Annotation of OpenXM_contrib/gc/os_dep.c, Revision 1.1.1.2
1.1 maekawa 1: /*
1.1.1.2 ! maekawa 2: * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
1.1 maekawa 3: * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
1.1.1.2 ! maekawa 4: * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
! 5: * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
1.1 maekawa 6: *
7: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9: *
10: * Permission is hereby granted to use or copy this program
11: * for any purpose, provided the above notices are retained on all copies.
12: * Permission to modify the code and to distribute modified code is granted,
13: * provided the above notices are retained, and a notice that the code was
14: * modified is included with the above copyright notice.
15: */
16:
17: # include "gc_priv.h"
18:
19: # if defined(LINUX) && !defined(POWERPC)
20: # include <linux/version.h>
21: # if (LINUX_VERSION_CODE <= 0x10400)
22: /* Ugly hack to get struct sigcontext_struct definition. Required */
23: /* for some early 1.3.X releases. Will hopefully go away soon. */
24: /* in some later Linux releases, asm/sigcontext.h may have to */
25: /* be included instead. */
26: # define __KERNEL__
27: # include <asm/signal.h>
28: # undef __KERNEL__
29: # else
30: /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31: /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32: /* prototypes, so we have to include the top-level sigcontext.h to */
33: /* make sure the former gets defined to be the latter if appropriate. */
34: # include <features.h>
35: # if 2 <= __GLIBC__
1.1.1.2 ! maekawa 36: # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
1.1 maekawa 37: /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38: /* has the right declaration for glibc 2.1. */
39: # include <sigcontext.h>
40: # endif /* 0 == __GLIBC_MINOR__ */
41: # else /* not 2 <= __GLIBC__ */
42: /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43: /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44: # include <asm/sigcontext.h>
45: # endif /* 2 <= __GLIBC__ */
46: # endif
47: # endif
48: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS)
49: # include <sys/types.h>
50: # if !defined(MSWIN32) && !defined(SUNOS4)
51: # include <unistd.h>
52: # endif
53: # endif
54:
55: # include <stdio.h>
56: # include <signal.h>
57:
58: /* Blatantly OS dependent routines, except for those that are related */
1.1.1.2 ! maekawa 59: /* to dynamic loading. */
1.1 maekawa 60:
61: # if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
62: # define NEED_FIND_LIMIT
63: # endif
64:
1.1.1.2 ! maekawa 65: # if defined(IRIX_THREADS) || defined(HPUX_THREADS)
1.1 maekawa 66: # define NEED_FIND_LIMIT
67: # endif
68:
69: # if (defined(SUNOS4) & defined(DYNAMIC_LOADING)) && !defined(PCR)
70: # define NEED_FIND_LIMIT
71: # endif
72:
73: # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
74: # define NEED_FIND_LIMIT
75: # endif
76:
1.1.1.2 ! maekawa 77: # if defined(LINUX) && \
! 78: (defined(POWERPC) || defined(SPARC) || defined(ALPHA) || defined(IA64))
1.1 maekawa 79: # define NEED_FIND_LIMIT
80: # endif
81:
82: #ifdef NEED_FIND_LIMIT
83: # include <setjmp.h>
84: #endif
85:
86: #ifdef FREEBSD
87: # include <machine/trap.h>
88: #endif
89:
90: #ifdef AMIGA
91: # include <proto/exec.h>
92: # include <proto/dos.h>
93: # include <dos/dosextens.h>
94: # include <workbench/startup.h>
95: #endif
96:
97: #ifdef MSWIN32
98: # define WIN32_LEAN_AND_MEAN
99: # define NOSERVICE
100: # include <windows.h>
101: #endif
102:
103: #ifdef MACOS
104: # include <Processes.h>
105: #endif
106:
107: #ifdef IRIX5
108: # include <sys/uio.h>
109: # include <malloc.h> /* for locking */
110: #endif
111: #ifdef USE_MMAP
112: # include <sys/types.h>
113: # include <sys/mman.h>
114: # include <sys/stat.h>
115: # include <fcntl.h>
116: #endif
117:
118: #ifdef SUNOS5SIGS
119: # include <sys/siginfo.h>
120: # undef setjmp
121: # undef longjmp
122: # define setjmp(env) sigsetjmp(env, 1)
123: # define longjmp(env, val) siglongjmp(env, val)
124: # define jmp_buf sigjmp_buf
125: #endif
126:
127: #ifdef DJGPP
128: /* Apparently necessary for djgpp 2.01. May casuse problems with */
129: /* other versions. */
130: typedef long unsigned int caddr_t;
131: #endif
132:
133: #ifdef PCR
134: # include "il/PCR_IL.h"
135: # include "th/PCR_ThCtl.h"
136: # include "mm/PCR_MM.h"
137: #endif
138:
139: #if !defined(NO_EXECUTE_PERMISSION)
140: # define OPT_PROT_EXEC PROT_EXEC
141: #else
142: # define OPT_PROT_EXEC 0
143: #endif
144:
1.1.1.2 ! maekawa 145: #if defined(LINUX) && (defined(POWERPC) || defined(SPARC) || defined(ALPHA) \
! 146: || defined(IA64))
! 147: /* The I386 case can be handled without a search. The Alpha case */
! 148: /* used to be handled differently as well, but the rules changed */
! 149: /* for recent Linux versions. This seems to be the easiest way to */
! 150: /* cover all versions. */
1.1 maekawa 151: ptr_t GC_data_start;
152:
1.1.1.2 ! maekawa 153: extern char * GC_copyright[]; /* Any data symbol would do. */
1.1 maekawa 154:
1.1.1.2 ! maekawa 155: void GC_init_linux_data_start()
1.1 maekawa 156: {
157: extern ptr_t GC_find_limit();
1.1.1.2 ! maekawa 158:
! 159: GC_data_start = GC_find_limit((ptr_t)GC_copyright, FALSE);
1.1 maekawa 160: }
161: #endif
162:
163: # ifdef OS2
164:
165: # include <stddef.h>
166:
167: # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
