Annotation of OpenXM_contrib/PHC/Ada/Math_Lib/Polynomials/generic_laurent_polynomials.ads, Revision 1.1.1.1
1.1 maekawa 1: with Abstract_Ring;
2: with Standard_Integer_Vectors;
3:
4: generic
5:
6: with package Ring is new Abstract_Ring(<>);
7:
8: package Generic_Laurent_Polynomials is
9:
10: -- DESCRIPTION :
11: -- This package represents Laurent polynomials in several variables with
12: -- coefficients over any ring, to be specified by instantiation.
13: -- The exponents can be negative.
14:
15: use Ring;
16:
17: -- DATA STRUCTURES :
18:
19: type Degrees is new Standard_Integer_Vectors.Link_to_Vector;
20:
21: type Term is record
22: cf : number; -- coefficient of the term
23: dg : Degrees; -- the degrees of the term
24: end record;
25:
26: type Poly is private;
27:
28: Null_Poly : constant Poly; -- represents zero in the polynomial ring
29: One_Poly : constant Poly; -- represents one in the polynomial ring
30:
31: -- CONSTRUCTORS :
32:
33: function Create ( n : natural ) return Poly;
34: function Create ( n : number ) return Poly;
35:
36: function Create ( t : Term ) return Poly;
37:
38: procedure Copy ( t1 : in Term; t2 : in out Term ); -- makes a deep copy
39: procedure Copy ( p: in Poly; q : in out Poly );
40:
41: -- SELECTORS :
42:
43: function Equal ( t1,t2 : Term ) return boolean;
44: function Equal ( p,q : Poly ) return boolean;
45:
46: function Number_of_Unknowns ( p : Poly ) return natural;
47: function Number_of_Terms ( p : Poly ) return natural;
48:
49: function Degree ( p : Poly ) return integer; -- return deg(p);
50:
51: function Maximal_Degree ( p : Poly; i : natural ) return integer;
52: -- returns maximal degree of xi in p;
53: function Maximal_Degrees ( p : Poly ) return Degrees;
54: -- Maximal_Degrees(p)(i) = Maximal_Degree(p,i)
55: function Minimal_Degree ( p : Poly; i : natural ) return integer;
56: -- returns minimal degree of xi in p;
57: function Minimal_Degrees ( p : Poly ) return Degrees;
58: -- Minimal_Degrees(p)(i) = Minimal_Degree(p,i)
59:
60: function "<" ( d1,d2 : Degrees ) return boolean; -- return d1 < d2
61: function ">" ( d1,d2 : Degrees ) return boolean; -- return d1 > d2
62:
63: function Coeff ( p : Poly; d : Degrees ) return number;
64: -- Ex.: Coeff(c1*x^2+c2*x*y^3,(1 2))=c2; Coeff(c1*x^2+c2,(1 0))=zero;
65:
66: -- ARITHMETICAL OPERATIONS :
67:
68: function "+" ( p : Poly; t : Term ) return Poly; -- return p+t;
69: function "+" ( t : Term; p : Poly ) return Poly; -- return t+p;
70: function "+" ( p : Poly ) return Poly; -- returns copy of p;
71: function "+" ( p,q : Poly ) return Poly; -- return p+q;
72: function "-" ( p : Poly; t : Term ) return Poly; -- return p-t;
73: function "-" ( t : Term; p : Poly ) return Poly; -- return t-p;
74: function "-" ( p : Poly ) return Poly; -- return -p;
75: function "-" ( p,q : Poly ) return Poly; -- return p-q;
76: function "*" ( p : Poly; a : number ) return Poly; -- return a*p;
77: function "*" ( a : number; p : Poly ) return Poly; -- return p*a;
78: function "*" ( p : Poly; t : Term ) return Poly; -- return p*t;
79: function "*" ( t : Term; p : Poly ) return Poly; -- return t*p;
80: function "*" ( p,q : Poly ) return Poly; -- return p*q;
81:
82: procedure Add ( p : in out Poly; t : in Term ); -- p := p + t;
83: procedure Add ( p : in out Poly; q : in Poly ); -- p := p + q;
84: procedure Sub ( p : in out Poly; t : in Term ); -- p := p - t;
85: procedure Min ( p : in out Poly ); -- p := -p;
86: procedure Sub ( p : in out Poly; q : in Poly ); -- p := p - q;
87: procedure Mul ( p : in out Poly; a : in number ); -- p := p * a;
88: procedure Mul ( p : in out Poly; t : in Term ); -- p := p * t;
89: procedure Mul ( p : in out Poly; q : in Poly ); -- p := p * q;
90:
91: function Diff ( p : Poly; i : integer ) return Poly;
92: procedure Diff ( p : in out Poly; i : in integer );
93: -- symbolic differentiation w.r.t. the i-th unknown of p
94:
95: -- ITERATORS : run through all terms of p and apply the generic procedure.
96:
97: generic
98: with procedure process ( t : in out Term; continue : out boolean );
99: procedure Changing_Iterator ( p : in out Poly ); -- t can be changed
100: generic
101: with procedure process ( t : in Term; continue : out boolean );
102: procedure Visiting_Iterator ( p : in Poly ); -- t can only be read
103:
104: -- DESTRUCTORS : deallocate memory.
105:
106: procedure Clear ( t : in out Term );
107: procedure Clear ( p : in out Poly );
108:
109: private
110:
111: type Poly_Rep;
112: type Poly is access Poly_Rep;
113:
114: Null_Poly : constant Poly := null;
115:
116: One_Term : constant Term := (one,null);
117: One_Poly : constant Poly := Create(One_Term);
118:
119: end Generic_Laurent_Polynomials;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>