 takayama 404: POLY ff; POLY gg;
1.1 maekawa 405: {
406: int exp[2*N0]; /* exponents */
407: int i,k;
408: int sum,flag;
409: int *Order;
410: int N;
411: MONOMIAL f,g;
412: int omsize;
413:
414: if (ff == POLYNULL ) {
415: if (gg == POLYNULL) return( 2 );
416: else return( 0 );
417: }
418: if (gg == POLYNULL) {
419: if (ff == POLYNULL) return( 2 );
420: else return( 1 );
421: }
422: f = ff->m; g = gg->m;
423: Order = f->ringp->order;
424: N = f->ringp->n;
425: omsize = f->ringp->orderMatrixSize;
426:
427: flag = 1;
428: for (i=N-1,k=0; i>=0; i--,k++) {
429: exp[k] = (f->e[i].x) - (g->e[i].x);
430: exp[k+N] = (f->e[i].D) - (g->e[i].D);
431: if ((exp[k] != 0) || (exp[k+N] != 0)) flag =0;
432: }
433: if (flag==1) return(2);
434: /* exp > 0 <---> f>g
435: exp = 0 <---> f=g
436: exp < 0 <---> f<g
437: */
438: for (i=0; i< omsize; i++) {
439: sum = 0;
440: /* In case of q, you should do as follows */
441: for (k=0; k<N-1; k++) sum += exp[k]*Order[i*2*N+k]; /* skip k= N-1 -->q */
442: for (k=N; k<2*N-1; k++) sum += exp[k]*Order[i*2*N+k]; /* SKip k= 2*N-1 */
443: if (sum > 0) return(1);
444: else if (sum < 0) return(0);
445: }
446: if (exp[N-1] > 0) return(1);
447: else if (exp[N-1] < 0) return(0);
448: else return(2);
449: }
450:
451: /* x(N-1)>x(N-2)>....>D(N-1)>....>D(0) */
452: mmLarger_pureLexicographic(f,g)
1.4 takayama 453: POLY f;
454: POLY g;
1.1 maekawa 455: {
456: int i,r;
457: int n;
458: MONOMIAL fm,gm;
459: /* Note that this function ignores the order matrix of the given
460: ring. */
461: if (f == POLYNULL ) {
462: if (g == POLYNULL) return( 2 );
463: else return( 0 );
464: }
465: if (g == POLYNULL) {
466: if (f == POLYNULL) return( 2 );
467: else return( 1 );
468: }
469:
470:
471: fm = f->m; gm = g->m;
472: n = fm->ringp->n;
473: for (i=n-1; i>=0; i--) {
474: r = (fm->e[i].x) - (gm->e[i].x);
475: if (r > 0) return(1);
476: else if (r < 0) return(0);
477: else ;
478: }
479:
480: for (i=n-1; i>=0; i--) {
481: r = (fm->e[i].D) - (gm->e[i].D);
482: if (r > 0) return(1);
483: else if (r < 0) return(0);
484: else ;
485: }
486:
487: return(2);
488:
489: }
490:
491:
492: void setFromTo(ringp)
1.4 takayama 493: struct ring *ringp;
1.1 maekawa 494: {
495: int n;
496: int i,j,oasize;
497: if (ringp->order == (int *)NULL) errorOrder("setFromTo(); no order matrix.");
498: n = (ringp->n)*2;
499: oasize = ringp->orderMatrixSize;
500: ringp->from = (int *)sGC_malloc(sizeof(int)*oasize);
501: ringp->to = (int *)sGC_malloc(sizeof(int)*oasize);
502: if (ringp->from == (int *)NULL || ringp->to == (int *)NULL) {
503: errorOrder("setFromTo(): No memory.");
504: }
505: for (i=0; i<oasize; i++) {
506: ringp->from[i] = 0; ringp->to[i] = n;
507: for (j=0; j<n; j++) {
508: if (ringp->order[i*n+j] != 0) {
1.4 takayama 509: ringp->from[i] = j;
510: break;
1.1 maekawa 511: }
512: }
513: for (j=n-1; j>=0; j--) {
514: if (ringp->order[i*n+j] != 0) {
1.4 takayama 515: ringp->to[i] = j+1;
516: break;
1.1 maekawa 517: }
518: }
519: }
520: }
521:
522: /* It ignores h and should be used with mmLarger_tower */
523: /* cf. mmLarger_matrix. h always must be checked at last. */
524: static int mmLarger_matrix_schreyer(ff,gg)
1.4 takayama 525: POLY ff; POLY gg;
1.1 maekawa 526: {
527: int exp[2*N0]; /* exponents */
528: int i,k;
529: int sum,flag;
530: int *Order;
531: int N;
532: MONOMIAL f,g;
533: struct ring *rp;
534: int in2;
535: int *from, *to;
536: int omsize;
537:
538: if (ff == POLYNULL ) {
539: if (gg == POLYNULL) return( 2 );
540: else return( 0 );
541: }
542: if (gg == POLYNULL) {
543: if (ff == POLYNULL) return( 2 );
544: else return( 1 );
545: }
546: f = ff->m; g=gg->m;
547:
548: rp = f->ringp;
549: Order = rp->order;
550: N = rp->n;
551: from = rp->from;
552: to = rp->to;
553: omsize = rp->orderMatrixSize;
554:
555: flag = 1;
556: for (i=N-1,k=0; i>0; i--,k++) {
557: exp[k] = (f->e[i].x) - (g->e[i].x);
558: exp[k+N] = (f->e[i].D) - (g->e[i].D);
559: if ((exp[k] != 0) || (exp[k+N] != 0)) flag =0;
560: }
561: exp[N-1] = (f->e[0].x) - (g->e[0].x);
562: exp[2*N-1] = 0; /* f->e[0].D - g->e[0].D. Ignore h! */
563: if ((exp[N-1] != 0) || (exp[2*N-1] != 0)) flag =0;
564:
565: if (flag==1) return(2);
566: /* exp > 0 <---> f>g
