[BACK]Return to pieri_homotopies.adb CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / PHC / Ada / Schubert

Annotation of OpenXM_contrib/PHC/Ada/Schubert/pieri_homotopies.adb, Revision 1.1

1.1     ! maekawa     1: with Standard_Complex_Numbers;           use Standard_Complex_Numbers;
        !             2: with Standard_Random_Numbers;            use Standard_Random_Numbers;
        !             3: with Standard_Natural_Vectors;
        !             4: with Standard_Complex_Polynomials;       use Standard_Complex_Polynomials;
        !             5: with Numeric_Minor_Equations;            use Numeric_Minor_Equations;
        !             6: with Determinantal_Systems;              use Determinantal_Systems;
        !             7: with Specialization_of_Planes;           use Specialization_of_Planes;
        !             8: with Curves_into_Grassmannian;           use Curves_into_Grassmannian;
        !             9:
        !            10: package body Pieri_Homotopies is
        !            11:
        !            12: -- AUXILIARIES TO THE QUANTUM CASE :
        !            13:
        !            14:   procedure Multiply ( p : in out Poly; var,deg : natural ) is
        !            15:
        !            16:   -- DESCRIPTION :
        !            17:   --   Multiplies p with x(var)**deg.
        !            18:
        !            19:     procedure Multiply_Term ( t : in out Term; continue : out boolean ) is
        !            20:     begin
        !            21:       t.dg(var) := t.dg(var) + deg;
        !            22:       continue := true;
        !            23:     end Multiply_Term;
        !            24:     procedure Multiply_Terms is new Changing_Iterator(Multiply_Term);
        !            25:
        !            26:   begin
        !            27:     Multiply_Terms(p);
        !            28:   end Multiply;
        !            29:
        !            30:   procedure Multiply ( xpm : in out Standard_Complex_Poly_Matrices.Matrix;
        !            31:                        col,var,deg : in natural ) is
        !            32:
        !            33:   -- DESCRIPTION :
        !            34:   --   Multiplies all polynomial in the column col of xpm with x(var)**deg.
        !            35:
        !            36:   begin
        !            37:     for i in xpm'range(1) loop
        !            38:       if xpm(i,col) /= Null_Poly
        !            39:        then Multiply(xpm(i,col),var,deg);
        !            40:       end if;
        !            41:     end loop;
        !            42:   end Multiply;
        !            43:
        !            44:   procedure Add ( p : in out Poly;
        !            45:                   var : in natural; start : in Complex_Number ) is
        !            46:
        !            47:   -- DESCRIPTION :
        !            48:   --   Performs p := p + (1-s)*c, where s = x(var) and c = start.
        !            49:
        !            50:     n : constant natural := Number_of_Unknowns(p);
        !            51:     t : Term;
        !            52:
        !            53:   begin
        !            54:     t.dg := new Standard_Natural_Vectors.Vector'(1..n => 0);
        !            55:     t.cf := start;
        !            56:     Add(p,t);           -- p = p + c
        !            57:     t.dg(var) := 1;
        !            58:     Sub(p,t);           -- p = p + c - c*s = p + c*(1-s)
        !            59:     Clear(t);
        !            60:   end Add;
        !            61:
        !            62:   procedure Add ( xpm : in out Standard_Complex_Poly_Matrices.Matrix;
        !            63:                   col,var : in natural; start : in Vector ) is
        !            64:
        !            65:   -- DESCRIPTION :
        !            66:   --   Adds to every nonzero polynomial in the column col of xpm
        !            67:   --   the term c*(1-s), where s = x(var) and c = start(i).
        !            68:
        !            69:   begin
        !            70:     for i in xpm'range(1) loop
        !            71:       if xpm(i,col) /= Null_Poly
        !            72:        then Add(xpm(i,col),var,start(i));
        !            73:       end if;
        !            74:     end loop;
        !            75:   end Add;
        !            76:
        !            77:   function Degree1 ( nd : Node; n : natural ) return natural is
        !            78:
        !            79:   -- DESCRIPTION :
        !            80:   --   Returns the maximum of one and the degree of the first column
        !            81:   --   of the map that fits the pattern as decribed by pivots in the node.
        !            82:   --   The parameter n must equal m+p.
