Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Symmetry/symmetric_polyhedral_continuation.ads, Revision 1.1.1.1
1.1 maekawa 1: with text_io; use text_io;
2: with Standard_Integer_Vectors; use Standard_Integer_Vectors;
3: with Standard_Complex_Laur_Systems; use Standard_Complex_Laur_Systems;
4: with Standard_Complex_Solutions; use Standard_Complex_Solutions;
5: with Integer_Mixed_Subdivisions; use Integer_Mixed_Subdivisions;
6: with Symmetry_Group; use Symmetry_Group;
7:
8: package Symmetric_Polyhedral_Continuation is
9:
10: -- DESCRIPTION :
11: -- Polyhedral continuation based on symmetric mixed subdivision.
12:
13: function Symmetric_Mixed_Solve
14: ( file : file_type; grp : List_of_Permutations; sign : boolean;
15: p : Laur_Sys; mixsub : Mixed_Subdivision;
16: n : natural; mix : Vector ) return Solution_List;
17:
18: -- DESCRIPTION :
19: -- This function computes the generating solutions of a given
20: -- Laurent polynomial system, by making use of its mixed subdivision.
21:
22: -- ON ENTRY :
23: -- file a file to write intermediate results on;
24: -- grp representations of the symmetry group;
25: -- sign if true, then there is sign symmetry;
26: -- p a lifted Laurent polynomial system;
27: -- mixsub the mixed subdivision of the supports of p;
28: -- n the number of polynomials in p;
29: -- mix(k) indicates the number of occurencies of the kth support.
30:
31: -- REQUIRED :
32: -- The polynomials in p should be ordered according to the
33: -- information in the vector `mixed_type'!
34:
35: function Symmetric_Mixed_Solve
36: ( file : file_type; sign : boolean; p : Laur_Sys;
37: mixsub : Mixed_Subdivision;
38: n : natural; mix : Vector ) return Solution_List;
39:
40: -- DESCRIPTION :
41: -- Here the general permutation group is assumed.
42:
43: end Symmetric_Polyhedral_Continuation;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>