version 1.1, 1999/10/08 02:12:01 |
version 1.7, 2005/07/03 11:08:54 |
|
|
|
/* $OpenXM: OpenXM/src/kan96xx/Kan/poly2.c,v 1.6 2005/06/16 05:07:23 takayama Exp $ */ |
#include <stdio.h> |
#include <stdio.h> |
|
#include <stdlib.h> |
#include "datatype.h" |
#include "datatype.h" |
#include "stackm.h" |
#include "stackm.h" |
#include "extern.h" |
#include "extern.h" |
|
|
static POLY mapZmonom(POLY f,struct ring *ringp); |
static POLY mapZmonom(POLY f,struct ring *ringp); |
|
|
POLY ppAdd(f,g) |
POLY ppAdd(f,g) |
POLY f; POLY g; /* The result is read only. */ |
POLY f; POLY g; /* The result is read only. */ |
{ |
{ |
POLY node; |
POLY node; |
struct listPoly nod; |
struct listPoly nod; |
Line 32 POLY f; POLY g; /* The result is read only. */ |
|
Line 34 POLY f; POLY g; /* The result is read only. */ |
|
h = h->next; |
h = h->next; |
f = f->next; |
f = f->next; |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
break; |
break; |
case 0: /* f < g */ |
case 0: /* f < g */ |
Line 41 POLY f; POLY g; /* The result is read only. */ |
|
Line 43 POLY f; POLY g; /* The result is read only. */ |
|
h = h->next; |
h = h->next; |
g = g->next; |
g = g->next; |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
break; |
break; |
case 2:/* f == g */ |
case 2:/* f == g */ |
c = coeffCopy(f->coeffp); |
c = coeffCopy(f->coeffp); |
Cadd(c,c,g->coeffp); |
Cadd(c,c,g->coeffp); |
if (!isZero(c)) { |
if (!isZero(c)) { |
h->next = newCell(c,f->m); |
h->next = newCell(c,f->m); |
h = h->next; |
h = h->next; |
f = f->next; |
f = f->next; |
g = g->next; |
g = g->next; |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
}else{ |
}else{ |
f = f->next; |
f = f->next; |
g = g->next; |
g = g->next; |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
} |
} |
break; |
break; |
default: |
default: |
Line 83 POLY f; POLY g; /* The result is read only. */ |
|
Line 85 POLY f; POLY g; /* The result is read only. */ |
|
} |
} |
|
|
POLY ppSub(f,g) |
POLY ppSub(f,g) |
POLY f; POLY g; /* The result is read only. */ |
POLY f; POLY g; /* The result is read only. */ |
{ |
{ |
POLY h; |
POLY h; |
struct coeff *c; |
struct coeff *c; |
Line 98 POLY f; POLY g; /* The result is read only. */ |
|
Line 100 POLY f; POLY g; /* The result is read only. */ |
|
|
|
|
|
POLY cpMult(c,f) |
POLY cpMult(c,f) |
struct coeff *c; |
struct coeff *c; |
POLY f; |
POLY f; |
{ |
{ |
POLY node; |
POLY node; |
struct listPoly nod; |
struct listPoly nod; |
|
|
} |
} |
|
|
MONOMIAL monomialAdd_poly(m,m2) |
MONOMIAL monomialAdd_poly(m,m2) |
MONOMIAL m,m2; |
MONOMIAL m,m2; |
{ |
{ |
extern int Msize; |
extern int Msize; |
MONOMIAL f; |
MONOMIAL f; |
|
|
|
|
/* Note that mpMult_poly is called from mmLarger_tower! */ |
/* Note that mpMult_poly is called from mmLarger_tower! */ |
POLY mpMult_poly(f,g) |
POLY mpMult_poly(f,g) |
POLY f; |
POLY f; |
POLY g; |
POLY g; |
{ |
{ |
POLY node; |
POLY node; |
struct listPoly nod; |
struct listPoly nod; |
|
|
} |
} |
|
|
POLY ppMult_old(f,g) |