        !            83:
        !            84:     d : constant natural := (nd.bottom(1) - nd.top(1))/n;
        !            85:
        !            86:   begin
        !            87:     if d = 0
        !            88:      then return 1;
        !            89:      else return d;
        !            90:     end if;
        !            91:   end Degree1;
        !            92:
        !            93:   function Moving_Parameter0 ( n,xk,tk : natural;
        !            94:                                start,target : Complex_Number ) return Poly is
        !            95:
        !            96:   -- DESCRIPTION :
        !            97:   --   Returns the equation (x-start)*(1-t) + (x-target)*t = 0 that describes
        !            98:   --   the motion of x from start to target as t goes from 0 to 1.
        !            99:   --   Note that this equation equals x + (start-target)*t - start = 0.
        !           100:   --   This is the older version without using a random constant.
        !           101:
        !           102:   -- ON ENTRY :
        !           103:   --   n         total number of variables, continuation parameter t included;
        !           104:   --   xk        index of the moving variable x;
        !           105:   --   tk        index of the continuation parameter
        !           106:   --   start     starting value for x;
        !           107:   --   target    target value for x.
        !           108:
        !           109:     res : Poly;
        !           110:     t : Term;
        !           111:
        !           112:   begin
        !           113:     t.dg := new Standard_Natural_Vectors.Vector'(1..n => 0);
        !           114:     t.cf := -start;
        !           115:     res := Create(t);            -- res = -start
        !           116:     t.cf := Create(1.0);
        !           117:     t.dg(xk) := 1;
        !           118:     Add(res,t);                  -- res = x - start
        !           119:     t.dg(xk) := 0;
        !           120:     t.dg(tk) := 1;
        !           121:     t.cf := start - target;      -- res = x + (start - target)*t - start
        !           122:     Add(res,t);
        !           123:     Clear(t);
        !           124:     return res;
        !           125:   end Moving_Parameter0;
        !           126:
        !           127:   function Moving_Parameter ( n,xk,tk : natural;
        !           128:                               start,target : Complex_Number ) return Poly is
        !           129:
        !           130:   -- DESCRIPTION :
        !           131:   --   Returns the equation c*(x-start)*(1-t) + (x-target)*t = 0 for
        !           132:   --   the motion of x from start to target as t goes from 0 to 1.
        !           133:   --   This version uses a constant c, randomly generated from within.
        !           134:
        !           135:   -- ON ENTRY :
        !           136:   --   n         total number of variables, continuation parameter t included;
        !           137:   --   xk        index of the moving variable x;
        !           138:   --   tk        index of the continuation parameter t;
        !           139:   --   start     starting value for x;
        !           140:   --   target    target value for x.
        !           141:
        !           142:     res : Poly;
        !           143:     t : Term;
        !           144:     c : Complex_Number := Random1;
        !           145:
        !           146:   begin
        !           147:     t.dg := new Standard_Natural_Vectors.Vector'(1..n => 0);
        !           148:     t.cf := -c*start;
        !           149:     res := Create(t);          -- res = -c*start
        !           150:     t.cf := -t.cf;
        !           151:     t.dg(tk) := 1;
        !           152:     Add(res,t);                -- res = -c*start + c*start*t = -c*start*(1-t)
        !           153:     t.cf := c;
        !           154:     t.dg(tk) := 0;
        !           155:     t.dg(xk) := 1;
        !           156:     Add(res,t);                -- res = -c*start*(1-t) + c*x
        !           157:     t.cf := -t.cf;
        !           158:     t.dg(tk) := 1;
        !           159:     Add(res,t);                -- res = -c*start*(1-t) + c*x - c*x*t
        !           160:     t.cf := Create(1.0);       --     = -c*start*(1-t) + c*x*(1-t)
        !           161:     Add(res,t);                --     = c*(1-t)*(x-start)
        !           162:     t.cf := -target;           -- res = c*(1-t)*(x-start) + x*t
        !           163:     t.dg(xk) := 0;
        !           164:     Add(res,t);                -- res = c*(1-t)*(x-start) + x*t - target*t
        !           165:     Clear(t);                  --     = c*(1-t)*(x-start) + (x-target)*t
        !           166:     return res;
        !           167:   end Moving_Parameter;
        !           168:
        !           169:   function Constant_Parameter ( n,i : natural; s : Complex_Number )
        !           170:                               return Poly is
        !           171:
        !           172:   -- DESCRIPTION :
        !           173:   --   Returns the polynomial x_i - s; n equals the number of variables.