168:
169: struct exe_hdr {
170: unsigned short magic_number;
171: unsigned short padding[29];
172: long new_exe_offset;
173: };
174:
175: #define E_MAGIC(x) (x).magic_number
176: #define EMAGIC 0x5A4D
177: #define E_LFANEW(x) (x).new_exe_offset
178:
179: struct e32_exe {
180: unsigned char magic_number[2];
181: unsigned char byte_order;
182: unsigned char word_order;
183: unsigned long exe_format_level;
184: unsigned short cpu;
185: unsigned short os;
186: unsigned long padding1[13];
187: unsigned long object_table_offset;
188: unsigned long object_count;
189: unsigned long padding2[31];
190: };
191:
192: #define E32_MAGIC1(x) (x).magic_number[0]
193: #define E32MAGIC1 'L'
194: #define E32_MAGIC2(x) (x).magic_number[1]
195: #define E32MAGIC2 'X'
196: #define E32_BORDER(x) (x).byte_order
197: #define E32LEBO 0
198: #define E32_WORDER(x) (x).word_order
199: #define E32LEWO 0
200: #define E32_CPU(x) (x).cpu
201: #define E32CPU286 1
202: #define E32_OBJTAB(x) (x).object_table_offset
203: #define E32_OBJCNT(x) (x).object_count
204:
205: struct o32_obj {
206: unsigned long size;
207: unsigned long base;
208: unsigned long flags;
209: unsigned long pagemap;
210: unsigned long mapsize;
211: unsigned long reserved;
212: };
213:
214: #define O32_FLAGS(x) (x).flags
215: #define OBJREAD 0x0001L
216: #define OBJWRITE 0x0002L
217: #define OBJINVALID 0x0080L
218: #define O32_SIZE(x) (x).size
219: #define O32_BASE(x) (x).base
220:
221: # else /* IBM's compiler */
222:
223: /* A kludge to get around what appears to be a header file bug */
224: # ifndef WORD
225: # define WORD unsigned short
226: # endif
227: # ifndef DWORD
228: # define DWORD unsigned long
229: # endif
230:
231: # define EXE386 1
232: # include <newexe.h>
233: # include <exe386.h>
234:
235: # endif /* __IBMC__ */
236:
237: # define INCL_DOSEXCEPTIONS
238: # define INCL_DOSPROCESS
239: # define INCL_DOSERRORS
240: # define INCL_DOSMODULEMGR
241: # define INCL_DOSMEMMGR
242: # include <os2.h>
243:
244:
245: /* Disable and enable signals during nontrivial allocations */
246:
247: void GC_disable_signals(void)
248: {
249: ULONG nest;
250:
251: DosEnterMustComplete(&nest);
252: if (nest != 1) ABORT("nested GC_disable_signals");
253: }
254:
255: void GC_enable_signals(void)
256: {
257: ULONG nest;
258:
259: DosExitMustComplete(&nest);
260: if (nest != 0) ABORT("GC_enable_signals");
261: }
262:
263:
264: # else
265:
266: # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
267: && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW)
268:
269: # if defined(sigmask) && !defined(UTS4)
270: /* Use the traditional BSD interface */
271: # define SIGSET_T int
272: # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
273: # define SIG_FILL(set) (set) = 0x7fffffff
274: /* Setting the leading bit appears to provoke a bug in some */
275: /* longjmp implementations. Most systems appear not to have */
276: /* a signal 32. */
277: # define SIGSETMASK(old, new) (old) = sigsetmask(new)
278: # else
279: /* Use POSIX/SYSV interface */
280: # define SIGSET_T sigset_t
281: # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
282: # define SIG_FILL(set) sigfillset(&set)
283: # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
284: # endif
285:
286: static GC_bool mask_initialized = FALSE;
287:
288: static SIGSET_T new_mask;
289:
290: static SIGSET_T old_mask;
291:
292: static SIGSET_T dummy;
293:
294: #if defined(PRINTSTATS) && !defined(THREADS)
295: # define CHECK_SIGNALS
296: int GC_sig_disabled = 0;
297: #endif
298:
299: void GC_disable_signals()
300: {
301: if (!mask_initialized) {
302: SIG_FILL(new_mask);
303:
304: SIG_DEL(new_mask, SIGSEGV);
305: SIG_DEL(new_mask, SIGILL);
306: SIG_DEL(new_mask, SIGQUIT);
307: # ifdef SIGBUS
308: SIG_DEL(new_mask, SIGBUS);
309: # endif
310: # ifdef SIGIOT
311: SIG_DEL(new_mask, SIGIOT);
312: # endif
313: # ifdef SIGEMT
314: SIG_DEL(new_mask, SIGEMT);
315: # endif
316: # ifdef SIGTRAP
317: SIG_DEL(new_mask, SIGTRAP);
318: # endif
319: mask_initialized = TRUE;
320: }
321: # ifdef CHECK_SIGNALS
322: if (GC_sig_disabled != 0) ABORT("Nested disables");
323: GC_sig_disabled++;
324: # endif
325: SIGSETMASK(old_mask,new_mask);
326: }
327:
328: void GC_enable_signals()
329: {
330: # ifdef CHECK_SIGNALS
331: if (GC_sig_disabled != 1) ABORT("Unmatched enable");
332: GC_sig_disabled--;
333: # endif
334: SIGSETMASK(dummy,old_mask);
335: }
336:
337: # endif /* !PCR */
338:
339: # endif /*!OS/2 */
340:
341: /* Ivan Demakov: simplest way (to me) */
342: #ifdef DOS4GW
343: void GC_disable_signals() { }
344: void GC_enable_signals() { }
345: #endif
346:
347: /* Find the page size */
348: word GC_page_size;
349:
350: # ifdef MSWIN32
351: void GC_setpagesize()
352: {
353: SYSTEM_INFO sysinfo;
354:
355: GetSystemInfo(&sysinfo);
356: GC_page_size = sysinfo.dwPageSize;
357: }
358:
359: # else
1.1.1.2 ! maekawa 360: # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
! 361: || defined(USE_MUNMAP)
1.1 maekawa 362: void GC_setpagesize()
363: {
364: GC_page_size = GETPAGESIZE();
365: }
366: # else
367: /* It's acceptable to fake it. */
368: void GC_setpagesize()
369: {
370: GC_page_size = HBLKSIZE;
371: }
372: # endif
373: # endif
374:
375: /*
376: * Find the base of the stack.
377: * Used only in single-threaded environment.
378: * With threads, GC_mark_roots needs to know how to do this.
379: * Called with allocator lock held.