POLY ppMult_old(f,g) |
POLY f,g; |
POLY f,g; |
{ |
{ |
POLY r; |
POLY r; |
POLY tmp; |
POLY tmp; |
|
|
} |
} |
|
|
POLY ppAddv(f,g) |
POLY ppAddv(f,g) |
POLY f; POLY g; /* It breaks f and g. Use it just after calling mpMult() */ |
POLY f; POLY g; /* It breaks f and g. Use it just after calling mpMult() */ |
{ |
{ |
POLY node; |
POLY node; |
struct listPoly nod; |
struct listPoly nod; |
Line 214 POLY f; POLY g; /* It breaks f and g. Use it just aft |
|
Line 216 POLY f; POLY g; /* It breaks f and g. Use it just aft |
|
h->next = f; |
h->next = f; |
h = h->next; f = f->next;; |
h = h->next; f = f->next;; |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
break; |
break; |
case 0: /* f < g */ |
case 0: /* f < g */ |
h->next = g; |
h->next = g; |
h = h->next; g = g->next; |
h = h->next; g = g->next; |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
break; |
break; |
case 2:/* f == g */ |
case 2:/* f == g */ |
c = f->coeffp; |
c = f->coeffp; |
Cadd(c,c,g->coeffp); |
Cadd(c,c,g->coeffp); |
if (!isZero(c)) { |
if (!isZero(c)) { |
h->next = f; |
h->next = f; |
h = h->next; f = f->next;; |
h = h->next; f = f->next;; |
g = g->next; |
g = g->next; |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
}else{ |
}else{ |
f = f->next; |
f = f->next; |
g = g->next; |
g = g->next; |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
} |
} |
break; |
break; |
default: |
default: |
Line 263 POLY f; POLY g; /* It breaks f and g. Use it just aft |
|
Line 265 POLY f; POLY g; /* It breaks f and g. Use it just aft |
|
} |
} |
|
|
POLY pPower(f,k) |
POLY pPower(f,k) |
POLY f; |
POLY f; |
int k; |
int k; |
{ |
{ |
POLY r; |
POLY r; |
int i,n; |
int i,n; |
|
|
} |
} |
|
|
POLY pPower_poly(f,k) |
POLY pPower_poly(f,k) |
POLY f; |
POLY f; |
int k; |
int k; |
{ |
{ |
POLY r; |
POLY r; |
int i,n; |
int i,n; |
|
|
} |
} |
|
|
POLY modulop_trash(f,ringp) |
POLY modulop_trash(f,ringp) |
POLY f; |
POLY f; |
struct ring *ringp; |
struct ring *ringp; |
{ |
{ |
int p; |
int p; |
POLY h; |
POLY h; |
Line 381 struct ring *ringp; |
|
Line 383 struct ring *ringp; |
|
mpz_mod_ui(c,f->coeffp->val.bigp,(unsigned long int)p); |
mpz_mod_ui(c,f->coeffp->val.bigp,(unsigned long int)p); |
cc = (int) mpz_get_si(c); |
cc = (int) mpz_get_si(c); |
if (cc != 0) { |
if (cc != 0) { |
h->next = newCell(newCoeff(),monomialCopy(f->m)); |
h->next = newCell(newCoeff(),monomialCopy(f->m)); |
h = h->next; |
h = h->next; |
h->m->ringp = ringp; |
h->m->ringp = ringp; |
h->coeffp->tag = INTEGER; |
h->coeffp->tag = INTEGER; |
h->coeffp->p = p; |
h->coeffp->p = p; |
h->coeffp->val.i = cc; |
h->coeffp->val.i = cc; |
} |
} |
f = f->next; |
f = f->next; |
} |
} |
Line 403 struct ring *ringp; |
|
Line 405 struct ring *ringp; |
|
} |
} |
|
|
POLY modulop(f,ringp) |
POLY modulop(f,ringp) |
POLY f; |
POLY f; |
struct ring *ringp; |
struct ring *ringp; |
/* Z[x] ---> R[x] where R=Z, Z/Zp, ringp->next. */ |
/* Z[x] ---> R[x] where R=Z, Z/Zp, ringp->next. */ |
{ |
{ |
int p; |
int p; |
