Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Symmetry/equivariant_polynomial_systems.ads, Revision 1.1
1.1 ! maekawa 1: with Standard_Complex_Poly_Systems; use Standard_Complex_Poly_Systems;
! 2: with Symmetry_Group; use Symmetry_Group;
! 3:
! 4: package Equivariant_Polynomial_Systems is
! 5:
! 6: -- DESCRIPTION :
! 7: -- This package contains procedures for, given a group representation V,
! 8: -- to compute the associated representation W, of a (G,V,W)-symmetric
! 9: -- polynomial system.
! 10:
! 11: procedure Act ( v : in List_of_Permutations; s : in Poly_Sys;
! 12: w : in out List_of_Permutations;
! 13: fail,inva,equi : out boolean );
! 14:
! 15: -- DESCRIPTION :
! 16: -- Each permutation of the list v will be applied on the system s;
! 17: -- the list w contains the results of each permutation.
! 18:
! 19: -- ON ENTRY :
! 20: -- v a list of permutations;
! 21: -- s a polynomial system.
! 22:
! 23: -- ON RETURN :
! 24: -- w a list of Natural_Vectors x
! 25: -- x(i) = j, where j indicates the index of the
! 26: -- resulting polynomial of s, after permutation,
! 27: -- if j = n+1, then the permuted polynomial did not belong to s
! 28: -- and fail will be true on return;
! 29: -- fail true if the system is not (G,V,W)-symmetric, false otherwise;
! 30: -- inva true, if every polynomial in the system remains invariant,
! 31: -- i.e.: Permute(s(i),p) = s(i), with i in s'range,
! 32: -- for every permutation p, false otherwise;
! 33: -- equi true, if v = w, false otherwise.
! 34:
! 35: function Symmetric ( s : Poly_Sys; v,w : List_of_Permutations )
! 36: return boolean;
! 37:
! 38: -- DESCRIPTION :
! 39: -- This routine returns true if s is (G,V,W)-symmetric,
! 40: -- it returns false when s is (G,V,W)-symmetric.
! 41:
! 42: -- ON ENTRY :
! 43: -- s a polynomial system;
! 44: -- v,w representations of the group.
! 45:
! 46: end Equivariant_Polynomial_Systems;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>