        !           174:
        !           175:     res : Poly;
        !           176:     t : Term;
        !           177:
        !           178:   begin
        !           179:     t.dg := new Standard_Natural_Vectors.Vector'(1..n => 0);
        !           180:     t.dg(i) := 1;
        !           181:     t.cf := Create(1.0);
        !           182:     res := Create(t);
        !           183:     t.dg(i) := 0;
        !           184:     t.cf := -s;
        !           185:     Add(res,t);
        !           186:     Clear(t);
        !           187:     return res;
        !           188:   end Constant_Parameter;
        !           189:
        !           190: -- TARGET ROUTINES :
        !           191:
        !           192:   function One_Hypersurface_Pieri_Homotopy
        !           193:                 ( n : natural; nd : Node; expbp : Bracket_Polynomial;
        !           194:                   xpm : Standard_Complex_Poly_Matrices.Matrix;
        !           195:                   planes : VecMat ) return Poly_Sys is
        !           196:
        !           197:     res : Poly_Sys(1..nd.level);
        !           198:     p : constant natural := nd.p;
        !           199:     m : constant natural := n-p;
        !           200:     special : Standard_Complex_Matrices.Matrix(1..n,1..m);
        !           201:     target,start : Poly;
        !           202:
        !           203:   begin
        !           204:     case nd.tp is
        !           205:       when top    => special := Special_Plane(m,nd.top);
        !           206:                     -- special := Special_Top_Plane(m,nd.top);
        !           207:       when bottom => special := Special_Plane(m,nd.bottom);
        !           208:                     -- special := Special_Bottom_Plane(m,nd.bottom);
        !           209:       when others => null;  -- mixed case treated separately
        !           210:     end case;
        !           211:     for i in 1..nd.level-1 loop
        !           212:       res(i) := Expanded_Minors(planes(i).all,xpm,expbp);
        !           213:       Embed(res(i));
        !           214:     end loop;
        !           215:     target := Expanded_Minors(planes(nd.level).all,xpm,expbp);
        !           216:     start := Expanded_Minors(special,xpm,expbp);
        !           217:     res(nd.level) := Linear_Homotopy(target,start);
        !           218:     Clear(target); Clear(start);
        !           219:     return res;
        !           220:   end One_Hypersurface_Pieri_Homotopy;
        !           221:
        !           222:   function Two_Hypersurface_Pieri_Homotopy
        !           223:                 ( n : natural; nd : Node; expbp : Bracket_Polynomial;
        !           224:                   xpm : Standard_Complex_Poly_Matrices.Matrix;
        !           225:                   planes : VecMat ) return Poly_Sys is
        !           226:
        !           227:     res : Poly_Sys(1..nd.level);
        !           228:     p : constant natural := nd.p;
        !           229:     m : constant natural := n-p;
        !           230:     top_special : constant Standard_Complex_Matrices.Matrix
        !           231:                 := Special_Plane(m,nd.top);
        !           232:                -- := Special_Top_Plane(m,nd.top);
        !           233:     bot_special : constant Standard_Complex_Matrices.Matrix
        !           234:                 := Special_Plane(m,nd.bottom);
        !           235:                -- := Special_Bottom_Plane(m,nd.bottom);
        !           236:     top_start,bot_start,top_target,bot_target : Poly;
        !           237:
        !           238:   begin
        !           239:     for i in 1..nd.level-2 loop
        !           240:       res(i) := Expanded_Minors(planes(i).all,xpm,expbp);
        !           241:       Embed(res(i));
        !           242:     end loop;
        !           243:     top_target := Expanded_Minors(planes(nd.level).all,xpm,expbp);
        !           244:     top_start := Expanded_Minors(top_special,xpm,expbp);
        !           245:     res(nd.level) := Linear_Homotopy(top_target,top_start);
        !           246:     Clear(top_target); Clear(top_start);
        !           247:     bot_target := Expanded_Minors(planes(nd.level-1).all,xpm,expbp);
        !           248:     bot_start := Expanded_Minors(bot_special,xpm,expbp);
        !           249:     res(nd.level-1) := Linear_Homotopy(bot_target,bot_start);
        !           250:     Clear(bot_target); Clear(bot_start);
        !           251:     return res;
        !           252:   end Two_Hypersurface_Pieri_Homotopy;