POLY h; |
POLY h; |
Line 446 struct ring *ringp; |
|
Line 448 struct ring *ringp; |
|
mpz_mod_ui(c,f->coeffp->val.bigp,(unsigned long int)p); |
mpz_mod_ui(c,f->coeffp->val.bigp,(unsigned long int)p); |
cc = (int) mpz_get_si(c); |
cc = (int) mpz_get_si(c); |
if (cc != 0) { |
if (cc != 0) { |
h->next = newCell(newCoeff(),monomialCopy(f->m)); |
h->next = newCell(newCoeff(),monomialCopy(f->m)); |
h = h->next; |
h = h->next; |
h->m->ringp = ringp; |
h->m->ringp = ringp; |
h->coeffp->tag = INTEGER; |
h->coeffp->tag = INTEGER; |
h->coeffp->p = p; |
h->coeffp->p = p; |
h->coeffp->val.i = cc; |
h->coeffp->val.i = cc; |
} |
} |
f = f->next; |
f = f->next; |
} |
} |
Line 470 struct ring *ringp; |
|
Line 472 struct ring *ringp; |
|
} |
} |
|
|
POLY modulopZ(f,pcoeff) |
POLY modulopZ(f,pcoeff) |
POLY f; |
POLY f; |
struct coeff *pcoeff; |
struct coeff *pcoeff; |
/* Z[x] ---> Z[x] , f ---> f mod pcoeff*/ |
/* Z[x] ---> Z[x] , f ---> f mod pcoeff*/ |
{ |
{ |
int p; |
int p; |
POLY h; |
POLY h; |
Line 534 struct coeff *pcoeff; |
|
Line 536 struct coeff *pcoeff; |
|
} |
} |
|
|
struct pairOfPOLY quotientByNumber(f,pcoeff) |
struct pairOfPOLY quotientByNumber(f,pcoeff) |
POLY f; |
POLY f; |
struct coeff *pcoeff; |
struct coeff *pcoeff; |
/* Z[x] ---> Z[x],Z[x] , f = first*pcoeff + second */ |
/* Z[x] ---> Z[x],Z[x] , f = first*pcoeff + second */ |
{ |
{ |
int p; |
int p; |
POLY h; |
POLY h; |
Line 630 struct coeff *pcoeff; |
|
Line 632 struct coeff *pcoeff; |
|
|
|
|
|
POLY modulo0(f,ringp) |
POLY modulo0(f,ringp) |
POLY f; |
POLY f; |
struct ring *ringp; |
struct ring *ringp; |
{ |
{ |
int p; |
int p; |
POLY h; |
POLY h; |
Line 649 struct ring *ringp; |
|
Line 651 struct ring *ringp; |
|
node = pcmCopy(f); |
node = pcmCopy(f); |
f = node; |
f = node; |
while (f != POLYNULL) { |
while (f != POLYNULL) { |
f->m->ringp = ringp; /* Touch the monomial "ringp" field. */ |
f->m->ringp = ringp; /* Touch the monomial "ringp" field. */ |
f = f->next; |
f = f->next; |
} |
} |
return(node); |
return(node); |
} |
} |
Line 691 struct ring *ringp; |
|
Line 693 struct ring *ringp; |
|
|
|
|
|
struct object test(ob) /* test3 */ |
struct object test(ob) /* test3 */ |
struct object ob; |
struct object ob; |
{ |
{ |
struct object rob; |
struct object rob = OINIT; |
int k; |
int k; |
static POLY f0; |
static POLY f0; |
static POLY f1; |
static POLY f1; |
Line 713 struct object ob; |
|
Line 715 struct object ob; |
|
for (i=k; i>=0; i--) { |
for (i=k; i>=0; i--) { |
f0->next = bxx(BiiPower(-k,i),0,i,CurrentRingp); |
f0->next = bxx(BiiPower(-k,i),0,i,CurrentRingp); |
if (f0->next != POLYNULL) { |
if (f0->next != POLYNULL) { |
f0 = f0->next; |
f0 = f0->next; |
} |
} |
} |
} |
f0 = addNode->next; |
f0 = addNode->next; |
Line 725 struct object ob; |
|
Line 727 struct object ob; |
|
for (i=k; i>=0; i--) { |
for (i=k; i>=0; i--) { |
f1->next = bxx(BiiPower(k,i),0,i,CurrentRingp); |
f1->next = bxx(BiiPower(k,i),0,i,CurrentRingp); |
if (f1->next != POLYNULL) { |
