Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Dynlift/minkowski_polynomials.ads, Revision 1.1
1.1 ! maekawa 1: with Standard_Integer_Vectors; use Standard_Integer_Vectors;
! 2: with Standard_Complex_Polynomials; use Standard_Complex_Polynomials;
! 3: with Triangulations; use Triangulations;
! 4: with Integer_Mixed_Subdivisions; use Integer_Mixed_Subdivisions;
! 5:
! 6: package Minkowski_Polynomials is
! 7:
! 8: -- DESCRIPTION :
! 9: -- This package allows the computation of the Minkowski-polynomial
! 10: -- of a tuple of polytopes (P1,P2,..,Pr). This polynomial is the
! 11: -- expansion of the volume of a positive linear combination of the
! 12: -- polytopes in the tuple: vol_n(l1*P1 + l2*P2 + .. + lr*Pr), which
! 13: -- is a homogeneous polynomial of degree n in the coefficients l1,l2,..,lr,
! 14: -- according to Minkowski's theorem.
! 15:
! 16: function Minkowski_Polynomial ( n,r : natural ) return Poly;
! 17:
! 18: -- DESCRIPTION :
! 19: -- Returns the structure of the Minkowski-polynomial, given the
! 20: -- dimension and the number of different polytopes in the tuple.
! 21:
! 22: -- ON ENTRY :
! 23: -- n dimension of the polytopes before lifting;
! 24: -- r number of different polytopes in the tuple.
! 25:
! 26: -- ON RETURN :
! 27: -- The structure of the Minkowski-polynomial, with all coefficients
! 28: -- equal to one.
! 29:
! 30: procedure Minkowski_Polynomial
! 31: ( p : in out Poly; t : in Triangulation; n : in natural;
! 32: mix : in Vector; mixsub : out Mixed_Subdivision );
! 33:
! 34: -- DESCRIPTION :
! 35: -- Computes the coefficients of the Minkowski-polynomial, given its
! 36: -- structure and based on the triangulation of the Cayley-polytope.
! 37: -- On return, one also obtains the mixed subdivision, corresponding
! 38: -- the given type of mixture.
! 39:
! 40: generic
! 41: with procedure Process ( submix : in Vector; sub : in Mixed_Subdivision;
! 42: vol : out natural );
! 43: procedure Minkowski_Polynomial_Subdivisions
! 44: ( p : in out Poly; t : in Triangulation; n : in natural;
! 45: mix : in Vector; mixsub : out Mixed_Subdivision );
! 46:
! 47: -- DESCRIPTION :
! 48: -- Computes the coefficients of the Minkowski-polynomial, given its
! 49: -- structure and the triangulation of the Cayley polytope.
! 50: -- The generic procedure returns the subdivision for a given type of
! 51: -- mixture and asks to compute its volume.
! 52: -- On return, one also obtains the mixed subdivision, corresponding
! 53: -- the given type of mixture.
! 54:
! 55: end Minkowski_Polynomials;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>