        !           253:
        !           254:   function One_General_Pieri_Homotopy
        !           255:                 ( n,ind : natural; nd : Node; bs : Bracket_System;
        !           256:                   start,target : Standard_Complex_Matrices.Matrix;
        !           257:                   xpm : Standard_Complex_Poly_Matrices.Matrix;
        !           258:                   planes : VecMat ) return Link_to_Poly_Sys is
        !           259:
        !           260:     res : Link_to_Poly_Sys;
        !           261:     nva : constant natural := n*nd.p + 1;
        !           262:     moving_plane : Standard_Complex_Poly_Matrices.Matrix(1..n,target'range(2))
        !           263:                  := Moving_U_Matrix(nva,start,target);
        !           264:     moving : Poly_Sys(1..bs'last);
        !           265:
        !           266:   begin
        !           267:     for i in 1..ind-1 loop
        !           268:       Concat(res,Polynomial_Equations(planes(i).all,xpm));
        !           269:     end loop;
        !           270:     if res /= null
        !           271:      then for i in res'range loop
        !           272:             Embed(res(i));
        !           273:           end loop;
        !           274:     end if;
        !           275:     moving := Lifted_Expanded_Minors(moving_plane,xpm,bs);
        !           276:     Concat(res,moving);
        !           277:     Standard_Complex_Poly_Matrices.Clear(moving_plane);
        !           278:     return res;
        !           279:   end One_General_Pieri_Homotopy;
        !           280:
        !           281:   function Two_General_Pieri_Homotopy
        !           282:                 ( n,ind : natural; nd : Node; top_bs,bot_bs : Bracket_System;
        !           283:                   top_start,top_target,bot_start,bot_target
        !           284:                     : Standard_Complex_Matrices.Matrix;
        !           285:                   xpm : Standard_Complex_Poly_Matrices.Matrix;
        !           286:                   planes : VecMat ) return Link_to_Poly_Sys is
        !           287:
        !           288:   -- DESCRIPTION :
        !           289:   --   Returns the homotopy for general linear subspace intersections,
        !           290:   --   in case nd.tp = mixed.  The parameter ind indicates the plane
        !           291:   --   planes(ind) towards the constructed homotopy works.
        !           292:
        !           293:     res : Link_to_Poly_Sys;
        !           294:     nva : constant natural := n*nd.p + 1;
        !           295:     top_moving : Standard_Complex_Poly_Matrices.Matrix(1..n,top_target'range(2))
        !           296:                := Moving_U_Matrix(nva,top_start,top_target);
        !           297:     bot_moving : Standard_Complex_Poly_Matrices.Matrix(1..n,bot_target'range(2))
        !           298:                := Moving_U_Matrix(nva,bot_start,bot_target);
        !           299:     top_movsys : Poly_Sys(1..top_bs'last);
        !           300:     bot_movsys : Poly_Sys(1..bot_bs'last);
        !           301:
        !           302:   begin
        !           303:     for i in 1..ind-1 loop
        !           304:       Concat(res,Polynomial_Equations(planes(i).all,xpm));
        !           305:     end loop;
        !           306:     if res /= null
        !           307:      then for i in res'range loop
        !           308:             Embed(res(i));
        !           309:           end loop;
        !           310:     end if;
        !           311:     top_movsys := Lifted_Expanded_Minors(top_moving,xpm,top_bs);
        !           312:     bot_movsys := Lifted_Expanded_Minors(bot_moving,xpm,bot_bs);
        !           313:     Concat(res,top_movsys);
        !           314:     Concat(res,bot_movsys);
        !           315:     Standard_Complex_Poly_Matrices.Clear(top_moving);
        !           316:     Standard_Complex_Poly_Matrices.Clear(bot_moving);
        !           317:     return res;
        !           318:   end Two_General_Pieri_Homotopy;
        !           319:
        !           320:   function One_Quantum_Pieri_Homotopy
        !           321:                 ( n : natural; nd : Node; expbp : Bracket_Polynomial;
        !           322:                   xpm : Standard_Complex_Poly_Matrices.Matrix;
        !           323:                   planes : VecMat; s : Vector ) return Poly_Sys is
        !           324:
        !           325:   -- DESCRIPTION :
        !           326:   --   Returns the Pieri homotopy that corresponds to the node.
