Annotation of OpenXM_contrib/PHC/Ada/Homotopy/homogenization.ads, Revision 1.1
1.1 ! maekawa 1: with Standard_Complex_Polynomials; use Standard_Complex_Polynomials;
! 2: with Standard_Complex_Poly_Systems; use Standard_Complex_Poly_Systems;
! 3:
! 4: package Homogenization is
! 5:
! 6: -- DESCRIPTION :
! 7: -- This package provides routines for constructing additional
! 8: -- equations to a system for projective transformations.
! 9: -- There is also a routine that isolates the homogeneous part
! 10: -- of a given polynomial system.
! 11:
! 12: function Homogeneous_Part ( p : Poly ) return Poly;
! 13: function Homogeneous_Part ( p : Poly_Sys ) return Poly_Sys;
! 14:
! 15: -- DESCRIPTION :
! 16: -- These functions isolate all terms having a degree equal to
! 17: -- the degree of the polynomial.
! 18:
! 19: function Add_Equations ( s1 : Poly_Sys; s2 : Poly_Sys ) return Poly_Sys;
! 20:
! 21: -- DESCRIPTION :
! 22: -- The resulting polynomial system is the concatenation of s1 and s2.
! 23:
! 24: function Add_Equation ( s : Poly_Sys; p : Poly ) return Poly_Sys;
! 25:
! 26: -- DESCRIPTION :
! 27: -- the resulting polynomial system is the concatenation
! 28: -- of the system s and the polynomial p
! 29:
! 30: function Add_Random_Hyperplanes
! 31: ( s : Poly_Sys; m : natural; re : boolean ) return Poly_Sys;
! 32:
! 33: -- DESCRIPTION :
! 34: -- To the polynomial system s, m hyperplanes are added with
! 35: -- randomly choosen coefficients;
! 36: -- if re = true
! 37: -- then the coefficients will be floating point numbers;
! 38: -- else the coefficients will be complex numbers.
! 39:
! 40: function Add_Standard_Hyperplanes
! 41: ( s : Poly_Sys; m : natural ) return Poly_Sys;
! 42:
! 43: -- DESCRIPTION :
! 44: -- If n = Number_Of_Unknowns(s(i)), for i in s'range,
! 45: -- then m hyperplanes of the form
! 46: -- x_(j+n) - 1 = 0 will be added, for j in 1..m,
! 47: -- to the system s.
! 48:
! 49: end Homogenization;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>