Annotation of OpenXM_contrib/PHC/Ada/Schubert/chebychev_polynomials.ads, Revision 1.1
1.1 ! maekawa 1: with Standard_Floating_Numbers; use Standard_Floating_Numbers;
! 2: with Standard_Floating_Vectors; use Standard_Floating_Vectors;
! 3:
! 4: package Chebychev_Polynomials is
! 5:
! 6: -- DESCRIPTION :
! 7: -- This is a simple implementation to generate, differentiate and
! 8: -- evaluate Chebychev polynomials. The polynomials are represented
! 9: -- as vectors of range 0..d, with d their degree.
! 10:
! 11: function Create ( k : natural ) return Vector;
! 12:
! 13: -- DESCRIPTION :
! 14: -- Creates the kth Chebychev polynomial.
! 15:
! 16: function Eval ( k : natural; x : double_float ) return double_float;
! 17:
! 18: -- DESCRIPTION :
! 19: -- Evaluates the kth Chebychev polynomial at x.
! 20:
! 21: -- REQUIRED : x lies in [-1,+1].
! 22:
! 23: function Eval ( p : Vector; x : double_float ) return double_float;
! 24:
! 25: -- DESCRIPTION :
! 26: -- Evaluates the polynomial at x.
! 27:
! 28: function Diff ( p : Vector ) return Vector;
! 29:
! 30: -- DESCRIPTION :
! 31: -- Returns the 1st derivative of p.
! 32:
! 33: function Diff ( p : Vector; k : natural ) return Vector;
! 34:
! 35: -- DESCRIPTION :
! 36: -- Returns the kth derivative of the polynomial p.
! 37:
! 38: function Int ( p : Vector ) return Vector;
! 39:
! 40: -- DESCRIPTION :
! 41: -- Returns the antiderivative of p.
! 42:
! 43: function Int ( p : Vector; k : natural ) return Vector;
! 44:
! 45: -- DESCRIPTION :
! 46: -- Returns the kth antiderivative of p.
! 47:
! 48: end Chebychev_Polynomials;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>