Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Symmetry/symmetric_polyhedral_continuation.ads, Revision 1.1
1.1 ! maekawa 1: with text_io; use text_io;
! 2: with Standard_Integer_Vectors; use Standard_Integer_Vectors;
! 3: with Standard_Complex_Laur_Systems; use Standard_Complex_Laur_Systems;
! 4: with Standard_Complex_Solutions; use Standard_Complex_Solutions;
! 5: with Integer_Mixed_Subdivisions; use Integer_Mixed_Subdivisions;
! 6: with Symmetry_Group; use Symmetry_Group;
! 7:
! 8: package Symmetric_Polyhedral_Continuation is
! 9:
! 10: -- DESCRIPTION :
! 11: -- Polyhedral continuation based on symmetric mixed subdivision.
! 12:
! 13: function Symmetric_Mixed_Solve
! 14: ( file : file_type; grp : List_of_Permutations; sign : boolean;
! 15: p : Laur_Sys; mixsub : Mixed_Subdivision;
! 16: n : natural; mix : Vector ) return Solution_List;
! 17:
! 18: -- DESCRIPTION :
! 19: -- This function computes the generating solutions of a given
! 20: -- Laurent polynomial system, by making use of its mixed subdivision.
! 21:
! 22: -- ON ENTRY :
! 23: -- file a file to write intermediate results on;
! 24: -- grp representations of the symmetry group;
! 25: -- sign if true, then there is sign symmetry;
! 26: -- p a lifted Laurent polynomial system;
! 27: -- mixsub the mixed subdivision of the supports of p;
! 28: -- n the number of polynomials in p;
! 29: -- mix(k) indicates the number of occurencies of the kth support.
! 30:
! 31: -- REQUIRED :
! 32: -- The polynomials in p should be ordered according to the
! 33: -- information in the vector `mixed_type'!
! 34:
! 35: function Symmetric_Mixed_Solve
! 36: ( file : file_type; sign : boolean; p : Laur_Sys;
! 37: mixsub : Mixed_Subdivision;
! 38: n : natural; mix : Vector ) return Solution_List;
! 39:
! 40: -- DESCRIPTION :
! 41: -- Here the general permutation group is assumed.
! 42:
! 43: end Symmetric_Polyhedral_Continuation;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>