Annotation of OpenXM_contrib/PHC/Ada/Homotopy/reduction_of_polynomials.ads, Revision 1.1.1.1
1.1 maekawa 1: with Standard_Complex_Polynomials; use Standard_Complex_Polynomials;
2:
3: package Reduction_of_Polynomials is
4:
5: -- DESCRIPTION :
6: -- This package implements S-polynomials and R-polynomials.
7:
8: function Spoly ( p,q : poly ) return Poly;
9:
10: -- DESCRIPTION :
11: -- Returns the S-polynomial of p and q :
12: -- lcm(in(p),in(q)) lcm(in(p),in(q))
13: -- S = c_q * ---------------- p - c_p * ---------------- q
14: -- in(p) in(q)
15: -- where lcm stands for the least common multiple,
16: -- in(p) is the leading term of the polynomial p
17: -- and the coefficients c_q and c_p are chosen such that
18: -- their moduli are smaller than or equal to 1.
19:
20: function Rpoly ( p,q : Poly ) return Poly;
21:
22: -- DESCRIPTION :
23: -- Returns the R-polynomial of the polynomials p and q :
24: -- c_p lcm(in(p),term(q))
25: -- R = p - --- * ------------------ * q
26: -- c_q term(q)
27: -- such that the leading term of p vanishes.
28:
29: end Reduction_of_Polynomials;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>