Annotation of OpenXM_contrib/PHC/Ada/Schubert/sagbi_homotopies.ads, Revision 1.1
1.1 ! maekawa 1: with Standard_Complex_Vectors;
! 2: with Standard_Natural_Matrices;
! 3: with Standard_Floating_Matrices;
! 4: with Standard_Complex_Matrices;
! 5: with Standard_Complex_Polynomials; use Standard_Complex_Polynomials;
! 6:
! 7: package SAGBI_Homotopies is
! 8:
! 9: -- DESCRIPTION :
! 10: -- Provides basic routines to set up the polynomials in the SAGBI homotopy.
! 11: -- Due to hexadecimal expansions, n and d are both limited to 16.
! 12: -- In practice, since the #roots grow so rapidly, this is no limitation.
! 13:
! 14: function Lifted_Localized_Laplace_Expansion ( n,d : natural ) return Poly;
! 15:
! 16: -- DESCRIPTION :
! 17: -- Constructs the generic equation in the SAGBI homotopy.
! 18: -- The coefficients are brackets in hexadecimal expansion.
! 19: -- These brackets represents the selected rows for the maximal minors.
! 20: -- The localization chooses the lower-right upper block of the d-plane
! 21: -- as the identity matrix.
! 22:
! 23: function Lifted_Localized_Laplace_Expansion
! 24: ( locmap : Standard_Natural_Matrices.Matrix ) return Poly;
! 25:
! 26: -- DESCRIPTION :
! 27: -- The generic equation in the SAGBI homotopy is constructed using
! 28: -- the localizaton map in locmap. Zeros and ones indicate the
! 29: -- position of the identity matrix, while free elements are twos.
! 30:
! 31: function Intersection_Coefficients
! 32: ( m : Standard_Floating_Matrices.Matrix;
! 33: c : Standard_Complex_Vectors.Vector )
! 34: return Standard_Complex_Vectors.Vector;
! 35: function Intersection_Coefficients
! 36: ( m : Standard_Complex_Matrices.Matrix;
! 37: c : Standard_Complex_Vectors.Vector )
! 38: return Standard_Complex_Vectors.Vector;
! 39:
! 40: -- DESCRIPTION :
! 41: -- Given a matrix m and the hexadecimal expansion of the coefficients
! 42: -- in c, the vector of maximal minors of m is returned.
! 43:
! 44: function Intersection_Condition
! 45: ( m : Standard_Floating_Matrices.Matrix; p : Poly ) return Poly;
! 46: function Intersection_Condition
! 47: ( m : Standard_Complex_Matrices.Matrix; p : Poly ) return Poly;
! 48:
! 49: -- DESCRIPTION :
! 50: -- Generates the particular equations in the SAGBI homotopy, with
! 51: -- as input a matrix m and the lifted localized Laplace expansion p.
! 52: -- The matrix contains in its columns the generating points of the
! 53: -- plane of intersection.
! 54:
! 55: -- REQUIRED : The dimensions of the matrix m are n times n-d.
! 56:
! 57: end SAGBI_Homotopies;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>