Annotation of OpenXM_contrib/PHC/Ada/Schubert/chebychev_polynomials.ads, Revision 1.1.1.1
1.1 maekawa 1: with Standard_Floating_Numbers; use Standard_Floating_Numbers;
2: with Standard_Floating_Vectors; use Standard_Floating_Vectors;
3:
4: package Chebychev_Polynomials is
5:
6: -- DESCRIPTION :
7: -- This is a simple implementation to generate, differentiate and
8: -- evaluate Chebychev polynomials. The polynomials are represented
9: -- as vectors of range 0..d, with d their degree.
10:
11: function Create ( k : natural ) return Vector;
12:
13: -- DESCRIPTION :
14: -- Creates the kth Chebychev polynomial.
15:
16: function Eval ( k : natural; x : double_float ) return double_float;
17:
18: -- DESCRIPTION :
19: -- Evaluates the kth Chebychev polynomial at x.
20:
21: -- REQUIRED : x lies in [-1,+1].
22:
23: function Eval ( p : Vector; x : double_float ) return double_float;
24:
25: -- DESCRIPTION :
26: -- Evaluates the polynomial at x.
27:
28: function Diff ( p : Vector ) return Vector;
29:
30: -- DESCRIPTION :
31: -- Returns the 1st derivative of p.
32:
33: function Diff ( p : Vector; k : natural ) return Vector;
34:
35: -- DESCRIPTION :
36: -- Returns the kth derivative of the polynomial p.
37:
38: function Int ( p : Vector ) return Vector;
39:
40: -- DESCRIPTION :
41: -- Returns the antiderivative of p.
42:
43: function Int ( p : Vector; k : natural ) return Vector;
44:
45: -- DESCRIPTION :
46: -- Returns the kth antiderivative of p.
47:
48: end Chebychev_Polynomials;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>