Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Dynlift/minkowski_polynomials.ads, Revision 1.1.1.1
1.1 maekawa 1: with Standard_Integer_Vectors; use Standard_Integer_Vectors;
2: with Standard_Complex_Polynomials; use Standard_Complex_Polynomials;
3: with Triangulations; use Triangulations;
4: with Integer_Mixed_Subdivisions; use Integer_Mixed_Subdivisions;
5:
6: package Minkowski_Polynomials is
7:
8: -- DESCRIPTION :
9: -- This package allows the computation of the Minkowski-polynomial
10: -- of a tuple of polytopes (P1,P2,..,Pr). This polynomial is the
11: -- expansion of the volume of a positive linear combination of the
12: -- polytopes in the tuple: vol_n(l1*P1 + l2*P2 + .. + lr*Pr), which
13: -- is a homogeneous polynomial of degree n in the coefficients l1,l2,..,lr,
14: -- according to Minkowski's theorem.
15:
16: function Minkowski_Polynomial ( n,r : natural ) return Poly;
17:
18: -- DESCRIPTION :
19: -- Returns the structure of the Minkowski-polynomial, given the
20: -- dimension and the number of different polytopes in the tuple.
21:
22: -- ON ENTRY :
23: -- n dimension of the polytopes before lifting;
24: -- r number of different polytopes in the tuple.
25:
26: -- ON RETURN :
27: -- The structure of the Minkowski-polynomial, with all coefficients
28: -- equal to one.
29:
30: procedure Minkowski_Polynomial
31: ( p : in out Poly; t : in Triangulation; n : in natural;
32: mix : in Vector; mixsub : out Mixed_Subdivision );
33:
34: -- DESCRIPTION :
35: -- Computes the coefficients of the Minkowski-polynomial, given its
36: -- structure and based on the triangulation of the Cayley-polytope.
37: -- On return, one also obtains the mixed subdivision, corresponding
38: -- the given type of mixture.
39:
40: generic
41: with procedure Process ( submix : in Vector; sub : in Mixed_Subdivision;
42: vol : out natural );
43: procedure Minkowski_Polynomial_Subdivisions
44: ( p : in out Poly; t : in Triangulation; n : in natural;
45: mix : in Vector; mixsub : out Mixed_Subdivision );
46:
47: -- DESCRIPTION :
48: -- Computes the coefficients of the Minkowski-polynomial, given its
49: -- structure and the triangulation of the Cayley polytope.
50: -- The generic procedure returns the subdivision for a given type of
51: -- mixture and asks to compute its volume.
52: -- On return, one also obtains the mixed subdivision, corresponding
53: -- the given type of mixture.
54:
55: end Minkowski_Polynomials;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>