380: */
381: # ifdef MSWIN32
382: # define is_writable(prot) ((prot) == PAGE_READWRITE \
383: || (prot) == PAGE_WRITECOPY \
384: || (prot) == PAGE_EXECUTE_READWRITE \
385: || (prot) == PAGE_EXECUTE_WRITECOPY)
386: /* Return the number of bytes that are writable starting at p. */
387: /* The pointer p is assumed to be page aligned. */
388: /* If base is not 0, *base becomes the beginning of the */
389: /* allocation region containing p. */
390: word GC_get_writable_length(ptr_t p, ptr_t *base)
391: {
392: MEMORY_BASIC_INFORMATION buf;
393: word result;
394: word protect;
395:
396: result = VirtualQuery(p, &buf, sizeof(buf));
397: if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
398: if (base != 0) *base = (ptr_t)(buf.AllocationBase);
399: protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
400: if (!is_writable(protect)) {
401: return(0);
402: }
403: if (buf.State != MEM_COMMIT) return(0);
404: return(buf.RegionSize);
405: }
406:
407: ptr_t GC_get_stack_base()
408: {
409: int dummy;
410: ptr_t sp = (ptr_t)(&dummy);
411: ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
412: word size = GC_get_writable_length(trunc_sp, 0);
413:
414: return(trunc_sp + size);
415: }
416:
417:
418: # else
419:
420: # ifdef OS2
421:
422: ptr_t GC_get_stack_base()
423: {
424: PTIB ptib;
425: PPIB ppib;
426:
427: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
428: GC_err_printf0("DosGetInfoBlocks failed\n");
429: ABORT("DosGetInfoBlocks failed\n");
430: }
431: return((ptr_t)(ptib -> tib_pstacklimit));
432: }
433:
434: # else
435:
436: # ifdef AMIGA
437:
438: ptr_t GC_get_stack_base()
439: {
1.1.1.2 ! maekawa 440: struct Process *proc = (struct Process*)SysBase->ThisTask;
! 441:
! 442: /* Reference: Amiga Guru Book Pages: 42,567,574 */
! 443: if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS
! 444: && proc->pr_CLI != NULL) {
! 445: /* first ULONG is StackSize */
! 446: /*longPtr = proc->pr_ReturnAddr;
! 447: size = longPtr[0];*/
! 448:
! 449: return (char *)proc->pr_ReturnAddr + sizeof(ULONG);
! 450: } else {
! 451: return (char *)proc->pr_Task.tc_SPUpper;
! 452: }
! 453: }
! 454:
! 455: #if 0 /* old version */
! 456: ptr_t GC_get_stack_base()
! 457: {
1.1 maekawa 458: extern struct WBStartup *_WBenchMsg;
459: extern long __base;
460: extern long __stack;
461: struct Task *task;
462: struct Process *proc;
463: struct CommandLineInterface *cli;
464: long size;
465:
466: if ((task = FindTask(0)) == 0) {
467: GC_err_puts("Cannot find own task structure\n");
468: ABORT("task missing");
469: }
470: proc = (struct Process *)task;
471: cli = BADDR(proc->pr_CLI);
472:
473: if (_WBenchMsg != 0 || cli == 0) {
474: size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower;
475: } else {
476: size = cli->cli_DefaultStack * 4;
477: }
478: return (ptr_t)(__base + GC_max(size, __stack));
479: }
1.1.1.2 ! maekawa 480: #endif /* 0 */
1.1 maekawa 481:
1.1.1.2 ! maekawa 482: # else /* !AMIGA, !OS2, ... */
1.1 maekawa 483:
484: # ifdef NEED_FIND_LIMIT
485: /* Some tools to implement HEURISTIC2 */
486: # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
487: /* static */ jmp_buf GC_jmp_buf;
488:
489: /*ARGSUSED*/
490: void GC_fault_handler(sig)
491: int sig;
492: {
493: longjmp(GC_jmp_buf, 1);
494: }
495:
496: # ifdef __STDC__
497: typedef void (*handler)(int);
498: # else
499: typedef void (*handler)();
500: # endif
501:
1.1.1.2 ! maekawa 502: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
1.1 maekawa 503: static struct sigaction old_segv_act;
1.1.1.2 ! maekawa 504: # if defined(_sigargs) || defined(HPUX) /* !Irix6.x */
1.1 maekawa 505: static struct sigaction old_bus_act;
506: # endif
507: # else
508: static handler old_segv_handler, old_bus_handler;
509: # endif
510:
511: void GC_setup_temporary_fault_handler()
512: {
1.1.1.2 ! maekawa 513: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
1.1 maekawa 514: struct sigaction act;
515:
516: act.sa_handler = GC_fault_handler;
517: act.sa_flags = SA_RESTART | SA_NODEFER;
518: /* The presence of SA_NODEFER represents yet another gross */
519: /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
520: /* interact correctly with -lthread. We hide the confusion */
521: /* by making sure that signal handling doesn't affect the */
522: /* signal mask. */
523:
524: (void) sigemptyset(&act.sa_mask);
525: # ifdef IRIX_THREADS
526: /* Older versions have a bug related to retrieving and */
527: /* and setting a handler at the same time. */
528: (void) sigaction(SIGSEGV, 0, &old_segv_act);
529: (void) sigaction(SIGSEGV, &act, 0);
530: # else
531: (void) sigaction(SIGSEGV, &act, &old_segv_act);
1.1.1.2 ! maekawa 532: # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
! 533: || defined(HPUX)
! 534: /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
! 535: /* Pthreads doesn't exist under Irix 5.x, so we */
! 536: /* don't have to worry in the threads case. */
1.1 maekawa 537: (void) sigaction(SIGBUS, &act, &old_bus_act);
538: # endif
539: # endif /* IRIX_THREADS */
540: # else
541: old_segv_handler = signal(SIGSEGV, GC_fault_handler);
542: # ifdef SIGBUS
543: old_bus_handler = signal(SIGBUS, GC_fault_handler);
544: # endif
545: # endif
546: }
547:
548: void GC_reset_fault_handler()
549: {
1.1.1.2 ! maekawa 550: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
1.1 maekawa 551: (void) sigaction(SIGSEGV, &old_segv_act, 0);
1.1.1.2 ! maekawa 552: # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
! 553: || defined(HPUX)
1.1 maekawa 554: (void) sigaction(SIGBUS, &old_bus_act, 0);
555: # endif
556: # else
557: (void) signal(SIGSEGV, old_segv_handler);
558: # ifdef SIGBUS
559: (void) signal(SIGBUS, old_bus_handler);
560: # endif
561: # endif
562: }
563:
564: /* Return the first nonaddressible location > p (up) or */
565: /* the smallest location q s.t. [q,p] is addressible (!up). */
566: ptr_t GC_find_limit(p, up)
567: ptr_t p;
568: GC_bool up;
569: {
570: static VOLATILE ptr_t result;
571: /* Needs to be static, since otherwise it may not be */
572: /* preserved across the longjmp. Can safely be */
573: /* static since it's only called once, with the */
574: /* allocation lock held. */
575:
576:
577: GC_setup_temporary_fault_handler();
578: if (setjmp(GC_jmp_buf) == 0) {
579: result = (ptr_t)(((word)(p))
580: & ~(MIN_PAGE_SIZE-1));
581: for (;;) {
582: if (up) {
583: result += MIN_PAGE_SIZE;
584: } else {
585: result -= MIN_PAGE_SIZE;
586: }
587: GC_noop1((word)(*result));
588: }
589: }
590: GC_reset_fault_handler();
591: if (!up) {
592: result += MIN_PAGE_SIZE;
593: }
594: return(result);
595: }
596: # endif
597:
1.1.1.2 ! maekawa 598: #ifdef LINUX_STACKBOTTOM
! 599:
! 600: # define STAT_SKIP 27 /* Number of fields preceding startstack */
! 601: /* field in /proc/<pid>/stat */
! 602:
! 603: ptr_t GC_linux_stack_base(void)
! 604: {
! 605: char buf[50];
! 606: FILE *f;
! 607: char c;
! 608: word result = 0;
! 609: int i;
! 610:
! 611: sprintf(buf, "/proc/%d/stat", getpid());
! 612: f = fopen(buf, "r");
! 613: if (NULL == f) ABORT("Couldn't open /proc/<pid>/stat");
! 614: c = getc(f);
! 615: /* Skip the required number of fields. This number is hopefully */
! 616: /* constant across all Linux implementations. */
! 617: for (i = 0; i < STAT_SKIP; ++i) {
! 618: while (isspace(c)) c = getc(f);
! 619: while (!isspace(c)) c = getc(f);
! 620: }
! 621: while (isspace(c)) c = getc(f);
! 622: while (isdigit(c)) {
! 623: result *= 10;
! 624: result += c - '0';
! 625: c = getc(f);
! 626: }
! 627: if (result < 0x10000000) ABORT("Absurd stack bottom value");
! 628: return (ptr_t)result;
! 629: }
! 630:
! 631: #endif /* LINUX_STACKBOTTOM */
1.1 maekawa 632:
633: ptr_t GC_get_stack_base()
634: {
635: word dummy;
636: ptr_t result;
637:
638: # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
639:
640: # ifdef STACKBOTTOM
641: return(STACKBOTTOM);
642: # else
643: # ifdef HEURISTIC1
644: # ifdef STACK_GROWS_DOWN
645: result = (ptr_t)((((word)(&dummy))
646: + STACKBOTTOM_ALIGNMENT_M1)
647: & ~STACKBOTTOM_ALIGNMENT_M1);
648: # else
649: result = (ptr_t)(((word)(&dummy))
650: & ~STACKBOTTOM_ALIGNMENT_M1);
651: # endif
652: # endif /* HEURISTIC1 */
1.1.1.2 ! maekawa 653: # ifdef LINUX_STACKBOTTOM
! 654: result = GC_linux_stack_base();
! 655: # endif
1.1 maekawa 656: # ifdef HEURISTIC2
657: # ifdef STACK_GROWS_DOWN
658: result = GC_find_limit((ptr_t)(&dummy), TRUE);
659: # ifdef HEURISTIC2_LIMIT
660: if (result > HEURISTIC2_LIMIT
661: && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
662: result = HEURISTIC2_LIMIT;
663: }
664: # endif
665: # else
666: result = GC_find_limit((ptr_t)(&dummy), FALSE);
667: # ifdef HEURISTIC2_LIMIT
668: if (result < HEURISTIC2_LIMIT
669: && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
670: result = HEURISTIC2_LIMIT;
671: }
672: # endif
673: # endif
674:
675: # endif /* HEURISTIC2 */
676: # ifdef STACK_GROWS_DOWN
677: if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
678: # endif
679: return(result);
680: # endif /* STACKBOTTOM */
681: }
682:
683: # endif /* ! AMIGA */
684: # endif /* ! OS2 */
685: # endif /* ! MSWIN32 */
686:
687: /*
688: * Register static data segment(s) as roots.
