Annotation of OpenXM_contrib/gc/misc.c, Revision 1.1.1.2
1.1 maekawa 1: /*
2: * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3: * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
4: *
5: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
6: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
7: *
8: * Permission is hereby granted to use or copy this program
9: * for any purpose, provided the above notices are retained on all copies.
10: * Permission to modify the code and to distribute modified code is granted,
11: * provided the above notices are retained, and a notice that the code was
12: * modified is included with the above copyright notice.
13: */
14: /* Boehm, July 31, 1995 5:02 pm PDT */
15:
16:
17: #include <stdio.h>
18: #include <signal.h>
19:
20: #define I_HIDE_POINTERS /* To make GC_call_with_alloc_lock visible */
21: #include "gc_priv.h"
22:
23: #ifdef SOLARIS_THREADS
24: # include <sys/syscall.h>
25: #endif
26: #ifdef MSWIN32
27: # include <windows.h>
28: #endif
29:
30: # ifdef THREADS
31: # ifdef PCR
32: # include "il/PCR_IL.h"
33: PCR_Th_ML GC_allocate_ml;
34: # else
35: # ifdef SRC_M3
36: /* Critical section counter is defined in the M3 runtime */
37: /* That's all we use. */
38: # else
39: # ifdef SOLARIS_THREADS
40: mutex_t GC_allocate_ml; /* Implicitly initialized. */
41: # else
42: # ifdef WIN32_THREADS
43: GC_API CRITICAL_SECTION GC_allocate_ml;
44: # else
45: # if defined(IRIX_THREADS) || defined(LINUX_THREADS) \
46: || defined(IRIX_JDK_THREADS)
47: pthread_t GC_lock_holder = NO_THREAD;
48: # else
1.1.1.2 ! maekawa 49: # if defined(HPUX_THREADS)
! 50: pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
! 51: # else
! 52: --> declare allocator lock here
! 53: # endif
1.1 maekawa 54: # endif
55: # endif
56: # endif
57: # endif
58: # endif
59: # endif
60:
61: GC_FAR struct _GC_arrays GC_arrays /* = { 0 } */;
62:
63:
64: GC_bool GC_debugging_started = FALSE;
65: /* defined here so we don't have to load debug_malloc.o */
66:
67: void (*GC_check_heap)() = (void (*)())0;
68:
69: void (*GC_start_call_back)() = (void (*)())0;
70:
71: ptr_t GC_stackbottom = 0;
72:
73: GC_bool GC_dont_gc = 0;
74:
75: GC_bool GC_quiet = 0;
76:
1.1.1.2 ! maekawa 77: #ifdef FIND_LEAK
! 78: int GC_find_leak = 1;
! 79: #else
! 80: int GC_find_leak = 0;
! 81: #endif
! 82:
1.1 maekawa 83: /*ARGSUSED*/
84: GC_PTR GC_default_oom_fn GC_PROTO((size_t bytes_requested))
85: {
86: return(0);
87: }
88:
89: GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested)) = GC_default_oom_fn;
90:
91: extern signed_word GC_mem_found;
92:
93: # ifdef MERGE_SIZES
94: /* Set things up so that GC_size_map[i] >= words(i), */
95: /* but not too much bigger */
96: /* and so that size_map contains relatively few distinct entries */
97: /* This is stolen from Russ Atkinson's Cedar quantization */
98: /* alogrithm (but we precompute it). */
99:
100:
101: void GC_init_size_map()
102: {
103: register unsigned i;
104:
105: /* Map size 0 to 1. This avoids problems at lower levels. */
106: GC_size_map[0] = 1;
107: /* One word objects don't have to be 2 word aligned. */
108: for (i = 1; i < sizeof(word); i++) {
109: GC_size_map[i] = 1;
110: }
111: GC_size_map[sizeof(word)] = ROUNDED_UP_WORDS(sizeof(word));
112: for (i = sizeof(word) + 1; i <= 8 * sizeof(word); i++) {
113: # ifdef ALIGN_DOUBLE
114: GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1);
115: # else
116: GC_size_map[i] = ROUNDED_UP_WORDS(i);
117: # endif
118: }
119: for (i = 8*sizeof(word) + 1; i <= 16 * sizeof(word); i++) {
