Annotation of OpenXM_contrib/PHC/Ada/Root_Counts/Symmetry/ts_equpol.adb, Revision 1.1.1.1
1.1 maekawa 1: with text_io; use text_io;
2: with Standard_Complex_Poly_Systems; use Standard_Complex_Poly_Systems;
3: with Standard_Complex_Poly_Systems_io; use Standard_Complex_Poly_Systems_io;
4: with Symmetry_Group; use Symmetry_Group;
5: with Symmetry_Group_io;
6: with Symbolic_Symmetry_Group_io;
7: with Drivers_for_Symmetry_Group_io; use Drivers_for_Symmetry_Group_io;
8: with Equivariant_Polynomial_Systems; use Equivariant_Polynomial_Systems;
9:
10: procedure ts_equpol is
11:
12: -- DESCRIPTION :
13: -- Test on the (G,V,W)-symmetric polynomial systems.
14:
15: lp : Link_to_Poly_Sys;
16: n : natural;
17: g,v,w : List_of_Permutations;
18: allperms,notsym,inva,equi : boolean;
19:
20: begin
21: new_line;
22: put_line("Test on the (G,V,W)-symmetric polynomial systems.");
23: new_line;
24: get(lp);
25: n := lp'last;
26: Read_Permutation_Group(n,g,v,allperms);
27: put_line("The symmetry group : ");
28: Symbolic_Symmetry_Group_io.put(v);
29: Act(v,lp.all,w,notsym,inva,equi);
30: put_line("w:"); Symmetry_Group_io.put(w);
31: if notsym
32: then put_line("The system is not (G,V,W)-symmetric.");
33: end if;
34: end ts_equpol;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>