        !           327:   --   This homotopy is set up to work only in the hypersurface case,
        !           328:   --   when the type of the node is either top or bottom.
        !           329:
        !           330:     res : Poly_Sys(1..nd.level+1);
        !           331:     p : constant natural := nd.p;
        !           332:     m : constant natural := n-p;
        !           333:     nvars : constant natural := nd.level + p + 2;
        !           334:       -- nvars = level   #equations in the x_ij's
        !           335:       --       + p       because not yet fixed the ones
        !           336:       --       + 2       for s and t, note that t is continuation parameter
        !           337:     special : Standard_Complex_Matrices.Matrix(1..n,1..m);
        !           338:     target,start : Poly;
        !           339:     map : Standard_Complex_Poly_Matrices.Matrix(1..n,1..p);
        !           340:
        !           341:   begin
        !           342:     case nd.tp is
        !           343:       when top    => special := Special_Plane(m,Modulo(nd.top,m+p));
        !           344:                      Standard_Complex_Poly_Matrices.Copy(xpm,map);
        !           345:                      Swap(map,nvars-1,nvars);
        !           346:       when bottom => special := Special_Plane(m,Modulo(nd.bottom,m+p));
        !           347:                      map := xpm;
        !           348:       when others => null;  -- mixed case treated separately
        !           349:     end case;
        !           350:     for i in 1..nd.level-1 loop
        !           351:       declare
        !           352:         eva : Standard_Complex_Poly_Matrices.Matrix(xpm'range(1),xpm'range(2))
        !           353:             := Eval(xpm,s(i),Create(1.0));
        !           354:       begin
        !           355:         res(i) := Expanded_Minors(planes(i).all,eva,expbp);
        !           356:         Standard_Complex_Poly_Matrices.Clear(eva);
        !           357:       end;
        !           358:     end loop;
        !           359:     target := Expanded_Minors(planes(nd.level).all,map,expbp);
        !           360:     start := Expanded_Minors(special,map,expbp);
        !           361:     res(nd.level) := Linear_Interpolation(target,start,nvars);
        !           362:     if nd.tp = bottom
        !           363:      then
        !           364:        res(nd.level+1)
        !           365:           := Moving_Parameter(nvars,nvars-1,nvars,Create(1.0),s(nd.level));
        !           366:      else
        !           367:        res(nd.level+1)
        !           368:           := Moving_Parameter(nvars,nvars-1,nvars,Create(1.0),
        !           369:                               (Create(1.0)/s(nd.level)));
        !           370:        Divide_Common_Factor(res(nd.level),nvars);
        !           371:     end if;
        !           372:     if nd.tp = top
        !           373:      then Standard_Complex_Poly_Matrices.Clear(map);
        !           374:     end if;
        !           375:     Clear(target); Clear(start);
        !           376:     return res;
        !           377:   end One_Quantum_Pieri_Homotopy;
        !           378:
        !           379:   function Two_Quantum_Pieri_Homotopy
        !           380:                 ( n : natural; nd : Node; expbp : Bracket_Polynomial;
        !           381:                   xpm : Standard_Complex_Poly_Matrices.Matrix;
        !           382:                   planes : VecMat; s : Vector ) return Poly_Sys is
        !           383:
        !           384:     res : Poly_Sys(1..nd.level+2);
        !           385:     p : constant natural := nd.p;
        !           386:     m : constant natural := n-p;
        !           387:     nvars : constant natural := nd.level + p + 2;
        !           388:     top_special : constant Standard_Complex_Matrices.Matrix
        !           389:                 := Special_Plane(m,Modulo(nd.top,m+p));
        !           390:     bot_special : constant Standard_Complex_Matrices.Matrix
        !           391:                 := Special_Plane(m,Modulo(nd.bottom,m+p));
        !           392:     top_start,bot_start,top_target,bot_target : Poly;
        !           393:     map : Standard_Complex_Poly_Matrices.Matrix(xpm'range(1),xpm'range(2))
        !           394:         := Insert(xpm,nvars);
        !           395:
        !           396:   begin
        !           397:    -- first do bottom pivots with s1 = nvars-1
        !           398:     bot_target := Expanded_Minors(planes(nd.level-1).all,map,expbp);