120: GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1);
121: }
122: /* We leave the rest of the array to be filled in on demand. */
123: }
124:
125: /* Fill in additional entries in GC_size_map, including the ith one */
126: /* We assume the ith entry is currently 0. */
127: /* Note that a filled in section of the array ending at n always */
128: /* has length at least n/4. */
129: void GC_extend_size_map(i)
130: word i;
131: {
132: word orig_word_sz = ROUNDED_UP_WORDS(i);
133: word word_sz = orig_word_sz;
134: register word byte_sz = WORDS_TO_BYTES(word_sz);
135: /* The size we try to preserve. */
136: /* Close to to i, unless this would */
137: /* introduce too many distinct sizes. */
138: word smaller_than_i = byte_sz - (byte_sz >> 3);
139: word much_smaller_than_i = byte_sz - (byte_sz >> 2);
140: register word low_limit; /* The lowest indexed entry we */
141: /* initialize. */
142: register word j;
143:
144: if (GC_size_map[smaller_than_i] == 0) {
145: low_limit = much_smaller_than_i;
146: while (GC_size_map[low_limit] != 0) low_limit++;
147: } else {
148: low_limit = smaller_than_i + 1;
149: while (GC_size_map[low_limit] != 0) low_limit++;
150: word_sz = ROUNDED_UP_WORDS(low_limit);
151: word_sz += word_sz >> 3;
152: if (word_sz < orig_word_sz) word_sz = orig_word_sz;
153: }
154: # ifdef ALIGN_DOUBLE
155: word_sz += 1;
156: word_sz &= ~1;
157: # endif
158: if (word_sz > MAXOBJSZ) {
159: word_sz = MAXOBJSZ;
160: }
161: /* If we can fit the same number of larger objects in a block, */
162: /* do so. */
163: {
164: size_t number_of_objs = BODY_SZ/word_sz;
165: word_sz = BODY_SZ/number_of_objs;
166: # ifdef ALIGN_DOUBLE
167: word_sz &= ~1;
168: # endif
169: }
170: byte_sz = WORDS_TO_BYTES(word_sz);
171: # ifdef ADD_BYTE_AT_END
172: /* We need one extra byte; don't fill in GC_size_map[byte_sz] */
173: byte_sz--;
174: # endif
175:
176: for (j = low_limit; j <= byte_sz; j++) GC_size_map[j] = word_sz;
177: }
178: # endif
179:
180:
181: /*
182: * The following is a gross hack to deal with a problem that can occur
183: * on machines that are sloppy about stack frame sizes, notably SPARC.
184: * Bogus pointers may be written to the stack and not cleared for
185: * a LONG time, because they always fall into holes in stack frames
186: * that are not written. We partially address this by clearing
187: * sections of the stack whenever we get control.
188: */
189: word GC_stack_last_cleared = 0; /* GC_no when we last did this */
190: # ifdef THREADS
191: # define CLEAR_SIZE 2048
192: # else
193: # define CLEAR_SIZE 213
194: # endif
195: # define DEGRADE_RATE 50
196:
197: word GC_min_sp; /* Coolest stack pointer value from which we've */
198: /* already cleared the stack. */
199:
200: # ifdef STACK_GROWS_DOWN
201: # define COOLER_THAN >
202: # define HOTTER_THAN <
203: # define MAKE_COOLER(x,y) if ((word)(x)+(y) > (word)(x)) {(x) += (y);} \
204: else {(x) = (word)ONES;}
205: # define MAKE_HOTTER(x,y) (x) -= (y)
206: # else
207: # define COOLER_THAN <
208: # define HOTTER_THAN >
209: # define MAKE_COOLER(x,y) if ((word)(x)-(y) < (word)(x)) {(x) -= (y);} else {(x) = 0;}
210: # define MAKE_HOTTER(x,y) (x) += (y)
211: # endif
212:
213: word GC_high_water;
214: /* "hottest" stack pointer value we have seen */
215: /* recently. Degrades over time. */
216:
217: word GC_words_allocd_at_reset;
218:
219: #if defined(ASM_CLEAR_CODE) && !defined(THREADS)
220: extern ptr_t GC_clear_stack_inner();
221: #endif
222:
