[BACK]Return to random.c CVS log [TXT][DIR] Up to [local] / OpenXM / src / kan96xx / gmp-2.0.2-ssh-2

Annotation of OpenXM/src/kan96xx/gmp-2.0.2-ssh-2/random.c, Revision 1.1.1.1

1.1       takayama    1: /*
                      2:  * Copyright (c) 1983 Regents of the University of California.
                      3:  * All rights reserved.
                      4:  *
                      5:  * Redistribution and use in source and binary forms, with or without
                      6:  * modification, are permitted provided that the following conditions
                      7:  * are met:
                      8:  * 1. Redistributions of source code must retain the above copyright
                      9:  *    notice, this list of conditions and the following disclaimer.
                     10:  * 2. Redistributions in binary form must reproduce the above copyright
                     11:  *    notice, this list of conditions and the following disclaimer in the
                     12:  *    documentation and/or other materials provided with the distribution.
                     13:  * 3. All advertising materials mentioning features or use of this software
                     14:  *    must display the following acknowledgement:
                     15:  *     This product includes software developed by the University of
                     16:  *     California, Berkeley and its contributors.
                     17:  * 4. Neither the name of the University nor the names of its contributors
                     18:  *    may be used to endorse or promote products derived from this software
                     19:  *    without specific prior written permission.
                     20:  *
                     21:  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
                     22:  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
                     23:  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
                     24:  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
                     25:  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
                     26:  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
                     27:  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
                     28:  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
                     29:  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
                     30:  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
                     31:  * SUCH DAMAGE.
                     32:  */
                     33:
                     34: #if defined(LIBC_SCCS) && !defined(lint)
                     35: static char sccsid[] = "@(#)random.c   5.9 (Berkeley) 2/23/91";
                     36: #endif /* LIBC_SCCS and not lint */
                     37:
                     38: #include <stdio.h>
                     39: #include <stdlib.h>
                     40: #include <sys/types.h>
                     41:
                     42: /*
                     43:  * random.c:
                     44:  *
                     45:  * An improved random number generation package.  In addition to the standard
                     46:  * rand()/srand() like interface, this package also has a special state info
                     47:  * interface.  The initstate() routine is called with a seed, an array of
                     48:  * bytes, and a count of how many bytes are being passed in; this array is
                     49:  * then initialized to contain information for random number generation with
                     50:  * that much state information.  Good sizes for the amount of state
                     51:  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
                     52:  * calling the setstate() routine with the same array as was initiallized
                     53:  * with initstate().  By default, the package runs with 128 bytes of state
                     54:  * information and generates far better random numbers than a linear
                     55:  * congruential generator.  If the amount of state information is less than
                     56:  * 32 bytes, a simple linear congruential R.N.G. is used.
                     57:  *
                     58:  * Internally, the state information is treated as an array of longs; the
                     59:  * zeroeth element of the array is the type of R.N.G. being used (small
                     60:  * integer); the remainder of the array is the state information for the
                     61:  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
                     62:  * state information, which will allow a degree seven polynomial.  (Note:
                     63:  * the zeroeth word of state information also has some other information
                     64:  * stored in it -- see setstate() for details).
                     65:  *
                     66:  * The random number generation technique is a linear feedback shift register
                     67:  * approach, employing trinomials (since there are fewer terms to sum up that
                     68:  * way).  In this approach, the least significant bit of all the numbers in
                     69:  * the state table will act as a linear feedback shift register, and will
                     70:  * have period 2^deg - 1 (where deg is the degree of the polynomial being
                     71:  * used, assuming that the polynomial is irreducible and primitive).  The
                     72:  * higher order bits will have longer periods, since their values are also
                     73:  * influenced by pseudo-random carries out of the lower bits.  The total
                     74:  * period of the generator is approximately deg*(2**deg - 1); thus doubling
                     75:  * the amount of state information has a vast influence on the period of the
                     76:  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
                     77:  * large deg, when the period of the shift register is the dominant factor.