689: * If more data segments are added later then they need to be registered
690: * add that point (as we do with SunOS dynamic loading),
691: * or GC_mark_roots needs to check for them (as we do with PCR).
692: * Called with allocator lock held.
693: */
694:
695: # ifdef OS2
696:
697: void GC_register_data_segments()
698: {
699: PTIB ptib;
700: PPIB ppib;
701: HMODULE module_handle;
702: # define PBUFSIZ 512
703: UCHAR path[PBUFSIZ];
704: FILE * myexefile;
705: struct exe_hdr hdrdos; /* MSDOS header. */
706: struct e32_exe hdr386; /* Real header for my executable */
707: struct o32_obj seg; /* Currrent segment */
708: int nsegs;
709:
710:
711: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
712: GC_err_printf0("DosGetInfoBlocks failed\n");
713: ABORT("DosGetInfoBlocks failed\n");
714: }
715: module_handle = ppib -> pib_hmte;
716: if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
717: GC_err_printf0("DosQueryModuleName failed\n");
718: ABORT("DosGetInfoBlocks failed\n");
719: }
720: myexefile = fopen(path, "rb");
721: if (myexefile == 0) {
722: GC_err_puts("Couldn't open executable ");
723: GC_err_puts(path); GC_err_puts("\n");
724: ABORT("Failed to open executable\n");
725: }
726: if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
727: GC_err_puts("Couldn't read MSDOS header from ");
728: GC_err_puts(path); GC_err_puts("\n");
729: ABORT("Couldn't read MSDOS header");
730: }
731: if (E_MAGIC(hdrdos) != EMAGIC) {
732: GC_err_puts("Executable has wrong DOS magic number: ");
733: GC_err_puts(path); GC_err_puts("\n");
734: ABORT("Bad DOS magic number");
735: }
736: if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
737: GC_err_puts("Seek to new header failed in ");
738: GC_err_puts(path); GC_err_puts("\n");
739: ABORT("Bad DOS magic number");
740: }
741: if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
742: GC_err_puts("Couldn't read MSDOS header from ");
743: GC_err_puts(path); GC_err_puts("\n");
744: ABORT("Couldn't read OS/2 header");
745: }
746: if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
747: GC_err_puts("Executable has wrong OS/2 magic number:");
748: GC_err_puts(path); GC_err_puts("\n");
749: ABORT("Bad OS/2 magic number");
750: }
751: if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
752: GC_err_puts("Executable %s has wrong byte order: ");
753: GC_err_puts(path); GC_err_puts("\n");
754: ABORT("Bad byte order");
755: }
756: if ( E32_CPU(hdr386) == E32CPU286) {
757: GC_err_puts("GC can't handle 80286 executables: ");
758: GC_err_puts(path); GC_err_puts("\n");
759: EXIT();
760: }
761: if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
762: SEEK_SET) != 0) {
763: GC_err_puts("Seek to object table failed: ");
764: GC_err_puts(path); GC_err_puts("\n");
765: ABORT("Seek to object table failed");
766: }
767: for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
768: int flags;
769: if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
770: GC_err_puts("Couldn't read obj table entry from ");
771: GC_err_puts(path); GC_err_puts("\n");
772: ABORT("Couldn't read obj table entry");
773: }
774: flags = O32_FLAGS(seg);
775: if (!(flags & OBJWRITE)) continue;
776: if (!(flags & OBJREAD)) continue;
777: if (flags & OBJINVALID) {
778: GC_err_printf0("Object with invalid pages?\n");
779: continue;
780: }
781: GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
782: }
783: }
784:
785: # else
786:
787: # ifdef MSWIN32
788: /* Unfortunately, we have to handle win32s very differently from NT, */
789: /* Since VirtualQuery has very different semantics. In particular, */
790: /* under win32s a VirtualQuery call on an unmapped page returns an */
791: /* invalid result. Under GC_register_data_segments is a noop and */
792: /* all real work is done by GC_register_dynamic_libraries. Under */
793: /* win32s, we cannot find the data segments associated with dll's. */
794: /* We rgister the main data segment here. */
795: GC_bool GC_win32s = FALSE; /* We're running under win32s. */
796:
797: GC_bool GC_is_win32s()
798: {
799: DWORD v = GetVersion();
800:
801: /* Check that this is not NT, and Windows major version <= 3 */
802: return ((v & 0x80000000) && (v & 0xff) <= 3);
803: }
804:
805: void GC_init_win32()
806: {
807: GC_win32s = GC_is_win32s();
808: }
809:
810: /* Return the smallest address a such that VirtualQuery */
811: /* returns correct results for all addresses between a and start. */
812: /* Assumes VirtualQuery returns correct information for start. */
813: ptr_t GC_least_described_address(ptr_t start)
814: {
815: MEMORY_BASIC_INFORMATION buf;
816: SYSTEM_INFO sysinfo;
817: DWORD result;
818: LPVOID limit;
819: ptr_t p;
820: LPVOID q;
821:
822: GetSystemInfo(&sysinfo);
823: limit = sysinfo.lpMinimumApplicationAddress;
824: p = (ptr_t)((word)start & ~(GC_page_size - 1));
825: for (;;) {
826: q = (LPVOID)(p - GC_page_size);
827: if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
828: result = VirtualQuery(q, &buf, sizeof(buf));
829: if (result != sizeof(buf) || buf.AllocationBase == 0) break;
830: p = (ptr_t)(buf.AllocationBase);
831: }
832: return(p);
833: }
834:
835: /* Is p the start of either the malloc heap, or of one of our */
836: /* heap sections? */
837: GC_bool GC_is_heap_base (ptr_t p)
838: {
839:
840: register unsigned i;
841:
842: # ifndef REDIRECT_MALLOC
843: static ptr_t malloc_heap_pointer = 0;
844:
845: if (0 == malloc_heap_pointer) {
846: MEMORY_BASIC_INFORMATION buf;
847: register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf));
848:
849: if (result != sizeof(buf)) {
850: ABORT("Weird VirtualQuery result");
851: }
852: malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
853: }
854: if (p == malloc_heap_pointer) return(TRUE);
855: # endif
856: for (i = 0; i < GC_n_heap_bases; i++) {
857: if (GC_heap_bases[i] == p) return(TRUE);
858: }
859: return(FALSE);
860: }
861:
862: void GC_register_root_section(ptr_t static_root)
863: {
864: MEMORY_BASIC_INFORMATION buf;
865: SYSTEM_INFO sysinfo;
866: DWORD result;
867: DWORD protect;
868: LPVOID p;
869: char * base;
870: char * limit, * new_limit;
871:
872: if (!GC_win32s) return;
873: p = base = limit = GC_least_described_address(static_root);
874: GetSystemInfo(&sysinfo);
875: while (p < sysinfo.lpMaximumApplicationAddress) {
876: result = VirtualQuery(p, &buf, sizeof(buf));
877: if (result != sizeof(buf) || buf.AllocationBase == 0
878: || GC_is_heap_base(buf.AllocationBase)) break;
879: new_limit = (char *)p + buf.RegionSize;
880: protect = buf.Protect;
881: if (buf.State == MEM_COMMIT
882: && is_writable(protect)) {
