[BACK]Return to symmetric_polyhedral_continuation.ads CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / PHC / Ada / Root_Counts / Symmetry

Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Symmetry/symmetric_polyhedral_continuation.ads, Revision 1.1.1.1

1.1       maekawa     1: with text_io;                            use text_io;
                      2: with Standard_Integer_Vectors;           use Standard_Integer_Vectors;
                      3: with Standard_Complex_Laur_Systems;      use Standard_Complex_Laur_Systems;
                      4: with Standard_Complex_Solutions;         use Standard_Complex_Solutions;
                      5: with Integer_Mixed_Subdivisions;         use Integer_Mixed_Subdivisions;
                      6: with Symmetry_Group;                     use Symmetry_Group;
                      7:
                      8: package Symmetric_Polyhedral_Continuation is
                      9:
                     10: -- DESCRIPTION :
                     11: --   Polyhedral continuation based on symmetric mixed subdivision.
                     12:
                     13:   function Symmetric_Mixed_Solve
                     14:                ( file : file_type; grp : List_of_Permutations; sign : boolean;
                     15:                 p : Laur_Sys; mixsub : Mixed_Subdivision;
                     16:                  n : natural; mix : Vector ) return Solution_List;
                     17:
                     18:   -- DESCRIPTION :
                     19:   --   This function computes the generating solutions of a given
                     20:   --   Laurent polynomial system, by making use of its mixed subdivision.
                     21:
                     22:   -- ON ENTRY :
                     23:   --   file      a file to write intermediate results on;
                     24:   --   grp       representations of the symmetry group;
                     25:   --   sign      if true, then there is sign symmetry;
                     26:   --   p         a lifted Laurent polynomial system;
                     27:   --   mixsub    the mixed subdivision of the supports of p;
                     28:   --   n         the number of polynomials in p;
                     29:   --   mix(k)    indicates the number of occurencies of the kth support.
                     30:
                     31:   -- REQUIRED :
                     32:   --   The polynomials in p should be ordered according to the
                     33:   --   information in the vector `mixed_type'!
                     34:
                     35:   function Symmetric_Mixed_Solve
                     36:                ( file : file_type; sign : boolean; p : Laur_Sys;
                     37:                  mixsub : Mixed_Subdivision;
                     38:                  n : natural; mix : Vector ) return Solution_List;
                     39:
                     40:   -- DESCRIPTION :
                     41:   --   Here the general permutation group is assumed.
                     42:
                     43: end Symmetric_Polyhedral_Continuation;

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>