        !           399:     bot_start := Expanded_Minors(bot_special,map,expbp);
        !           400:     res(nd.level-1) := Linear_Interpolation(bot_target,bot_start,nvars+1);
        !           401:     Divide_Common_Factor(res(nd.level-1),nvars+1);
        !           402:     res(nd.level+1)
        !           403:       := Moving_Parameter(nvars+1,nvars-1,nvars+1,Create(1.0),s(nd.level-1));
        !           404:     Clear(bot_target); Clear(bot_start);
        !           405:    -- swap s1 with s2 to deal with the fixed equations
        !           406:     Swap(map,nvars-1,nvars);
        !           407:     for i in 1..nd.level-2 loop
        !           408:       declare
        !           409:         eva : Standard_Complex_Poly_Matrices.Matrix(map'range(1),map'range(2))
        !           410:             := Eval(map,s(i),Create(1.0));
        !           411:       begin
        !           412:         res(i) := Expanded_Minors(planes(i).all,eva,expbp);
        !           413:         Standard_Complex_Poly_Matrices.Clear(eva);
        !           414:       end;
        !           415:     end loop;
        !           416:    -- swap t with s2 for top pivots, s2 = nvars
        !           417:     Swap(map,nvars,nvars+1);
        !           418:     top_target := Expanded_Minors(planes(nd.level).all,map,expbp);
        !           419:     top_start := Expanded_Minors(top_special,map,expbp);
        !           420:     res(nd.level) := Linear_Interpolation(top_target,top_start,nvars+1);
        !           421:     res(nd.level+2)
        !           422:       := Moving_Parameter(nvars+1,nvars,nvars+1,Create(1.0),
        !           423:                           (Create(1.0)/s(nd.level)));
        !           424:     Divide_Common_Factor(res(nd.level),nvars+1);
        !           425:     Clear(top_target); Clear(top_start);
        !           426:     Standard_Complex_Poly_Matrices.Clear(map);
        !           427:     return res;
        !           428:   end Two_Quantum_Pieri_Homotopy;
        !           429:
        !           430:   function One_General_Quantum_Pieri_Homotopy
        !           431:                   ( n,ind : natural; nd : Node; s_mode : natural;
        !           432:                     bs : Bracket_System;
        !           433:                     start,target : Standard_Complex_Matrices.Matrix;
        !           434:                     xpm : Standard_Complex_Poly_Matrices.Matrix;
        !           435:                     planes : VecMat; s : Vector ) return Link_to_Poly_Sys is
        !           436:
        !           437:     res : Link_to_Poly_Sys;
        !           438:     p : constant natural := nd.p;
        !           439:     m : constant natural := n-p;
        !           440:     nvars : constant natural := nd.level + p + 2;
        !           441:       -- nvars = level   #equations in the x_ij's
        !           442:       --       + p       because not yet fixed the ones
        !           443:       --       + 2       for s and t, note that t is continuation parameter
        !           444:     eva,map : Standard_Complex_Poly_Matrices.Matrix(1..n,1..p);
        !           445:     moving_plane : Standard_Complex_Poly_Matrices.Matrix(1..n,target'range(2))
        !           446:                  := Moving_U_Matrix(nvars,start,target);
        !           447:     moving : Poly_Sys(1..bs'last);
        !           448:     movpar : Poly_Sys(1..1);
        !           449:     inddiv : natural;
        !           450:     starcol : Vector(start'range(1));
        !           451:     deg1 : constant natural := Degree1(nd,n);
        !           452:
        !           453:   begin
        !           454:     if s_mode = 0
        !           455:      then for i in starcol'range loop
        !           456:             starcol(i) := start(i,1);
        !           457:           end loop;
        !           458:     end if;
        !           459:    -- PART I : fixed equations
        !           460:     case nd.tp is
        !           461:       when top    => Standard_Complex_Poly_Matrices.Copy(xpm,map);
        !           462:                      Swap(map,nvars-1,nvars);
        !           463:       when bottom => map := xpm;
        !           464:       when others => null;  -- mixed case treated separately
        !           465:     end case;
        !           466:     for i in 1..ind-1 loop
        !           467:       eva := Eval(xpm,s(i),Create(1.0));
        !           468:       if s_mode = 0
        !           469:        then --Multiply(eva,1,nvars-1,deg1);