883: if ((char *)p == limit) {
884: limit = new_limit;
885: } else {
886: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
887: base = p;
888: limit = new_limit;
889: }
890: }
891: if (p > (LPVOID)new_limit /* overflow */) break;
892: p = (LPVOID)new_limit;
893: }
894: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
895: }
896:
897: void GC_register_data_segments()
898: {
899: static char dummy;
900:
901: GC_register_root_section((ptr_t)(&dummy));
902: }
903: # else
904: # ifdef AMIGA
905:
1.1.1.2 ! maekawa 906: void GC_register_data_segments()
! 907: {
! 908: struct Process *proc;
! 909: struct CommandLineInterface *cli;
! 910: BPTR myseglist;
! 911: ULONG *data;
! 912:
! 913: int num;
! 914:
! 915:
! 916: # ifdef __GNUC__
! 917: ULONG dataSegSize;
! 918: GC_bool found_segment = FALSE;
! 919: extern char __data_size[];
! 920:
! 921: dataSegSize=__data_size+8;
! 922: /* Can`t find the Location of __data_size, because
! 923: it`s possible that is it, inside the segment. */
! 924:
! 925: # endif
! 926:
! 927: proc= (struct Process*)SysBase->ThisTask;
! 928:
! 929: /* Reference: Amiga Guru Book Pages: 538ff,565,573
! 930: and XOper.asm */
! 931: if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS) {
! 932: if (proc->pr_CLI == NULL) {
! 933: myseglist = proc->pr_SegList;
! 934: } else {
! 935: /* ProcLoaded 'Loaded as a command: '*/
! 936: cli = BADDR(proc->pr_CLI);
! 937: myseglist = cli->cli_Module;
! 938: }
! 939: } else {
! 940: ABORT("Not a Process.");
! 941: }
! 942:
! 943: if (myseglist == NULL) {
! 944: ABORT("Arrrgh.. can't find segments, aborting");
! 945: }
! 946:
! 947: /* xoper hunks Shell Process */
! 948:
! 949: num=0;
! 950: for (data = (ULONG *)BADDR(myseglist); data != NULL;
! 951: data = (ULONG *)BADDR(data[0])) {
! 952: if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
! 953: ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
! 954: # ifdef __GNUC__
! 955: if (dataSegSize == data[-1]) {
! 956: found_segment = TRUE;
! 957: }
! 958: # endif
! 959: GC_add_roots_inner((char *)&data[1],
! 960: ((char *)&data[1]) + data[-1], FALSE);
! 961: }
! 962: ++num;
! 963: } /* for */
! 964: # ifdef __GNUC__
! 965: if (!found_segment) {
! 966: ABORT("Can`t find correct Segments.\nSolution: Use an newer version of ixemul.library");
! 967: }
! 968: # endif
! 969: }
! 970:
! 971: #if 0 /* old version */
1.1 maekawa 972: void GC_register_data_segments()
973: {
974: extern struct WBStartup *_WBenchMsg;
975: struct Process *proc;
976: struct CommandLineInterface *cli;
977: BPTR myseglist;
978: ULONG *data;
979:
980: if ( _WBenchMsg != 0 ) {
981: if ((myseglist = _WBenchMsg->sm_Segment) == 0) {
982: GC_err_puts("No seglist from workbench\n");
983: return;
984: }
985: } else {
986: if ((proc = (struct Process *)FindTask(0)) == 0) {
987: GC_err_puts("Cannot find process structure\n");
988: return;
989: }
990: if ((cli = BADDR(proc->pr_CLI)) == 0) {
991: GC_err_puts("No CLI\n");
992: return;
993: }
994: if ((myseglist = cli->cli_Module) == 0) {
995: GC_err_puts("No seglist from CLI\n");
996: return;
997: }
998: }
999:
1000: for (data = (ULONG *)BADDR(myseglist); data != 0;
1001: data = (ULONG *)BADDR(data[0])) {
1002: # ifdef AMIGA_SKIP_SEG
1003: if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
1004: ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
1005: # else
1006: {
1007: # endif /* AMIGA_SKIP_SEG */
1008: GC_add_roots_inner((char *)&data[1],
1009: ((char *)&data[1]) + data[-1], FALSE);
1010: }
1011: }
1012: }
1.1.1.2 ! maekawa 1013: #endif /* old version */
1.1 maekawa 1014:
1015:
1016: # else
1017:
1018: # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
1019: char * GC_SysVGetDataStart(max_page_size, etext_addr)
1020: int max_page_size;
1021: int * etext_addr;
1022: {
1023: word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1024: & ~(sizeof(word) - 1);
1025: /* etext rounded to word boundary */
1026: word next_page = ((text_end + (word)max_page_size - 1)
1027: & ~((word)max_page_size - 1));
1028: word page_offset = (text_end & ((word)max_page_size - 1));
1029: VOLATILE char * result = (char *)(next_page + page_offset);
1030: /* Note that this isnt equivalent to just adding */
1031: /* max_page_size to &etext if &etext is at a page boundary */
1032:
1033: GC_setup_temporary_fault_handler();
1034: if (setjmp(GC_jmp_buf) == 0) {
1035: /* Try writing to the address. */
1036: *result = *result;
1037: GC_reset_fault_handler();
1038: } else {
1039: GC_reset_fault_handler();
1040: /* We got here via a longjmp. The address is not readable. */
1041: /* This is known to happen under Solaris 2.4 + gcc, which place */
1042: /* string constants in the text segment, but after etext. */
1043: /* Use plan B. Note that we now know there is a gap between */
1044: /* text and data segments, so plan A bought us something. */
1045: result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
1046: }
1047: return((char *)result);
1048: }
1049: # endif
1050:
1051:
1052: void GC_register_data_segments()
1053: {
1.1.1.2 ! maekawa 1054: # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
! 1055: && !defined(MACOSX)
1.1 maekawa 1056: # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
1057: /* As of Solaris 2.3, the Solaris threads implementation */
1058: /* allocates the data structure for the initial thread with */
1059: /* sbrk at process startup. It needs to be scanned, so that */
1060: /* we don't lose some malloc allocated data structures */
1061: /* hanging from it. We're on thin ice here ... */
1062: extern caddr_t sbrk();
1063:
1064: GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1065: # else
1066: GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1067: # endif
1068: # endif
1.1.1.2 ! maekawa 1069: # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1.1 maekawa 1070: GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
1071: # endif
1072: # if defined(MACOS)
1073: {
1074: # if defined(THINK_C)
1075: extern void* GC_MacGetDataStart(void);
1076: /* globals begin above stack and end at a5. */
1077: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1078: (ptr_t)LMGetCurrentA5(), FALSE);
1079: # else
1080: # if defined(__MWERKS__)
1081: # if !__POWERPC__
1082: extern void* GC_MacGetDataStart(void);
1083: /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1084: # if __option(far_data)
1085: extern void* GC_MacGetDataEnd(void);
1086: # endif
1087: /* globals begin above stack and end at a5. */
1088: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1089: (ptr_t)LMGetCurrentA5(), FALSE);
1090: /* MATTHEW: Handle Far Globals */