567: exp = 0 <---> f=g
568: exp < 0 <---> f<g
569: */
570: for (i=0; i< omsize; i++) {
571: sum = 0; in2 = i*2*N;
572: /* for (k=0; k<2*N; k++) sum += exp[k]*Order[in2+k]; */
573: for (k=from[i]; k<to[i]; k++) sum += exp[k]*Order[in2+k];
574: if (sum > 0) return(1);
575: if (sum < 0) return(0);
576: }
577: return(2);
578: }
579:
580: int mmLarger_tower(POLY f,POLY g) {
581: struct object *gbList;
582: int r;
583: if (f == POLYNULL) {
584: if (g == POLYNULL) return(2);
585: else return(0);
586: }
587: if (g == POLYNULL) {
588: if (f == POLYNULL) return(2);
589: else return(1);
590: }
591: if (!(f->m->ringp->schreyer) || !(g->m->ringp->schreyer))
592: return(mmLarger_matrix(f,g));
1.4 takayama 593: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 594: gbList = (struct object *)(g->m->ringp->gbListTower);
595: if (gbList == NULL) return(mmLarger_matrix(f,g));
1.4 takayama 596: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 597: if (gbList->tag != Slist) {
598: warningOrder("mmLarger_tower(): gbList must be in Slist.\n");
599: return(1);
600: }
601: if (klength(gbList) ==0) return(mmLarger_matrix(f,g));
1.4 takayama 602: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 603:
604: r = mmLarger_tower3(f,g,gbList);
605: /* printf("mmLarger_tower3(%s,%s) --> %d\n",POLYToString(head(f),'*',1),POLYToString(head(g),'*',1),r); */
606: if (r == 2) { /* Now, compare by h */
607: if (f->m->e[0].D > g->m->e[0].D) return(1);
608: else if (f->m->e[0].D < g->m->e[0].D) return(0);
609: else return(2);
610: }else{
611: return(r);
612: }
613: }
614:
615: int mmLarger_tower3(POLY f,POLY g,struct object *gbList)
616: { /* gbList is assumed to be Slist */
617: int n,fv,gv,t,r,nn;
618: POLY fm;
619: POLY gm;
620: struct object gb;
621:
622: if (f == POLYNULL) {
623: if (g == POLYNULL) return(2);
624: else return(0);
625: }
626: if (g == POLYNULL) {
627: if (f == POLYNULL) return(2);
628: else return(1); /* It assumes the zero is the minimum element!! */
629: }
630: n = f->m->ringp->n;
631: nn = f->m->ringp->nn;
632: /* critical and modifiable */ /* m e_u > m e_v <==> m g_u > m g_v */
1.4 takayama 633: /* or equal and u < v */
1.1 maekawa 634: fv = f->m->e[nn].x ; /* extract component (vector) number of f! */
635: gv = g->m->e[nn].x ;
636: if (fv == gv) { /* They have the same component number. */
637: return(mmLarger_matrix_schreyer(f,g));
638: }
639:
640: if (gbList == NULL) return(mmLarger_matrix_schreyer(f,g));
1.4 takayama 641: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 642: if (gbList->tag != Slist) {
643: warningOrder("mmLarger_tower(): gbList must be in Slist.\n");
644: return(1);
645: }
646: if (klength(gbList) ==0) return(mmLarger_matrix(f,g));
1.4 takayama 647: /* modifiable: mmLarger_qmatrix */
1.1 maekawa 648: gb = car(gbList); /* each entry must be monomials */
649: if (gb.tag != Sarray) {
650: warningOrder("mmLarger_tower3(): car(gbList) must be an array.\n");
651: return(1);
652: }
653: t = getoaSize(gb);
654: if (t == 0) return(mmLarger_tower3(f,g,cdr(gbList)));
655:
656: fm = pmCopy(head(f)); fm->m->e[nn].x = 0; /* f is not modified. */
657: gm = pmCopy(head(g)); gm->m->e[nn].x = 0;
658: if (fv >= t || gv >= t) {
659: warningOrder("mmLarger_tower3(): incompatible input and gbList.\n");
660: printf("Length of gb is %d, f is %s, g is %s\n",t,KPOLYToString(f),
1.4 takayama 661: KPOLYToString(g));
1.3 takayama 662: KSexecuteString(" show_ring ");
1.1 maekawa 663: return(1);
664: }
665: /* mpMult_poly is too expensive to call. @@@*/
666: r = mmLarger_tower3(mpMult_poly(fm,KopPOLY(getoa(gb,fv))),
667: mpMult_poly(gm,KopPOLY(getoa(gb,gv))),
668: cdr(gbList));
669: if (r != 2) return(r);
670: else if (fv == gv) return(2);
671: else if (fv > gv) return(0); /* modifiable */
672: else if (fv < gv) return(1); /* modifiable */
673: }
674:
675: static void warningOrder(s)
1.4 takayama 676: char *s;
1.1 maekawa 677: {
678: fprintf(stderr,"Warning in order.c: %s\n",s);
679: }
680:
681: static void errorOrder(s)
1.4 takayama 682: char *s;
1.1 maekawa 683: {
684: fprintf(stderr,"order.c: %s\n",s);
685: exit(14);
686: }
687:
688:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>