223: #if !defined(ASM_CLEAR_CODE) && !defined(THREADS)
224: /* Clear the stack up to about limit. Return arg. */
225: /*ARGSUSED*/
226: ptr_t GC_clear_stack_inner(arg, limit)
227: ptr_t arg;
228: word limit;
229: {
230: word dummy[CLEAR_SIZE];
231:
232: BZERO(dummy, CLEAR_SIZE*sizeof(word));
233: if ((word)(dummy) COOLER_THAN limit) {
234: (void) GC_clear_stack_inner(arg, limit);
235: }
236: /* Make sure the recursive call is not a tail call, and the bzero */
237: /* call is not recognized as dead code. */
238: GC_noop1((word)dummy);
239: return(arg);
240: }
241: #endif
242:
243: /* Clear some of the inaccessible part of the stack. Returns its */
244: /* argument, so it can be used in a tail call position, hence clearing */
245: /* another frame. */
246: ptr_t GC_clear_stack(arg)
247: ptr_t arg;
248: {
249: register word sp = (word)GC_approx_sp(); /* Hotter than actual sp */
250: # ifdef THREADS
251: word dummy[CLEAR_SIZE];
252: # else
253: register word limit;
254: # endif
255:
256: # define SLOP 400
257: /* Extra bytes we clear every time. This clears our own */
258: /* activation record, and should cause more frequent */
259: /* clearing near the cold end of the stack, a good thing. */
260: # define GC_SLOP 4000
261: /* We make GC_high_water this much hotter than we really saw */
262: /* saw it, to cover for GC noise etc. above our current frame. */
263: # define CLEAR_THRESHOLD 100000
264: /* We restart the clearing process after this many bytes of */
265: /* allocation. Otherwise very heavily recursive programs */
266: /* with sparse stacks may result in heaps that grow almost */
267: /* without bounds. As the heap gets larger, collection */
268: /* frequency decreases, thus clearing frequency would decrease, */
269: /* thus more junk remains accessible, thus the heap gets */
270: /* larger ... */
271: # ifdef THREADS
272: BZERO(dummy, CLEAR_SIZE*sizeof(word));
273: # else
274: if (GC_gc_no > GC_stack_last_cleared) {
275: /* Start things over, so we clear the entire stack again */
276: if (GC_stack_last_cleared == 0) GC_high_water = (word) GC_stackbottom;
277: GC_min_sp = GC_high_water;
278: GC_stack_last_cleared = GC_gc_no;
279: GC_words_allocd_at_reset = GC_words_allocd;
280: }
281: /* Adjust GC_high_water */
282: MAKE_COOLER(GC_high_water, WORDS_TO_BYTES(DEGRADE_RATE) + GC_SLOP);
283: if (sp HOTTER_THAN GC_high_water) {
284: GC_high_water = sp;
285: }
286: MAKE_HOTTER(GC_high_water, GC_SLOP);
287: limit = GC_min_sp;
288: MAKE_HOTTER(limit, SLOP);
289: if (sp COOLER_THAN limit) {
290: limit &= ~0xf; /* Make it sufficiently aligned for assembly */
291: /* implementations of GC_clear_stack_inner. */
292: GC_min_sp = sp;
293: return(GC_clear_stack_inner(arg, limit));
294: } else if (WORDS_TO_BYTES(GC_words_allocd - GC_words_allocd_at_reset)
295: > CLEAR_THRESHOLD) {
296: /* Restart clearing process, but limit how much clearing we do. */
297: GC_min_sp = sp;
298: MAKE_HOTTER(GC_min_sp, CLEAR_THRESHOLD/4);
299: if (GC_min_sp HOTTER_THAN GC_high_water) GC_min_sp = GC_high_water;
300: GC_words_allocd_at_reset = GC_words_allocd;
301: }
302: # endif
303: return(arg);
304: }
305:
306:
307: /* Return a pointer to the base address of p, given a pointer to a */
308: /* an address within an object. Return 0 o.w. */
309: # ifdef __STDC__
310: GC_PTR GC_base(GC_PTR p)
311: # else
312: GC_PTR GC_base(p)
313: GC_PTR p;
314: # endif
315: {
316: register word r;
317: register struct hblk *h;
318: register bottom_index *bi;
319: register hdr *candidate_hdr;
320: register word limit;
