Annotation of OpenXM_contrib/PHC/Ada/Schubert/sagbi_homotopies.ads, Revision 1.1.1.1
1.1 maekawa 1: with Standard_Complex_Vectors;
2: with Standard_Natural_Matrices;
3: with Standard_Floating_Matrices;
4: with Standard_Complex_Matrices;
5: with Standard_Complex_Polynomials; use Standard_Complex_Polynomials;
6:
7: package SAGBI_Homotopies is
8:
9: -- DESCRIPTION :
10: -- Provides basic routines to set up the polynomials in the SAGBI homotopy.
11: -- Due to hexadecimal expansions, n and d are both limited to 16.
12: -- In practice, since the #roots grow so rapidly, this is no limitation.
13:
14: function Lifted_Localized_Laplace_Expansion ( n,d : natural ) return Poly;
15:
16: -- DESCRIPTION :
17: -- Constructs the generic equation in the SAGBI homotopy.
18: -- The coefficients are brackets in hexadecimal expansion.
19: -- These brackets represents the selected rows for the maximal minors.
20: -- The localization chooses the lower-right upper block of the d-plane
21: -- as the identity matrix.
22:
23: function Lifted_Localized_Laplace_Expansion
24: ( locmap : Standard_Natural_Matrices.Matrix ) return Poly;
25:
26: -- DESCRIPTION :
27: -- The generic equation in the SAGBI homotopy is constructed using
28: -- the localizaton map in locmap. Zeros and ones indicate the
29: -- position of the identity matrix, while free elements are twos.
30:
31: function Intersection_Coefficients
32: ( m : Standard_Floating_Matrices.Matrix;
33: c : Standard_Complex_Vectors.Vector )
34: return Standard_Complex_Vectors.Vector;
35: function Intersection_Coefficients
36: ( m : Standard_Complex_Matrices.Matrix;
37: c : Standard_Complex_Vectors.Vector )
38: return Standard_Complex_Vectors.Vector;
39:
40: -- DESCRIPTION :
41: -- Given a matrix m and the hexadecimal expansion of the coefficients
42: -- in c, the vector of maximal minors of m is returned.
43:
44: function Intersection_Condition
45: ( m : Standard_Floating_Matrices.Matrix; p : Poly ) return Poly;
46: function Intersection_Condition
47: ( m : Standard_Complex_Matrices.Matrix; p : Poly ) return Poly;
48:
49: -- DESCRIPTION :
50: -- Generates the particular equations in the SAGBI homotopy, with
51: -- as input a matrix m and the lifted localized Laplace expansion p.
52: -- The matrix contains in its columns the generating points of the
53: -- plane of intersection.
54:
55: -- REQUIRED : The dimensions of the matrix m are n times n-d.
56:
57: end SAGBI_Homotopies;
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>