[BACK]Return to READ_ME CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / PHC / Ada / Schubert

Annotation of OpenXM_contrib/PHC/Ada/Schubert/READ_ME, Revision 1.1.1.1

1.1       maekawa     1: Numerical Schubert Calculus with PHCv2.
                      2:
                      3: This directory is entirely new in this release of PHC.
                      4:
                      5: SAGBI homotopies are a concatenation of three homotopies :
                      6: 1) polyhedral homotopies to set up the start system;
                      7: 2) flat deformation using a Groebner basis for the Grassmannian;
                      8: 3) Cheater's homotopy towards real target system.
                      9:
                     10: There are three parts in this library:
                     11: 1) Groebner and SAGBI homotopies
                     12: 2) original Pieri homotopy algorithm : chain by chain
                     13: 3) poset-based organization of the Pieri homotopies
                     14: The test programs are grouped per part.
                     15:
                     16: --------------------------------------------------------------------------------
                     17: file name                        : short description
                     18: --------------------------------------------------------------------------------
                     19: brackets                         : representation/manipulation of brackets
                     20: brackets_io                      : input/output of brackets
                     21: bracket_monomials                : monomials of brackets
                     22: bracket_monomials_io             : input/output of bracket monomials
                     23: bracket_polynomials              : polynomials in the brackets, complex coeff
                     24: bracket_polynomials_io           : input/output for bracket polynomials
                     25: straightening_syzygies           : implementation of straightening algorithm
                     26: bracket_expansions               : expansion of brackets
                     27: chebychev_polynomials            : Chebychev polynomials for the conjecture
                     28: osculating_planes                : input for the Shapiro^2 conjecture
                     29: matrix_homotopies                : management of homotopies between matrices
                     30: evaluated_minors                 : determinant computations
                     31: sagbi_homotopies                 : set up of the SAGBI homotopies
                     32: driver_for_sagbi_homotopies      : driver to the SAGBI homotopies
                     33: --------------------------------------------------------------------------------
                     34: ts_brackets                      : test manipulation of brackets
                     35: ts_brackmons                     : test bracket monomials
                     36: ts_brackpols                     : test bracket polynomials
                     37: ts_straighten                    : test straightening algorithm
                     38: ts_expand                        : test expansion of brackets
                     39: ts_local                         : test localization
                     40: ts_cheby                         : test working with Chebychev polynomials
                     41: ts_shapiro                       : test generation of input planes
                     42: ts_detrock                       : test various root counts on (m,p)-system
                     43: ts_sagbi                         : calls the driver to the SAGBI homotopies
                     44: --------------------------------------------------------------------------------
                     45: pieri_trees                      : representation/creation of Pieri trees
                     46: pieri_trees_io                   : output of Pieri trees
                     47: pieri_root_counts                : produces a list of Pieri chains
                     48: symbolic_minor_equations         : symbolic form of equations in Pieri homotopy
                     49: numeric_minor_equations          : evaluated equations in the Pieri homotopy
                     50: determinantal_systems            : construction of equations from expansions
                     51: solve_pieri_leaves               : compute solutions at leaves of Pieri tree
                     52: specialization_of_planes         : set up the moving cycles
                     53: pieri_continuation               : traces the paths defined by Pieri homotopy
                     54: plane_representations            : conversion between vector and matrix reps
                     55: pieri_deformations               : deforms down along the Pieri chains
                     56: ts_org_pieri                     : test of original Pieri homotopy algorithm
                     57: --------------------------------------------------------------------------------
                     58: localization_posets              : posets of top-bottom pivots
                     59: localization_posets_io           : output routines for localization posets
                     60: pieri_homotopies                 : construction of the Pieri homotopies
                     61: curves_into_grassmannian         : representation of the q-curves
                     62: curves_into_grassmannian_io      : output facilities for the q-curves
                     63: deformation_posets               : posets of solution planes
                     64: ts_posets                        : test on creation of the posets
                     65: ts_defpos                        : test on deformation posets
                     66: drivers_for_input_planes         : generators of input for Pieri algorithm