1091: # if __option(far_data)
1092: /* Far globals follow he QD globals: */
1093: GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1094: (ptr_t)GC_MacGetDataEnd(), FALSE);
1095: # endif
1096: # else
1097: extern char __data_start__[], __data_end__[];
1098: GC_add_roots_inner((ptr_t)&__data_start__,
1099: (ptr_t)&__data_end__, FALSE);
1100: # endif /* __POWERPC__ */
1101: # endif /* __MWERKS__ */
1102: # endif /* !THINK_C */
1103: }
1104: # endif /* MACOS */
1105:
1106: /* Dynamic libraries are added at every collection, since they may */
1107: /* change. */
1108: }
1109:
1110: # endif /* ! AMIGA */
1111: # endif /* ! MSWIN32 */
1112: # endif /* ! OS2 */
1113:
1114: /*
1115: * Auxiliary routines for obtaining memory from OS.
1116: */
1117:
1118: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1119: && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW)
1120:
1121: # ifdef SUNOS4
1122: extern caddr_t sbrk();
1123: # endif
1124: # ifdef __STDC__
1125: # define SBRK_ARG_T ptrdiff_t
1126: # else
1127: # define SBRK_ARG_T int
1128: # endif
1129:
1130: # ifdef RS6000
1131: /* The compiler seems to generate speculative reads one past the end of */
1132: /* an allocated object. Hence we need to make sure that the page */
1133: /* following the last heap page is also mapped. */
1134: ptr_t GC_unix_get_mem(bytes)
1135: word bytes;
1136: {
1137: caddr_t cur_brk = (caddr_t)sbrk(0);
1138: caddr_t result;
1139: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1140: static caddr_t my_brk_val = 0;
1141:
1142: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1143: if (lsbs != 0) {
1144: if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1145: }
1146: if (cur_brk == my_brk_val) {
1147: /* Use the extra block we allocated last time. */
1148: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1149: if (result == (caddr_t)(-1)) return(0);
1150: result -= GC_page_size;
1151: } else {
1152: result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1153: if (result == (caddr_t)(-1)) return(0);
1154: }
1155: my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1156: return((ptr_t)result);
1157: }
1158:
1159: #else /* Not RS6000 */
1160:
1161: #if defined(USE_MMAP)
1162: /* Tested only under IRIX5 and Solaris 2 */
1163:
1164: #ifdef USE_MMAP_FIXED
1165: # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1166: /* Seems to yield better performance on Solaris 2, but can */
1167: /* be unreliable if something is already mapped at the address. */
1168: #else
1169: # define GC_MMAP_FLAGS MAP_PRIVATE
1170: #endif
1171:
1172: ptr_t GC_unix_get_mem(bytes)
1173: word bytes;
1174: {
1175: static GC_bool initialized = FALSE;
1176: static int fd;
1177: void *result;
1178: static ptr_t last_addr = HEAP_START;
1179:
1180: if (!initialized) {
1181: fd = open("/dev/zero", O_RDONLY);
1182: initialized = TRUE;
1183: }
1184: if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1185: result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1186: GC_MMAP_FLAGS, fd, 0/* offset */);
1187: if (result == MAP_FAILED) return(0);
1188: last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1189: last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1190: return((ptr_t)result);
1191: }
1192:
1193: #else /* Not RS6000, not USE_MMAP */
1194: ptr_t GC_unix_get_mem(bytes)
1195: word bytes;
1196: {
1197: ptr_t result;
1198: # ifdef IRIX5
1199: /* Bare sbrk isn't thread safe. Play by malloc rules. */
1200: /* The equivalent may be needed on other systems as well. */
1201: __LOCK_MALLOC();
1202: # endif
1203: {
1204: ptr_t cur_brk = (ptr_t)sbrk(0);
1205: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1206:
1207: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1208: if (lsbs != 0) {
1209: if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1210: }
1211: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1212: if (result == (ptr_t)(-1)) result = 0;
1213: }
1214: # ifdef IRIX5
1215: __UNLOCK_MALLOC();
1216: # endif
1217: return(result);
1218: }
1219:
1220: #endif /* Not USE_MMAP */
1221: #endif /* Not RS6000 */
1222:
1223: # endif /* UN*X */
1224:
1225: # ifdef OS2
1226:
1227: void * os2_alloc(size_t bytes)
1228: {
1229: void * result;
1230:
1231: if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1232: PAG_WRITE | PAG_COMMIT)
1233: != NO_ERROR) {
1234: return(0);
1235: }
1236: if (result == 0) return(os2_alloc(bytes));
1237: return(result);
1238: }
1239:
1240: # endif /* OS2 */
1241:
1242:
1243: # ifdef MSWIN32
1244: word GC_n_heap_bases = 0;
1245:
1246: ptr_t GC_win32_get_mem(bytes)
1247: word bytes;
1248: {
1249: ptr_t result;
1250:
1251: if (GC_win32s) {
1252: /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1253: /* There are also unconfirmed rumors of other */
1254: /* problems, so we dodge the issue. */
1255: result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1256: result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1257: } else {
1258: result = (ptr_t) VirtualAlloc(NULL, bytes,
1259: MEM_COMMIT | MEM_RESERVE,
1260: PAGE_EXECUTE_READWRITE);
1261: }
1262: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1263: /* If I read the documentation correctly, this can */
1264: /* only happen if HBLKSIZE > 64k or not a power of 2. */
1265: if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1266: GC_heap_bases[GC_n_heap_bases++] = result;
1267: return(result);
1268: }
1269:
1270: void GC_win32_free_heap ()
1271: {
1272: if (GC_win32s) {
1273: while (GC_n_heap_bases > 0) {
1274: GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1275: GC_heap_bases[GC_n_heap_bases] = 0;
1276: }
1277: }
1278: }
1279:
1280:
1281: # endif
1282:
1.1.1.2 ! maekawa 1283: #ifdef USE_MUNMAP
! 1284:
! 1285: /* For now, this only works on some Unix-like systems. If you */
! 1286: /* have something else, don't define USE_MUNMAP. */
! 1287: /* We assume ANSI C to support this feature. */
! 1288: #include <unistd.h>
! 1289: #include <sys/mman.h>
! 1290: #include <sys/stat.h>
! 1291: #include <sys/types.h>
! 1292: #include <fcntl.h>
! 1293:
! 1294: /* Compute a page aligned starting address for the unmap */
! 1295: /* operation on a block of size bytes starting at start. */
! 1296: /* Return 0 if the block is too small to make this feasible. */
! 1297: ptr_t GC_unmap_start(ptr_t start, word bytes)
! 1298: {
! 1299: ptr_t result = start;
! 1300: /* Round start to next page boundary. */
! 1301: result += GC_page_size - 1;
! 1302: result = (ptr_t)((word)result & ~(GC_page_size - 1));
! 1303: if (result + GC_page_size > start + bytes) return 0;
! 1304: return result;
! 1305: }