                     78:  * With deg equal to seven, the period is actually much longer than the
                     79:  * 7*(2**7 - 1) predicted by this formula.
                     80:  */
                     81:
                     82: /*
                     83:  * For each of the currently supported random number generators, we have a
                     84:  * break value on the amount of state information (you need at least this
                     85:  * many bytes of state info to support this random number generator), a degree
                     86:  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
                     87:  * the separation between the two lower order coefficients of the trinomial.
                     88:  */
                     89: #define        TYPE_0          0               /* linear congruential */
                     90: #define        BREAK_0         8
                     91: #define        DEG_0           0
                     92: #define        SEP_0           0
                     93:
                     94: #define        TYPE_1          1               /* x**7 + x**3 + 1 */
                     95: #define        BREAK_1         32
                     96: #define        DEG_1           7
                     97: #define        SEP_1           3
                     98:
                     99: #define        TYPE_2          2               /* x**15 + x + 1 */
                    100: #define        BREAK_2         64
                    101: #define        DEG_2           15
                    102: #define        SEP_2           1
                    103:
                    104: #define        TYPE_3          3               /* x**31 + x**3 + 1 */
                    105: #define        BREAK_3         128
                    106: #define        DEG_3           31
                    107: #define        SEP_3           3
                    108:
                    109: #define        TYPE_4          4               /* x**63 + x + 1 */
                    110: #define        BREAK_4         256
                    111: #define        DEG_4           63
                    112: #define        SEP_4           1
                    113:
                    114: /*
                    115:  * Array versions of the above information to make code run faster --
                    116:  * relies on fact that TYPE_i == i.
                    117:  */
                    118: #define        MAX_TYPES       5               /* max number of types above */
                    119:
                    120: static int degrees[MAX_TYPES] =        { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
                    121: static int seps [MAX_TYPES] =  { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
                    122:
                    123: /*
                    124:  * Initially, everything is set up as if from:
                    125:  *
                    126:  *     initstate(1, &randtbl, 128);
                    127:  *
                    128:  * Note that this initialization takes advantage of the fact that srandom()
                    129:  * advances the front and rear pointers 10*rand_deg times, and hence the
                    130:  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
                    131:  * element of the state information, which contains info about the current
                    132:  * position of the rear pointer is just
                    133:  *
                    134:  *     MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
                    135:  */
                    136:
                    137: static long randtbl[DEG_3 + 1] = {
                    138:        TYPE_3,
                    139:        0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
                    140:        0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
                    141:        0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
                    142:        0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
                    143:        0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
                    144:        0x27fb47b9,
                    145: };
                    146:
                    147: /*
                    148:  * fptr and rptr are two pointers into the state info, a front and a rear
                    149:  * pointer.  These two pointers are always rand_sep places aparts, as they
                    150:  * cycle cyclically through the state information.  (Yes, this does mean we
                    151:  * could get away with just one pointer, but the code for random() is more
                    152:  * efficient this way).  The pointers are left positioned as they would be
                    153:  * from the call
                    154:  *
                    155:  *     initstate(1, randtbl, 128);
                    156:  *
                    157:  * (The position of the rear pointer, rptr, is really 0 (as explained above
                    158:  * in the initialization of randtbl) because the state table pointer is set
                    159:  * to point to randtbl[1] (as explained below).
                    160:  */
                    161: static long *fptr = &randtbl[SEP_3 + 1];
                    162: static long *rptr = &randtbl[1];
                    163:
                    164: /*
                    165:  * The following things are the pointer to the state information table, the
                    166:  * type of the current generator, the degree of the current polynomial being
                    167:  * used, and the separation between the two pointers.  Note that for efficiency
                    168:  * of random(), we remember the first location of the state information, not
                    169:  * the zeroeth.  Hence it is valid to access state[-1], which is used to
                    170:  * store the type of the R.N.G.  Also, we remember the last location, since
                    171:  * this is more efficient than indexing every time to find the address of
                    172:  * the last element to see if the front and rear pointers have wrapped.