321:
322: r = (word)p;
323: if (!GC_is_initialized) return 0;
324: h = HBLKPTR(r);
325: GET_BI(r, bi);
326: candidate_hdr = HDR_FROM_BI(bi, r);
327: if (candidate_hdr == 0) return(0);
328: /* If it's a pointer to the middle of a large object, move it */
329: /* to the beginning. */
330: while (IS_FORWARDING_ADDR_OR_NIL(candidate_hdr)) {
331: h = FORWARDED_ADDR(h,candidate_hdr);
332: r = (word)h + HDR_BYTES;
333: candidate_hdr = HDR(h);
334: }
335: if (candidate_hdr -> hb_map == GC_invalid_map) return(0);
336: /* Make sure r points to the beginning of the object */
337: r &= ~(WORDS_TO_BYTES(1) - 1);
338: {
339: register int offset = (char *)r - (char *)(HBLKPTR(r));
340: register signed_word sz = candidate_hdr -> hb_sz;
341:
342: # ifdef ALL_INTERIOR_POINTERS
343: register map_entry_type map_entry;
344:
345: map_entry = MAP_ENTRY((candidate_hdr -> hb_map), offset);
346: if (map_entry == OBJ_INVALID) {
347: return(0);
348: }
349: r -= WORDS_TO_BYTES(map_entry);
350: limit = r + WORDS_TO_BYTES(sz);
351: # else
352: register int correction;
353:
354: offset = BYTES_TO_WORDS(offset - HDR_BYTES);
355: correction = offset % sz;
356: r -= (WORDS_TO_BYTES(correction));
357: limit = r + WORDS_TO_BYTES(sz);
358: if (limit > (word)(h + 1)
359: && sz <= BYTES_TO_WORDS(HBLKSIZE) - HDR_WORDS) {
360: return(0);
361: }
362: # endif
363: if ((word)p >= limit) return(0);
364: }
365: return((GC_PTR)r);
366: }
367:
368:
369: /* Return the size of an object, given a pointer to its base. */
370: /* (For small obects this also happens to work from interior pointers, */
371: /* but that shouldn't be relied upon.) */
372: # ifdef __STDC__
373: size_t GC_size(GC_PTR p)
374: # else
375: size_t GC_size(p)
376: GC_PTR p;
377: # endif
378: {
379: register int sz;
380: register hdr * hhdr = HDR(p);
381:
382: sz = WORDS_TO_BYTES(hhdr -> hb_sz);
383: if (sz < 0) {
384: return(-sz);
385: } else {
386: return(sz);
387: }
388: }
389:
390: size_t GC_get_heap_size GC_PROTO(())
391: {
392: return ((size_t) GC_heapsize);
393: }
394:
1.1.1.2 ! maekawa 395: size_t GC_get_free_bytes GC_PROTO(())
! 396: {
! 397: return ((size_t) GC_large_free_bytes);
! 398: }
! 399:
1.1 maekawa 400: size_t GC_get_bytes_since_gc GC_PROTO(())
401: {
402: return ((size_t) WORDS_TO_BYTES(GC_words_allocd));
403: }
404:
405: GC_bool GC_is_initialized = FALSE;
406:
407: void GC_init()
408: {
409: DCL_LOCK_STATE;
410:
411: DISABLE_SIGNALS();
412: LOCK();
413: GC_init_inner();
414: UNLOCK();
415: ENABLE_SIGNALS();
416:
417: }
418:
419: #ifdef MSWIN32
420: extern void GC_init_win32();
421: #endif
422:
423: extern void GC_setpagesize();
424:
425: void GC_init_inner()
426: {
427: # ifndef THREADS
428: word dummy;
429: # endif
430:
431: if (GC_is_initialized) return;
432: GC_setpagesize();
433: GC_exclude_static_roots(beginGC_arrays, end_gc_area);
434: # ifdef PRINTSTATS
435: if ((ptr_t)endGC_arrays != (ptr_t)(&GC_obj_kinds)) {
436: GC_printf0("Reordering linker, didn't exclude obj_kinds\n");
437: }
438: # endif
439: # ifdef MSWIN32
440: GC_init_win32();
441: # endif
1.1.1.2 ! maekawa 442: # if defined(LINUX) && \
! 443: (defined(POWERPC) || defined(ALPHA) || defined(SPARC) || defined(IA64))
! 444: GC_init_linux_data_start();
1.1 maekawa 445: # endif
446: # ifdef SOLARIS_THREADS
447: GC_thr_init();
448: /* We need dirty bits in order to find live stack sections. */
449: GC_dirty_init();
450: # endif
451: # if defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1.1.1.2 ! maekawa 452: || defined(IRIX_JDK_THREADS) || defined(HPUX_THREADS)
