Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Symmetry/equivariant_polynomial_systems.ads, Revision 1.1.1.1
1.1 maekawa 1: with Standard_Complex_Poly_Systems; use Standard_Complex_Poly_Systems;
2: with Symmetry_Group; use Symmetry_Group;
3:
4: package Equivariant_Polynomial_Systems is
5:
6: -- DESCRIPTION :
7: -- This package contains procedures for, given a group representation V,
8: -- to compute the associated representation W, of a (G,V,W)-symmetric
9: -- polynomial system.
10:
11: procedure Act ( v : in List_of_Permutations; s : in Poly_Sys;
12: w : in out List_of_Permutations;
13: fail,inva,equi : out boolean );
14:
15: -- DESCRIPTION :
16: -- Each permutation of the list v will be applied on the system s;
17: -- the list w contains the results of each permutation.
18:
19: -- ON ENTRY :
20: -- v a list of permutations;
21: -- s a polynomial system.
22:
23: -- ON RETURN :
24: -- w a list of Natural_Vectors x
25: -- x(i) = j, where j indicates the index of the
26: -- resulting polynomial of s, after permutation,
27: -- if j = n+1, then the permuted polynomial did not belong to s
28: -- and fail will be true on return;
29: -- fail true if the system is not (G,V,W)-symmetric, false otherwise;
30: -- inva true, if every polynomial in the system remains invariant,
31: -- i.e.: Permute(s(i),p) = s(i), with i in s'range,
32: -- for every permutation p, false otherwise;
33: -- equi true, if v = w, false otherwise.
34:
35: function Symmetric ( s : Poly_Sys; v,w : List_of_Permutations )
36: return boolean;
37:
38: -- DESCRIPTION :
39: -- This routine returns true if s is (G,V,W)-symmetric,
40: -- it returns false when s is (G,V,W)-symmetric.
41:
42: -- ON ENTRY :
43: -- s a polynomial system;
44: -- v,w representations of the group.
45:
46: end Equivariant_Polynomial_Systems;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>