! 1306:
! 1307: /* Compute end address for an unmap operation on the indicated */
! 1308: /* block. */
! 1309: ptr_t GC_unmap_end(ptr_t start, word bytes)
! 1310: {
! 1311: ptr_t end_addr = start + bytes;
! 1312: end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
! 1313: return end_addr;
! 1314: }
! 1315:
! 1316: /* We assume that GC_remap is called on exactly the same range */
! 1317: /* as a previous call to GC_unmap. It is safe to consistently */
! 1318: /* round the endpoints in both places. */
! 1319: void GC_unmap(ptr_t start, word bytes)
! 1320: {
! 1321: ptr_t start_addr = GC_unmap_start(start, bytes);
! 1322: ptr_t end_addr = GC_unmap_end(start, bytes);
! 1323: word len = end_addr - start_addr;
! 1324: if (0 == start_addr) return;
! 1325: if (munmap(start_addr, len) != 0) ABORT("munmap failed");
! 1326: GC_unmapped_bytes += len;
! 1327: }
! 1328:
! 1329:
! 1330: void GC_remap(ptr_t start, word bytes)
! 1331: {
! 1332: static int zero_descr = -1;
! 1333: ptr_t start_addr = GC_unmap_start(start, bytes);
! 1334: ptr_t end_addr = GC_unmap_end(start, bytes);
! 1335: word len = end_addr - start_addr;
! 1336: ptr_t result;
! 1337:
! 1338: if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
! 1339: if (0 == start_addr) return;
! 1340: result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
! 1341: MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
! 1342: if (result != start_addr) {
! 1343: ABORT("mmap remapping failed");
! 1344: }
! 1345: GC_unmapped_bytes -= len;
! 1346: }
! 1347:
! 1348: /* Two adjacent blocks have already been unmapped and are about to */
! 1349: /* be merged. Unmap the whole block. This typically requires */
! 1350: /* that we unmap a small section in the middle that was not previously */
! 1351: /* unmapped due to alignment constraints. */
! 1352: void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
! 1353: {
! 1354: ptr_t start1_addr = GC_unmap_start(start1, bytes1);
! 1355: ptr_t end1_addr = GC_unmap_end(start1, bytes1);
! 1356: ptr_t start2_addr = GC_unmap_start(start2, bytes2);
! 1357: ptr_t end2_addr = GC_unmap_end(start2, bytes2);
! 1358: ptr_t start_addr = end1_addr;
! 1359: ptr_t end_addr = start2_addr;
! 1360: word len;
! 1361: GC_ASSERT(start1 + bytes1 == start2);
! 1362: if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
! 1363: if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
! 1364: if (0 == start_addr) return;
! 1365: len = end_addr - start_addr;
! 1366: if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
! 1367: GC_unmapped_bytes += len;
! 1368: }
! 1369:
! 1370: #endif /* USE_MUNMAP */
! 1371:
1.1 maekawa 1372: /* Routine for pushing any additional roots. In THREADS */
1373: /* environment, this is also responsible for marking from */
1374: /* thread stacks. In the SRC_M3 case, it also handles */
1375: /* global variables. */
1376: #ifndef THREADS
1377: void (*GC_push_other_roots)() = 0;
1378: #else /* THREADS */
1379:
1380: # ifdef PCR
1381: PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1382: {
1383: struct PCR_ThCtl_TInfoRep info;
1384: PCR_ERes result;
1385:
1386: info.ti_stkLow = info.ti_stkHi = 0;
1387: result = PCR_ThCtl_GetInfo(t, &info);
1388: GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1389: return(result);
1390: }
1391:
1392: /* Push the contents of an old object. We treat this as stack */
1393: /* data only becasue that makes it robust against mark stack */
1394: /* overflow. */
1395: PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1396: {
1397: GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1398: return(PCR_ERes_okay);
1399: }
1400:
1401:
1402: void GC_default_push_other_roots()
1403: {
1404: /* Traverse data allocated by previous memory managers. */
1405: {
1406: extern struct PCR_MM_ProcsRep * GC_old_allocator;
1407:
1408: if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1409: GC_push_old_obj, 0)
1410: != PCR_ERes_okay) {
1411: ABORT("Old object enumeration failed");
1412: }
1413: }
1414: /* Traverse all thread stacks. */
1415: if (PCR_ERes_IsErr(
1416: PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1417: || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1418: ABORT("Thread stack marking failed\n");
1419: }
1420: }
1421:
1422: # endif /* PCR */
1423:
1424: # ifdef SRC_M3
1425:
1426: # ifdef ALL_INTERIOR_POINTERS
1427: --> misconfigured
1428: # endif
1429:
1430:
1431: extern void ThreadF__ProcessStacks();
1432:
1433: void GC_push_thread_stack(start, stop)
1434: word start, stop;
1435: {
1436: GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1437: }
1438:
1439: /* Push routine with M3 specific calling convention. */
1440: GC_m3_push_root(dummy1, p, dummy2, dummy3)
1441: word *p;
1442: ptr_t dummy1, dummy2;
1443: int dummy3;
1444: {
1445: word q = *p;
1446:
1447: if ((ptr_t)(q) >= GC_least_plausible_heap_addr
1448: && (ptr_t)(q) < GC_greatest_plausible_heap_addr) {
1449: GC_push_one_checked(q,FALSE);
1450: }
1451: }
1452:
1453: /* M3 set equivalent to RTHeap.TracedRefTypes */
1454: typedef struct { int elts[1]; } RefTypeSet;
1455: RefTypeSet GC_TracedRefTypes = {{0x1}};
1456:
1457: /* From finalize.c */
1458: extern void GC_push_finalizer_structures();
1459:
1460: /* From stubborn.c: */
1461: # ifdef STUBBORN_ALLOC
1462: extern GC_PTR * GC_changing_list_start;
1463: # endif
1464:
1465:
1466: void GC_default_push_other_roots()
1467: {
1468: /* Use the M3 provided routine for finding static roots. */
1469: /* This is a bit dubious, since it presumes no C roots. */
1470: /* We handle the collector roots explicitly. */
1471: {
1472: # ifdef STUBBORN_ALLOC
1473: GC_push_one(GC_changing_list_start);
1474: # endif
1475: GC_push_finalizer_structures();
1476: RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1477: }
1478: if (GC_words_allocd > 0) {
1479: ThreadF__ProcessStacks(GC_push_thread_stack);
1480: }
1481: /* Otherwise this isn't absolutely necessary, and we have */
1482: /* startup ordering problems. */
1483: }
1484:
1485: # endif /* SRC_M3 */
1486:
1487: # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1488: || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1.1.1.2 ! maekawa 1489: || defined(IRIX_JDK_THREADS) || defined(HPUX_THREADS)
1.1 maekawa 1490:
1491: extern void GC_push_all_stacks();
1492:
1493: void GC_default_push_other_roots()
1494: {
1495: GC_push_all_stacks();
1496: }
1497:
1498: # endif /* SOLARIS_THREADS || ... */
1499:
1500: void (*GC_push_other_roots)() = GC_default_push_other_roots;
1501:
1502: #endif
1503:
1504: /*
1505: * Routines for accessing dirty bits on virtual pages.