1.1 maekawa 453: GC_thr_init();
454: # endif
455: # if !defined(THREADS) || defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1.1.1.2 ! maekawa 456: || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
! 457: || defined(HPUX_THREADS)
1.1 maekawa 458: if (GC_stackbottom == 0) {
459: GC_stackbottom = GC_get_stack_base();
460: }
461: # endif
462: if (sizeof (ptr_t) != sizeof(word)) {
463: ABORT("sizeof (ptr_t) != sizeof(word)\n");
464: }
465: if (sizeof (signed_word) != sizeof(word)) {
466: ABORT("sizeof (signed_word) != sizeof(word)\n");
467: }
468: if (sizeof (struct hblk) != HBLKSIZE) {
469: ABORT("sizeof (struct hblk) != HBLKSIZE\n");
470: }
471: # ifndef THREADS
472: # if defined(STACK_GROWS_UP) && defined(STACK_GROWS_DOWN)
473: ABORT(
474: "Only one of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
475: # endif
476: # if !defined(STACK_GROWS_UP) && !defined(STACK_GROWS_DOWN)
477: ABORT(
478: "One of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
479: # endif
480: # ifdef STACK_GROWS_DOWN
481: if ((word)(&dummy) > (word)GC_stackbottom) {
482: GC_err_printf0(
483: "STACK_GROWS_DOWN is defd, but stack appears to grow up\n");
484: # ifndef UTS4 /* Compiler bug workaround */
485: GC_err_printf2("sp = 0x%lx, GC_stackbottom = 0x%lx\n",
486: (unsigned long) (&dummy),
487: (unsigned long) GC_stackbottom);
488: # endif
489: ABORT("stack direction 3\n");
490: }
491: # else
492: if ((word)(&dummy) < (word)GC_stackbottom) {
493: GC_err_printf0(
494: "STACK_GROWS_UP is defd, but stack appears to grow down\n");
495: GC_err_printf2("sp = 0x%lx, GC_stackbottom = 0x%lx\n",
496: (unsigned long) (&dummy),
497: (unsigned long) GC_stackbottom);
498: ABORT("stack direction 4");
499: }
500: # endif
501: # endif
502: # if !defined(_AUX_SOURCE) || defined(__GNUC__)
503: if ((word)(-1) < (word)0) {
504: GC_err_printf0("The type word should be an unsigned integer type\n");
505: GC_err_printf0("It appears to be signed\n");
506: ABORT("word");
507: }
508: # endif
509: if ((signed_word)(-1) >= (signed_word)0) {
510: GC_err_printf0(
511: "The type signed_word should be a signed integer type\n");
512: GC_err_printf0("It appears to be unsigned\n");
513: ABORT("signed_word");
514: }
515:
516: /* Add initial guess of root sets. Do this first, since sbrk(0) */
517: /* might be used. */
518: GC_register_data_segments();
519: GC_init_headers();
520: GC_bl_init();
521: GC_mark_init();
522: if (!GC_expand_hp_inner((word)MINHINCR)) {
523: GC_err_printf0("Can't start up: not enough memory\n");
524: EXIT();
525: }
526: /* Preallocate large object map. It's otherwise inconvenient to */
527: /* deal with failure. */
528: if (!GC_add_map_entry((word)0)) {
529: GC_err_printf0("Can't start up: not enough memory\n");
530: EXIT();
531: }
532: GC_register_displacement_inner(0L);
533: # ifdef MERGE_SIZES
534: GC_init_size_map();
535: # endif
536: # ifdef PCR
537: if (PCR_IL_Lock(PCR_Bool_false, PCR_allSigsBlocked, PCR_waitForever)
538: != PCR_ERes_okay) {
539: ABORT("Can't lock load state\n");
540: } else if (PCR_IL_Unlock() != PCR_ERes_okay) {
541: ABORT("Can't unlock load state\n");
542: }
543: PCR_IL_Unlock();
544: GC_pcr_install();
545: # endif
546: /* Get black list set up */
547: GC_gcollect_inner();
548: # ifdef STUBBORN_ALLOC
549: GC_stubborn_init();
550: # endif
551: GC_is_initialized = TRUE;
552: /* Convince lint that some things are used */
553: # ifdef LINT
554: {
555: extern char * GC_copyright[];
556: extern int GC_read();
