Annotation of OpenXM_contrib/PHC/Ada/Homotopy/homogenization.ads, Revision 1.1.1.1
1.1 maekawa 1: with Standard_Complex_Polynomials; use Standard_Complex_Polynomials;
2: with Standard_Complex_Poly_Systems; use Standard_Complex_Poly_Systems;
3:
4: package Homogenization is
5:
6: -- DESCRIPTION :
7: -- This package provides routines for constructing additional
8: -- equations to a system for projective transformations.
9: -- There is also a routine that isolates the homogeneous part
10: -- of a given polynomial system.
11:
12: function Homogeneous_Part ( p : Poly ) return Poly;
13: function Homogeneous_Part ( p : Poly_Sys ) return Poly_Sys;
14:
15: -- DESCRIPTION :
16: -- These functions isolate all terms having a degree equal to
17: -- the degree of the polynomial.
18:
19: function Add_Equations ( s1 : Poly_Sys; s2 : Poly_Sys ) return Poly_Sys;
20:
21: -- DESCRIPTION :
22: -- The resulting polynomial system is the concatenation of s1 and s2.
23:
24: function Add_Equation ( s : Poly_Sys; p : Poly ) return Poly_Sys;
25:
26: -- DESCRIPTION :
27: -- the resulting polynomial system is the concatenation
28: -- of the system s and the polynomial p
29:
30: function Add_Random_Hyperplanes
31: ( s : Poly_Sys; m : natural; re : boolean ) return Poly_Sys;
32:
33: -- DESCRIPTION :
34: -- To the polynomial system s, m hyperplanes are added with
35: -- randomly choosen coefficients;
36: -- if re = true
37: -- then the coefficients will be floating point numbers;
38: -- else the coefficients will be complex numbers.
39:
40: function Add_Standard_Hyperplanes
41: ( s : Poly_Sys; m : natural ) return Poly_Sys;
42:
43: -- DESCRIPTION :
44: -- If n = Number_Of_Unknowns(s(i)), for i in s'range,
45: -- then m hyperplanes of the form
46: -- x_(j+n) - 1 = 0 will be added, for j in 1..m,
47: -- to the system s.
48:
49: end Homogenization;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>