if (f1->next != POLYNULL) { |
f1 = f1->next; |
f1 = f1->next; |
} |
} |
} |
} |
f1 = addNode->next; |
f1 = addNode->next; |
Line 745 struct object ob; |
|
Line 747 struct object ob; |
|
|
|
|
|
int pLength(f) |
int pLength(f) |
POLY f; |
POLY f; |
{ |
{ |
int c=0; |
int c=0; |
if (f ISZERO) return(0); |
if (f ISZERO) return(0); |
|
|
|
|
|
|
POLY ppAddv2(f,g,top,nexttop) |
POLY ppAddv2(f,g,top,nexttop) |
POLY f; POLY g; /* It breaks f and g. Use it just after calling mpMult() */ |
POLY f; POLY g; /* It breaks f and g. Use it just after calling mpMult() */ |
POLY top; |
POLY top; |
POLY *nexttop; |
POLY *nexttop; |
/* top is the starting address in the list f. |
/* top is the starting address in the list f. |
if top == POLYNULL, start from f. |
if top == POLYNULL, start from f. |
|
|
*nexttop == 0 |
*nexttop == 0 |
== g |
== g |
== h or 0 |
== h or 0 |
|
|
It must be called as r = ppAddv2(r,g,...); |
It must be called as r = ppAddv2(r,g,...); |
*/ |
*/ |
{ |
{ |
POLY node; |
POLY node; |
|
|
if (top != POLYNULL) { |
if (top != POLYNULL) { |
while (f != top) { |
while (f != top) { |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
fprintf(stderr,"\nppAddv2(): Internal error.\n");fflush(stderr); |
fprintf(stderr,"\nppAddv2(): Internal error.\n");fflush(stderr); |
fprintf(stderr,"f = %s\n",POLYToString(f0,'*',0)); |
fprintf(stderr,"f = %s\n",POLYToString(f0,'*',0)); |
fprintf(stderr,"g = %s\n",POLYToString(g0,'*',0)); |
fprintf(stderr,"g = %s\n",POLYToString(g0,'*',0)); |
fprintf(stderr,"top=%s\n",POLYToString(top,'*',0)); |
fprintf(stderr,"top=%s\n",POLYToString(top,'*',0)); |
errorPoly("ppAddv2(). Internal error=1."); |
errorPoly("ppAddv2(). Internal error=1."); |
} |
} |
h->next = f; |
h->next = f; |
h = h->next; |
h = h->next; |
|
|
h->next = f; |
h->next = f; |
h = h->next; f = f->next;; |
h = h->next; f = f->next;; |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
break; |
break; |
case 0: /* f < g */ |
case 0: /* f < g */ |
h->next = g; |
h->next = g; |
h = h->next; g = g->next; |
h = h->next; g = g->next; |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
break; |
break; |
case 2:/* f == g */ |
case 2:/* f == g */ |
c = g->coeffp; |
c = g->coeffp; |
Cadd(c,f->coeffp,c); |
Cadd(c,f->coeffp,c); |
if (!isZero(c)) { |
if (!isZero(c)) { |
h->next = g; |
h->next = g; |
h = h->next; |
h = h->next; |
f = f->next;; |
f = f->next;; |
g = g->next; |
g = g->next; |
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
}else{ |
}else{ |
if (g == g0) { |
if (g == g0) { |
if (h != node) { |
if (h != node) { |
*nexttop = h; |
*nexttop = h; |
}else{ |
}else{ |
*nexttop = POLYNULL; |
*nexttop = POLYNULL; |
} |
} |
} |
} |
|
|
f = f->next; |
f = f->next; |
g = g->next; |
g = g->next; |
|
|
if (f == POLYNULL) { |
if (f == POLYNULL) { |
h->next = g; |
h->next = g; |
return(node->next); |
return(node->next); |
} |
} |
if (g == POLYNULL) { |
if (g == POLYNULL) { |
h->next = f; |
h->next = f; |
return(node->next); |