557: extern void GC_register_finalizer_no_order();
558:
559: GC_noop(GC_copyright, GC_find_header,
560: GC_push_one, GC_call_with_alloc_lock, GC_read,
561: GC_dont_expand,
562: # ifndef NO_DEBUGGING
563: GC_dump,
564: # endif
565: GC_register_finalizer_no_order);
566: }
567: # endif
568: }
569:
570: void GC_enable_incremental GC_PROTO(())
571: {
1.1.1.2 ! maekawa 572: # if !defined(SMALL_CONFIG)
! 573: if (!GC_find_leak) {
1.1 maekawa 574: DCL_LOCK_STATE;
575:
576: DISABLE_SIGNALS();
577: LOCK();
578: if (GC_incremental) goto out;
579: GC_setpagesize();
580: # ifdef MSWIN32
581: {
582: extern GC_bool GC_is_win32s();
583:
584: /* VirtualProtect is not functional under win32s. */
585: if (GC_is_win32s()) goto out;
586: }
587: # endif /* MSWIN32 */
588: # ifndef SOLARIS_THREADS
589: GC_dirty_init();
590: # endif
591: if (!GC_is_initialized) {
592: GC_init_inner();
593: }
594: if (GC_dont_gc) {
595: /* Can't easily do it. */
596: UNLOCK();
597: ENABLE_SIGNALS();
598: return;
599: }
600: if (GC_words_allocd > 0) {
601: /* There may be unmarked reachable objects */
602: GC_gcollect_inner();
603: } /* else we're OK in assuming everything's */
604: /* clean since nothing can point to an */
605: /* unmarked object. */
606: GC_read_dirty();
607: GC_incremental = TRUE;
608: out:
609: UNLOCK();
610: ENABLE_SIGNALS();
1.1.1.2 ! maekawa 611: }
1.1 maekawa 612: # endif
613: }
614:
615:
616: #ifdef MSWIN32
617: # define LOG_FILE "gc.log"
618:
619: HANDLE GC_stdout = 0, GC_stderr;
620: int GC_tmp;
621: DWORD GC_junk;
622:
623: void GC_set_files()
624: {
625: if (!GC_stdout) {
626: GC_stdout = CreateFile(LOG_FILE, GENERIC_WRITE,
627: FILE_SHARE_READ | FILE_SHARE_WRITE,
628: NULL, CREATE_ALWAYS, FILE_FLAG_WRITE_THROUGH,
629: NULL);
630: if (INVALID_HANDLE_VALUE == GC_stdout) ABORT("Open of log file failed");
631: }
632: if (GC_stderr == 0) {
633: GC_stderr = GC_stdout;
634: }
635: }
636:
637: #endif
638:
639: #if defined(OS2) || defined(MACOS)
640: FILE * GC_stdout = NULL;
641: FILE * GC_stderr = NULL;
642: int GC_tmp; /* Should really be local ... */
643:
644: void GC_set_files()
645: {
646: if (GC_stdout == NULL) {
647: GC_stdout = stdout;
648: }
649: if (GC_stderr == NULL) {
650: GC_stderr = stderr;
651: }
652: }
653: #endif
654:
655: #if !defined(OS2) && !defined(MACOS) && !defined(MSWIN32)
656: int GC_stdout = 1;
657: int GC_stderr = 2;
658: # if !defined(AMIGA)
659: # include <unistd.h>
660: # endif
661: #endif
662:
663: #if !defined(MSWIN32) && !defined(OS2) && !defined(MACOS)
664: int GC_write(fd, buf, len)
665: int fd;
666: char *buf;
667: size_t len;
668: {
669: register int bytes_written = 0;
670: register int result;
671:
672: while (bytes_written < len) {
673: # ifdef SOLARIS_THREADS
674: result = syscall(SYS_write, fd, buf + bytes_written,
675: len - bytes_written);
676: # else
677: result = write(fd, buf + bytes_written, len - bytes_written);
678: # endif
679: if (-1 == result) return(result);
680: bytes_written += result;
681: }
682: return(bytes_written);
683: }
684: #endif /* UN*X */
685:
686: #ifdef MSWIN32
687: # define WRITE(f, buf, len) (GC_set_files(), \
688: GC_tmp = WriteFile((f), (buf), \
689: (len), &GC_junk, NULL),\
690: (GC_tmp? 1 : -1))
691: #else
692: # if defined(OS2) || defined(MACOS)
693: # define WRITE(f, buf, len) (GC_set_files(), \
694: GC_tmp = fwrite((buf), 1, (len), (f)), \
695: fflush(f), GC_tmp)
696: # else
697: # define WRITE(f, buf, len) GC_write((f), (buf), (len))
698: # endif
699: #endif
700:
701: /* A version of printf that is unlikely to call malloc, and is thus safer */
702: /* to call from the collector in case malloc has been bound to GC_malloc. */
703: /* Assumes that no more than 1023 characters are written at once. */
704: /* Assumes that all arguments have been converted to something of the */
705: /* same size as long, and that the format conversions expect something */
706: /* of that size. */
707: void GC_printf(format, a, b, c, d, e, f)
708: char * format;
709: long a, b, c, d, e, f;
710: {
711: char buf[1025];
712:
713: if (GC_quiet) return;
714: buf[1024] = 0x15;
715: (void) sprintf(buf, format, a, b, c, d, e, f);
716: if (buf[1024] != 0x15) ABORT("GC_printf clobbered stack");
717: if (WRITE(GC_stdout, buf, strlen(buf)) < 0) ABORT("write to stdout failed");
718: }
719:
720: void GC_err_printf(format, a, b, c, d, e, f)
721: char * format;
722: long a, b, c, d, e, f;
723: {
724: char buf[1025];
725:
726: buf[1024] = 0x15;
727: (void) sprintf(buf, format, a, b, c, d, e, f);
728: if (buf[1024] != 0x15) ABORT("GC_err_printf clobbered stack");
729: if (WRITE(GC_stderr, buf, strlen(buf)) < 0) ABORT("write to stderr failed");
730: }
731:
732: void GC_err_puts(s)
733: char *s;
734: {
735: if (WRITE(GC_stderr, s, strlen(s)) < 0) ABORT("write to stderr failed");
736: }
737:
738: # if defined(__STDC__) || defined(__cplusplus)
739: void GC_default_warn_proc(char *msg, GC_word arg)
740: # else
741: void GC_default_warn_proc(msg, arg)
742: char *msg;
743: GC_word arg;
744: # endif
745: {
746: GC_err_printf1(msg, (unsigned long)arg);
747: }
748:
749: GC_warn_proc GC_current_warn_proc = GC_default_warn_proc;
750:
751: # if defined(__STDC__) || defined(__cplusplus)
752: GC_warn_proc GC_set_warn_proc(GC_warn_proc p)
753: # else
754: GC_warn_proc GC_set_warn_proc(p)
755: GC_warn_proc p;
756: # endif
757: {
758: GC_warn_proc result;
759:
760: LOCK();
761: result = GC_current_warn_proc;
762: GC_current_warn_proc = p;
763: UNLOCK();
764: return(result);
765: }
766:
767:
768: #ifndef PCR
769: void GC_abort(msg)
770: char * msg;
771: {
772: GC_err_printf1("%s\n", msg);
773: (void) abort();
774: }
775: #endif
776:
777: #ifdef NEED_CALLINFO
778:
779: void GC_print_callers (info)
780: struct callinfo info[NFRAMES];
781: {
782: register int i;
783:
784: # if NFRAMES == 1
785: GC_err_printf0("\tCaller at allocation:\n");
786: # else
787: GC_err_printf0("\tCall chain at allocation:\n");
788: # endif
789: for (i = 0; i < NFRAMES; i++) {
790: if (info[i].ci_pc == 0) break;
791: # if NARGS > 0
792: {
793: int j;
794:
795: GC_err_printf0("\t\targs: ");
796: for (j = 0; j < NARGS; j++) {
797: if (j != 0) GC_err_printf0(", ");
798: GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
799: ~(info[i].ci_arg[j]));
800: }
801: GC_err_printf0("\n");
802: }
803: # endif
804: GC_err_printf1("\t\t##PC##= 0x%X\n", info[i].ci_pc);
805: }
806: }
807:
808: #endif /* SAVE_CALL_CHAIN */
809:
810: # ifdef SRC_M3
811: void GC_enable()
812: {
813: GC_dont_gc--;
814: }
815:
816: void GC_disable()
817: {
818: GC_dont_gc++;
819: }
820: # endif
821:
822: #if !defined(NO_DEBUGGING)
823:
824: void GC_dump()
825: {
826: GC_printf0("***Static roots:\n");
827: GC_print_static_roots();
828: GC_printf0("\n***Heap sections:\n");
829: GC_print_heap_sects();
830: GC_printf0("\n***Free blocks:\n");
831: GC_print_hblkfreelist();
832: GC_printf0("\n***Blocks in use:\n");
833: GC_print_block_list();
834: }
835:
836: # endif /* NO_DEBUGGING */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>