        !           470:             --Add(eva,1,nvars-1,starcol);
        !           471:             Multiply(eva,1,nvars-1,deg1);
        !           472:             Add(eva,1,nvars,starcol);
        !           473:       end if;
        !           474:       Concat(res,Polynomial_Equations(planes(i).all,eva));
        !           475:       Standard_Complex_Poly_Matrices.Clear(eva);
        !           476:     end loop;
        !           477:     if res = null
        !           478:      then inddiv := 0;
        !           479:      else inddiv := res'last;
        !           480:     end if;
        !           481:    -- PART II : moving equation for the plane
        !           482:     if s_mode = 2
        !           483:      then moving := Expanded_Minors(moving_plane,map,bs);
        !           484:      else eva := Eval(xpm,Create(1.0),Create(0.0));
        !           485:           if s_mode = 0
        !           486:            then --Multiply(eva,1,nvars-1,deg1);
        !           487:                 --Add(eva,1,nvars-1,starcol);
        !           488:                 Multiply(eva,1,nvars-1,deg1);
        !           489:                 Add(eva,1,nvars,starcol);
        !           490:           end if;
        !           491:           moving := Expanded_Minors(moving_plane,eva,bs);
        !           492:           Standard_Complex_Poly_Matrices.Clear(eva);
        !           493:     end if;
        !           494:     Concat(res,moving);
        !           495:     if nd.tp = top
        !           496:      then Standard_Complex_Poly_Matrices.Clear(map);
        !           497:           for i in inddiv+1..res'last loop
        !           498:             Divide_Common_Factor(res(i),nvars);
        !           499:           end loop;
        !           500:     end if;
        !           501:    -- PART III : moving equation for the interpolation points
        !           502:     case s_mode is
        !           503:       when 0 =>                                    -- move s from 0 to 1
        !           504:         case nd.tp is
        !           505:           when bottom =>
        !           506:             movpar(1)
        !           507:               := Moving_Parameter(nvars,nvars-1,nvars,
        !           508:                                   Create(0.0),Create(1.0));
        !           509:           when others => null;
        !           510:         end case;
        !           511:       when 1 =>                                    -- leave s constant at 1
        !           512:         movpar(1) := Constant_Parameter(nvars,nvars-1,Create(1.0));
        !           513:       when 2 =>                                    -- move s from 1 to target
        !           514:         case nd.tp is
        !           515:           when top =>
        !           516:             movpar(1)     -- move s from 1 to 1/s_ind (swap of s and t)
        !           517:               := Moving_Parameter(nvars,nvars-1,nvars,Create(1.0),
        !           518:                                   (Create(1.0)/s(ind)));
        !           519:           when bottom =>
        !           520:             movpar(1)     -- move s from 1 to s_ind
        !           521:               := Moving_Parameter(nvars,nvars-1,nvars,Create(1.0),s(ind));
        !           522:           when others => null;
        !           523:         end case;
        !           524:       when others => null;
        !           525:     end case;
        !           526:     Concat(res,movpar);
        !           527:     return res;
        !           528:   end One_General_Quantum_Pieri_Homotopy;
        !           529:
        !           530:   function Two_General_Quantum_Pieri_Homotopy
        !           531:                   ( n,ind : natural; nd : Node; top_bs,bot_bs : Bracket_System;
        !           532:                     top_start,top_target,bot_start,bot_target
        !           533:                       : Standard_Complex_Matrices.Matrix;
        !           534:                     xpm : Standard_Complex_Poly_Matrices.Matrix;
        !           535:                     planes : VecMat; s : Vector ) return Link_to_Poly_Sys is
        !           536:
        !           537:     res : Link_to_Poly_Sys;
        !           538:
        !           539:   begin
        !           540:     return res;
        !           541:   end Two_General_Quantum_Pieri_Homotopy;
        !           542:
        !           543: end Pieri_Homotopies;

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>