                     67: driver_for_pieri_homotopies      : driver for the Pieri homotopies
                     68: driver_for_quantum_pieri         : driver for counting q-maps
                     69: ts_pieri                         : test on the Pieri homotopies
                     70: mainenum                         : main driver as called by PHC
                     71: --------------------------------------------------------------------------------
                     72: The equations in the Groebner homotopies are set up by means of the
                     73: straightening algorithm.  Because the Groebner homotopies are not efficient,
                     74: they are only auxiliary to the set up of the SAGBI homotopies, which arise
                     75: from expanding the brackets in the linear equations over the Grasmannian.
                     76:
                     77: Organization of the Pieri homotopies :
                     78:
                     79: The original Pieri Homotopy Algorithm is organized in a chain-by-chain
                     80: fashion, whereas the newer implementation uses posets.
                     81: The poset-oriented Pieri Homotopy Algorithm works better, but since most of
                     82: the basic packages is recycled, we can keep the original Pieri at low cost.
                     83: Both implementations have three distinct aspects:
                     84:
                     85: 1) combinatorial root count
                     86:
                     87: A. The Pieri tree delivers chains of increasing sequences of brackets.
                     88:    Every chain models a sequence of nested subspaces, with lowering
                     89:    dimensions towards the leaves of the tree.  The set of input planes
                     90:    is partitioned into two nonempty sets and one set containing only the
                     91:    last input plane.  For each of the two sets a Pieri tree is constructed.
                     92:    A contribution to the root count is made by each pair of leaves that
                     93:    satisfies Pieri's condition, for which a triple intersection of input
                     94:    plane yields a start solution.  The input to this combinatorial root
                     95:    count is a partition of the list of codimensions.  As output we obtain
                     96:    a list of pairs of leaves that satisfy Pieri's condition.
                     97:
                     98:   Ada soft : Pieri_Trees, Pieri_Trees_io, Pieri_Root_Counts
                     99:
                    100: B. The poset-oriented Pieri homotopy algorithm only needs one concept,
                    101:    that of a localization pattern.  This pattern is determined by a
                    102:    couple of pivots indicating the topmost and bottommost nonzero entries.
                    103:
                    104:   Ada soft : Localization_Posets
                    105:
                    106: 2) symbolic-numeric computation
                    107:
                    108:    An intersection condition corresponds to the vanishing of all maximal
                    109:    minors of a matrix which is not necessarily square.
                    110:    Each matrix consists of two blocks, for coefficients and indeterminates.
                    111:    The Laplace expansion into minors respects this division and is
                    112:    written formally as a polynomial that is quadratic in brackets.
                    113:    To obtain a polynomial system we evaluate the minors, this is the
                    114:    numerical part in setting up the equations.
                    115:    The zeros in the localization pattern are determined by the positioning
                    116:    of the current node in the Pieri trees, but as far as the choice of the
                    117:    ones is concerned, we can divide by the largest element in each column to
                    118:    obtain a scaling and a numerically favorable representation of the equations.
                    119:
                    120:    Only minor modifications were needed in the poset-oriented version.
                    121:
                    122:   Ada soft : Symbolic_Minor_Equations, Numeric_Minor_Equations
                    123:              Determinantal_Systems, Solve_Pieri_Leaves
                    124:
                    125: 3) deforming geometries
                    126:
                    127: A. The pairs of chains that end in pairs of leaves that satisfy Pieri's
                    128:    condition form the backbone of the deformations in the Pieri homotopy
                    129:    algorithm.  The deformations start at the pairs of leaves with a triple
                    130:    intersection and move down in the Pieri trees until they reach the
                    131:    lowest node where the all intersection conditions are satisfied.
                    132:    While moving down we move to larger subspaces which admits the intersection
                    133:    with more input planes.  In the case where all codimensions equal one,
                    134:    at each node the current solution plane satisfies one more nontrivial
                    135:    intersection requirement with an additional input plane.
                    136:
                    137:   Ada soft : Pieri_Homotopies, Pieri_Continuation, Pieri_Deformations
                    138:
                    139: B. The continuous analogue to the localization posets are deformation posets.
                    140:    These posets contain in their nodes the solution p-planes at that level.
                    141:
                    142:   Ada soft : Deformation_Posets

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>