Annotation of OpenXM_contrib/PHC/Ada/Math_Lib/Polynomials/generic_polynomials.ads, Revision 1.1
1.1 ! maekawa 1: with Abstract_Ring;
! 2: with Standard_Natural_Vectors;
! 3:
! 4: generic
! 5:
! 6: with package Ring is new Abstract_Ring(<>);
! 7:
! 8: package Generic_Polynomials is
! 9:
! 10: -- DESCRIPTION :
! 11: -- This package represents polynomials in several variables with
! 12: -- coefficients over any ring, to be specified by instantiation.
! 13:
! 14: use Ring;
! 15:
! 16: -- DATA STRUCTURES :
! 17:
! 18: type Degrees is new Standard_Natural_Vectors.Link_to_Vector;
! 19:
! 20: type Term is record
! 21: cf : number; -- coefficient of the term
! 22: dg : Degrees; -- the degrees of the term
! 23: end record;
! 24:
! 25: type Poly is private;
! 26:
! 27: Null_Poly : constant Poly; -- represents zero in the polynomial ring
! 28: One_Poly : constant Poly; -- represents one in the polynomial ring
! 29:
! 30: -- CONSTRUCTORS :
! 31:
! 32: function Create ( n : natural ) return Poly;
! 33: function Create ( n : number ) return Poly;
! 34:
! 35: function Create ( t : Term ) return Poly;
! 36:
! 37: procedure Copy ( t1 : in Term; t2 : in out Term ); -- makes a deep copy
! 38: procedure Copy ( p: in Poly; q : in out Poly );
! 39:
! 40: -- SELECTORS :
! 41:
! 42: function Equal ( t1,t2 : Term ) return boolean;
! 43: function Equal ( p,q : Poly ) return boolean;
! 44:
! 45: function Number_of_Unknowns ( p : Poly ) return natural;
! 46: function Number_of_Terms ( p : Poly ) return natural;
! 47:
! 48: function Degree ( p : Poly ) return integer; -- return deg(p);
! 49: function Degree ( p : Poly; i : integer ) return integer; -- return deg(p,xi);
! 50:
! 51: function "<" ( d1,d2 : Degrees ) return boolean; -- return d1 < d2
! 52: function ">" ( d1,d2 : Degrees ) return boolean; -- return d1 > d2
! 53:
! 54: function Coeff ( p : Poly; d : Degrees ) return number;
! 55: -- Ex.: Coeff(c1*x^2+c2*x*y^3,(1 2))=c2; Coeff(c1*x^2+c2,(1 0))=zero;
! 56:
! 57: -- ARITHMETICAL OPERATIONS :
! 58:
! 59: function "+" ( p : Poly; t : Term ) return Poly; -- return p+t;
! 60: function "+" ( t : Term; p : Poly ) return Poly; -- return t+p;
! 61: function "+" ( p : Poly ) return Poly; -- returns copy of p;
! 62: function "+" ( p,q : Poly ) return Poly; -- return p+q;
! 63: function "-" ( p : Poly; t : Term ) return Poly; -- return p-t;
! 64: function "-" ( t : Term; p : Poly ) return Poly; -- return t-p;
! 65: function "-" ( p : Poly ) return Poly; -- return -p;
! 66: function "-" ( p,q : Poly ) return Poly; -- return p-q;
! 67: function "*" ( p : Poly; a : number ) return Poly; -- return a*p;
! 68: function "*" ( a : number; p : Poly ) return Poly; -- return p*a;
! 69: function "*" ( p : Poly; t : Term ) return Poly; -- return p*t;
! 70: function "*" ( t : Term; p : Poly ) return Poly; -- return t*p;
! 71: function "*" ( p,q : Poly ) return Poly; -- return p*q;
! 72:
! 73: procedure Add ( p : in out Poly; t : in Term ); -- p := p + t;
! 74: procedure Add ( p : in out Poly; q : in Poly ); -- p := p + q;
! 75: procedure Sub ( p : in out Poly; t : in Term ); -- p := p - t;
! 76: procedure Min ( p : in out Poly ); -- p := -p;
! 77: procedure Sub ( p : in out Poly; q : in Poly ); -- p := p - q;
! 78: procedure Mul ( p : in out Poly; a : in number ); -- p := p * a;
! 79: procedure Mul ( p : in out Poly; t : in Term ); -- p := p * t;
! 80: procedure Mul ( p : in out Poly; q : in Poly ); -- p := p * q;
! 81:
! 82: function Diff ( p : Poly; i : integer ) return Poly;
! 83: procedure Diff ( p : in out Poly; i : in integer );
! 84: -- symbolic differentiation w.r.t. the i-th unknown of p
! 85:
! 86: -- ITERATORS : run through all terms of p and apply the generic procedure.
! 87:
! 88: generic
! 89: with procedure process ( t : in out Term; continue : out boolean );
! 90: procedure Changing_Iterator ( p : in out Poly ); -- t can be changed
! 91: generic
! 92: with procedure process ( t : in Term; continue : out boolean );
! 93: procedure Visiting_Iterator ( p : in Poly ); -- t can only be read
! 94:
! 95: -- DESTRUCTORS : deallocate memory.
! 96:
! 97: procedure Clear ( d : in out Degrees );
! 98: procedure Clear ( t : in out Term );
! 99: procedure Clear ( p : in out Poly );
! 100:
! 101: private
! 102:
! 103: type Poly_Rep;
! 104: type Poly is access Poly_Rep;
! 105:
! 106: Null_Poly : constant Poly := null;
! 107:
! 108: One_Term : constant Term := (one,null);
! 109: One_Poly : constant Poly := Create(One_Term);
! 110:
! 111: end Generic_Polynomials;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>