Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Symmetry/linear_symmetric_reduction.ads, Revision 1.1
1.1 ! maekawa 1: with Symmetry_Group; use Symmetry_Group;
! 2: with Lists_of_Integer_Vectors; use Lists_of_Integer_Vectors;
! 3:
! 4: package Linear_Symmetric_Reduction is
! 5:
! 6: -- DESCRIPTION :
! 7: -- This package contains two routines that enable the faster
! 8: -- solution of a symmetric product system, by extracting the
! 9: -- generating positions.
! 10:
! 11: function Linear_Symmetric_Reduce ( sign : boolean ) return List;
! 12: function Linear_Symmetric_Reduce ( v,w : List_of_Permutations ) return List;
! 13:
! 14: -- DESCRIPTION :
! 15: -- Returns the generating list of positions in the random product system.
! 16:
! 17: -- REQUIRED : data in package Random_Product_System is not empty.
! 18:
! 19: procedure Linear_Symmetric_Reduce ( lp : in out List; sign : in boolean );
! 20: procedure Linear_Symmetric_Reduce
! 21: ( v,w : in List_of_Permutations; lp : in out List );
! 22:
! 23: -- DESCRIPTION :
! 24: -- Given a (G,V,W)-symmetric product system, a list of positions
! 25: -- that indicate the generating subsystems will be returned.
! 26:
! 27: -- REQUIRED : data in package Random_Product_System is not empty.
! 28:
! 29: -- ON ENTRY :
! 30: -- v,w group representations,
! 31: -- if not provided, then the full permutation group is assumed;
! 32: -- sign if true, then there is also sign symmetry to consider;
! 33: -- lp a list of positions, indicating the useful
! 34: -- linear systems in the product system.
! 35:
! 36: -- ON RETURN :
! 37: -- lp a sublist of the former list,
! 38: -- contains only the generating linear systems.
! 39:
! 40: end Linear_Symmetric_Reduction;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>