                    173:  */
                    174: static long *state = &randtbl[1];
                    175: static int rand_type = TYPE_3;
                    176: static int rand_deg = DEG_3;
                    177: static int rand_sep = SEP_3;
                    178: static long *end_ptr = &randtbl[DEG_3 + 1];
                    179:
                    180: long random();
                    181:
                    182: /*
                    183:  * srandom:
                    184:  *
                    185:  * Initialize the random number generator based on the given seed.  If the
                    186:  * type is the trivial no-state-information type, just remember the seed.
                    187:  * Otherwise, initializes state[] based on the given "seed" via a linear
                    188:  * congruential generator.  Then, the pointers are set to known locations
                    189:  * that are exactly rand_sep places apart.  Lastly, it cycles the state
                    190:  * information a given number of times to get rid of any initial dependencies
                    191:  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
                    192:  * for default usage relies on values produced by this routine.
                    193:  */
                    194: void
                    195: srandom(x)
                    196:        unsigned int x;
                    197: {
                    198:        register int i, j;
                    199:
                    200:        if (rand_type == TYPE_0)
                    201:                state[0] = x;
                    202:        else {
                    203:                j = 1;
                    204:                state[0] = x;
                    205:                for (i = 1; i < rand_deg; i++)
                    206:                        state[i] = 1103515245 * state[i - 1] + 12345;
                    207:                fptr = &state[rand_sep];
                    208:                rptr = &state[0];
                    209:                for (i = 0; i < 10 * rand_deg; i++)
                    210:                        (void)random();
                    211:        }
                    212: }
                    213:
                    214: /*
                    215:  * initstate:
                    216:  *
                    217:  * Initialize the state information in the given array of n bytes for future
                    218:  * random number generation.  Based on the number of bytes we are given, and
                    219:  * the break values for the different R.N.G.'s, we choose the best (largest)
                    220:  * one we can and set things up for it.  srandom() is then called to
                    221:  * initialize the state information.
                    222:  *
                    223:  * Note that on return from srandom(), we set state[-1] to be the type
                    224:  * multiplexed with the current value of the rear pointer; this is so
                    225:  * successive calls to initstate() won't lose this information and will be
                    226:  * able to restart with setstate().
                    227:  *
                    228:  * Note: the first thing we do is save the current state, if any, just like
                    229:  * setstate() so that it doesn't matter when initstate is called.
                    230:  *
                    231:  * Returns a pointer to the old state.
                    232:  */
                    233: char *
                    234: initstate(seed, arg_state, n)
                    235:        unsigned int seed;                      /* seed for R.N.G. */
                    236:        char *arg_state;                /* pointer to state array */
                    237:        int n;                          /* # bytes of state info */
                    238: {
                    239:        register char *ostate = (char *)(&state[-1]);
                    240:
                    241:        if (rand_type == TYPE_0)
                    242:                state[-1] = rand_type;
                    243:        else
                    244:                state[-1] = MAX_TYPES * (rptr - state) + rand_type;
                    245:        if (n < BREAK_0) {
                    246:                (void)fprintf(stderr,
                    247:                    "random: not enough state (%d bytes); ignored.\n", n);
                    248:                return(0);
                    249:        }
                    250:        if (n < BREAK_1) {
                    251:                rand_type = TYPE_0;
                    252:                rand_deg = DEG_0;
                    253:                rand_sep = SEP_0;
                    254:        } else if (n < BREAK_2) {
                    255:                rand_type = TYPE_1;
                    256:                rand_deg = DEG_1;
                    257:                rand_sep = SEP_1;
                    258:        } else if (n < BREAK_3) {
                    259:                rand_type = TYPE_2;
                    260:                rand_deg = DEG_2;
                    261:                rand_sep = SEP_2;
                    262:        } else if (n < BREAK_4) {
                    263:                rand_type = TYPE_3;
                    264:                rand_deg = DEG_3;
                    265:                rand_sep = SEP_3;
                    266:        } else {
                    267:                rand_type = TYPE_4;
                    268:                rand_deg = DEG_4;
                    269:                rand_sep = SEP_4;
                    270:        }
                    271:        state = &(((long *)arg_state)[1]);      /* first location */
                    272:        end_ptr = &state[rand_deg];     /* must set end_ptr before srandom */
                    273:        srandom(seed);
                    274:        if (rand_type == TYPE_0)
                    275:                state[-1] = rand_type;
                    276:        else
                    277:                state[-1] = MAX_TYPES*(rptr - state) + rand_type;
                    278:        return(ostate);
                    279: }
                    280:
                    281: /*
                    282:  * setstate:
                    283:  *
                    284:  * Restore the state from the given state array.