return(node->next); |
} |
} |
} |
} |
break; |
break; |
default: |
default: |
|
|
} |
} |
|
|
POLY ppMult(f,g) |
POLY ppMult(f,g) |
POLY f,g; |
POLY f,g; |
{ |
{ |
POLY r; |
POLY r; |
POLY tmp; |
POLY tmp; |
|
|
} |
} |
|
|
POLY ppMult_poly(f,g) |
POLY ppMult_poly(f,g) |
POLY f,g; |
POLY f,g; |
{ |
{ |
POLY r; |
POLY r; |
POLY tmp; |
POLY tmp; |
|
|
} |
} |
|
|
POLY mapZmonom(f,ringp) |
POLY mapZmonom(f,ringp) |
POLY f; /* assumes monomial. f \in Z[x] */ |
POLY f; /* assumes monomial. f \in Z[x] */ |
struct ring *ringp; /* R[x] */ |
struct ring *ringp; /* R[x] */ |
{ |
{ |
struct ring *nextRing; |
struct ring *nextRing; |
struct ring nextRing0; |
struct ring nextRing0; |
Line 946 struct ring *ringp; /* R[x] */ |
|
Line 948 struct ring *ringp; /* R[x] */ |
|
node->coeffp->val.f = ff; |
node->coeffp->val.f = ff; |
return(node); |
return(node); |
} |
} |
|
|
|
POLY reduceContentOfPoly(POLY f,struct coeff **contp) { |
|
struct coeff *cont; |
|
struct coeff *cOne = NULL; |
|
extern struct ring *SmallRingp; |
|
if (cOne == NULL) cOne = intToCoeff(1,SmallRingp); |
|
*contp = cOne; |
|
|
|
if (f == POLYNULL) return f; |
|
if (f->m->ringp->p != 0) return f; |
|
if (f->coeffp->tag != MP_INTEGER) return f; |
|
cont = gcdOfCoeff(f); |
|
*contp = cont; |
|
if (coeffGreater(cont,cOne)) { |
|
f = quotientByNumber(f,cont).first; |
|
} |
|
return f; |
|
} |
|
|
|
int coeffSizeMin(POLY f) { |
|
int size; |
|
int t; |
|
if (f == POLYNULL) return 0; |
|
if (f->m->ringp->p != 0) return 0; |
|
if (f->coeffp->tag != MP_INTEGER) return 0; |
|
size = mpz_size(f->coeffp->val.bigp); |
|
while (f != POLYNULL) { |
|
t = mpz_size(f->coeffp->val.bigp); |
|
if (t < size) size = t; |
|
if (size == 1) return size; |
|
f = f->next; |
|
} |
|
} |
|
|
|
struct coeff *gcdOfCoeff(POLY f) { |
|
extern struct ring *SmallRingp; |
|
struct coeff *t; |
|
MP_INT *tmp; |
|
MP_INT *tmp2; |
|
static MP_INT *cOne = NULL; |
|
if (cOne == NULL) { |
|
cOne = newMP_INT(); |
|
mpz_set_si(cOne,(long) 1); |
|
} |
|
if (f == POLYNULL) return intToCoeff(0,SmallRingp); |
|
if (f->m->ringp->p != 0) return intToCoeff(0,SmallRingp); |
|
if (f->coeffp->tag != MP_INTEGER) return intToCoeff(0,SmallRingp); |
|
tmp = f->coeffp->val.bigp; |
|
tmp2 = newMP_INT(); |
|
while (f != POLYNULL) { |
|
mpz_gcd(tmp2,tmp,f->coeffp->val.bigp); /* tmp = tmp2 OK? */ |
|
tmp = tmp2; |
|
if (mpz_cmp(tmp,cOne)==0) return intToCoeff(1,SmallRingp); |
|
f = f->next; |
|
} |
|
return mpintToCoeff(tmp,SmallRingp); |
|
|
|
} |
|
|
|
int shouldReduceContent(POLY f,int ss) { |
|
extern DoCancel; |
|
static int prevSize = 1; |
|
int size; |
|
if (f == POLYNULL) return 0; |
|
if (f->m->ringp->p != 0) return 0; |
|
if (f->coeffp->tag != MP_INTEGER) return 0; |
|
if (DoCancel & 2) return 1; |
|
/* Apply the Noro strategy to reduce content. */ |
|
size = mpz_size(f->coeffp->val.bigp); |
|
if (ss > 0) { |
|
prevSize = size; |
|
return 0; |
|
} |
|
if (size > 2*prevSize) { |
|
return 1; |
|
}else{ |
|
return 0; |
|
} |
|
} |