                    285:  *
                    286:  * Note: it is important that we also remember the locations of the pointers
                    287:  * in the current state information, and restore the locations of the pointers
                    288:  * from the old state information.  This is done by multiplexing the pointer
                    289:  * location into the zeroeth word of the state information.
                    290:  *
                    291:  * Note that due to the order in which things are done, it is OK to call
                    292:  * setstate() with the same state as the current state.
                    293:  *
                    294:  * Returns a pointer to the old state information.
                    295:  */
                    296: char *
                    297: setstate(arg_state)
                    298:        char *arg_state;
                    299: {
                    300:        register long *new_state = (long *)arg_state;
                    301:        register int type = new_state[0] % MAX_TYPES;
                    302:        register int rear = new_state[0] / MAX_TYPES;
                    303:        char *ostate = (char *)(&state[-1]);
                    304:
                    305:        if (rand_type == TYPE_0)
                    306:                state[-1] = rand_type;
                    307:        else
                    308:                state[-1] = MAX_TYPES * (rptr - state) + rand_type;
                    309:        switch(type) {
                    310:        case TYPE_0:
                    311:        case TYPE_1:
                    312:        case TYPE_2:
                    313:        case TYPE_3:
                    314:        case TYPE_4:
                    315:                rand_type = type;
                    316:                rand_deg = degrees[type];
                    317:                rand_sep = seps[type];
                    318:                break;
                    319:        default:
                    320:                (void)fprintf(stderr,
                    321:                    "random: state info corrupted; not changed.\n");
                    322:        }
                    323:        state = &new_state[1];
                    324:        if (rand_type != TYPE_0) {
                    325:                rptr = &state[rear];
                    326:                fptr = &state[(rear + rand_sep) % rand_deg];
                    327:        }
                    328:        end_ptr = &state[rand_deg];             /* set end_ptr too */
                    329:        return(ostate);
                    330: }
                    331:
                    332: /*
                    333:  * random:
                    334:  *
                    335:  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
                    336:  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
                    337:  * the same in all the other cases due to all the global variables that have
                    338:  * been set up.  The basic operation is to add the number at the rear pointer
                    339:  * into the one at the front pointer.  Then both pointers are advanced to
                    340:  * the next location cyclically in the table.  The value returned is the sum
                    341:  * generated, reduced to 31 bits by throwing away the "least random" low bit.
                    342:  *
                    343:  * Note: the code takes advantage of the fact that both the front and
                    344:  * rear pointers can't wrap on the same call by not testing the rear
                    345:  * pointer if the front one has wrapped.
                    346:  *
                    347:  * Returns a 31-bit random number.
                    348:  */
                    349: long
                    350: random()
                    351: {
                    352:        long i;
                    353:
                    354:        if (rand_type == TYPE_0)
                    355:                i = state[0] = (state[0] * 1103515245 + 12345) & 0x7fffffff;
                    356:        else {
                    357:                *fptr += *rptr;
                    358:                i = (*fptr >> 1) & 0x7fffffff;  /* chucking least random bit */
                    359:                if (++fptr >= end_ptr) {
                    360:                        fptr = state;
                    361:                        ++rptr;
                    362:                } else if (++rptr >= end_ptr)
                    363:                        rptr = state;
                    364:        }
                    365:        return(i);
                    366: }
                    367:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>