1506: * We plan to eventaually implement four strategies for doing so:
1507: * DEFAULT_VDB: A simple dummy implementation that treats every page
1508: * as possibly dirty. This makes incremental collection
1509: * useless, but the implementation is still correct.
1510: * PCR_VDB: Use PPCRs virtual dirty bit facility.
1511: * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1512: * works under some SVR4 variants. Even then, it may be
1513: * too slow to be entirely satisfactory. Requires reading
1514: * dirty bits for entire address space. Implementations tend
1515: * to assume that the client is a (slow) debugger.
1516: * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1517: * dirtied pages. The implementation (and implementability)
1518: * is highly system dependent. This usually fails when system
1519: * calls write to a protected page. We prevent the read system
1520: * call from doing so. It is the clients responsibility to
1521: * make sure that other system calls are similarly protected
1522: * or write only to the stack.
1523: */
1524:
1525: GC_bool GC_dirty_maintained = FALSE;
1526:
1527: # ifdef DEFAULT_VDB
1528:
1529: /* All of the following assume the allocation lock is held, and */
1530: /* signals are disabled. */
1531:
1532: /* The client asserts that unallocated pages in the heap are never */
1533: /* written. */
1534:
1535: /* Initialize virtual dirty bit implementation. */
1536: void GC_dirty_init()
1537: {
1538: GC_dirty_maintained = TRUE;
1539: }
1540:
1541: /* Retrieve system dirty bits for heap to a local buffer. */
1542: /* Restore the systems notion of which pages are dirty. */
1543: void GC_read_dirty()
1544: {}
1545:
1546: /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1547: /* If the actual page size is different, this returns TRUE if any */
1548: /* of the pages overlapping h are dirty. This routine may err on the */
1549: /* side of labelling pages as dirty (and this implementation does). */
1550: /*ARGSUSED*/
1551: GC_bool GC_page_was_dirty(h)
1552: struct hblk *h;
1553: {
1554: return(TRUE);
1555: }
1556:
1557: /*
1558: * The following two routines are typically less crucial. They matter
1559: * most with large dynamic libraries, or if we can't accurately identify
1560: * stacks, e.g. under Solaris 2.X. Otherwise the following default
1561: * versions are adequate.
1562: */
1563:
1564: /* Could any valid GC heap pointer ever have been written to this page? */
1565: /*ARGSUSED*/
1566: GC_bool GC_page_was_ever_dirty(h)
1567: struct hblk *h;
1568: {
1569: return(TRUE);
1570: }
1571:
1572: /* Reset the n pages starting at h to "was never dirty" status. */
1573: void GC_is_fresh(h, n)
1574: struct hblk *h;
1575: word n;
1576: {
1577: }
1578:
1579: /* A call hints that h is about to be written. */
1580: /* May speed up some dirty bit implementations. */
1581: /*ARGSUSED*/
1582: void GC_write_hint(h)
1583: struct hblk *h;
1584: {
1585: }
1586:
1587: # endif /* DEFAULT_VDB */
1588:
1589:
1590: # ifdef MPROTECT_VDB
1591:
1592: /*
1593: * See DEFAULT_VDB for interface descriptions.
1594: */
1595:
1596: /*
1597: * This implementation maintains dirty bits itself by catching write
1598: * faults and keeping track of them. We assume nobody else catches
1599: * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1600: * except as a result of a read system call. This means clients must
1601: * either ensure that system calls do not touch the heap, or must
1602: * provide their own wrappers analogous to the one for read.
1603: * We assume the page size is a multiple of HBLKSIZE.
1604: * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1605: * tried to use portable code where easily possible. It is known
1606: * not to work under a number of other systems.
1607: */
1608:
1609: # ifndef MSWIN32
1610:
1611: # include <sys/mman.h>
1612: # include <signal.h>
1613: # include <sys/syscall.h>
1614:
1615: # define PROTECT(addr, len) \
1.1.1.2 ! maekawa 1616: if (mprotect((caddr_t)(addr), (size_t)(len), \
1.1 maekawa 1617: PROT_READ | OPT_PROT_EXEC) < 0) { \
1618: ABORT("mprotect failed"); \
1619: }
1620: # define UNPROTECT(addr, len) \
1.1.1.2 ! maekawa 1621: if (mprotect((caddr_t)(addr), (size_t)(len), \
1.1 maekawa 1622: PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1623: ABORT("un-mprotect failed"); \
1624: }
1625:
1626: # else
1627:
1628: # include <signal.h>
1629:
1630: static DWORD protect_junk;
1631: # define PROTECT(addr, len) \
1632: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1633: &protect_junk)) { \
1634: DWORD last_error = GetLastError(); \
1635: GC_printf1("Last error code: %lx\n", last_error); \
1636: ABORT("VirtualProtect failed"); \
1637: }
1638: # define UNPROTECT(addr, len) \
1639: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1640: &protect_junk)) { \
1641: ABORT("un-VirtualProtect failed"); \
1642: }
1643:
1644: # endif
1645:
1646: #if defined(SUNOS4) || defined(FREEBSD)
1647: typedef void (* SIG_PF)();
1648: #endif
1649: #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX)
1.1.1.2 ! maekawa 1650: # ifdef __STDC__
1.1 maekawa 1651: typedef void (* SIG_PF)(int);
1.1.1.2 ! maekawa 1652: # else
! 1653: typedef void (* SIG_PF)();
! 1654: # endif
1.1 maekawa 1655: #endif
1656: #if defined(MSWIN32)
1657: typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1658: # undef SIG_DFL
1659: # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1660: #endif
1661:
1662: #if defined(IRIX5) || defined(OSF1)
1663: typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1664: #endif
1665: #if defined(SUNOS5SIGS)
1.1.1.2 ! maekawa 1666: # ifdef HPUX
! 1667: # define SIGINFO __siginfo
! 1668: # else
! 1669: # define SIGINFO siginfo
! 1670: # endif
! 1671: # ifdef __STDC__
! 1672: typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
! 1673: # else
! 1674: typedef void (* REAL_SIG_PF)();
! 1675: # endif
1.1 maekawa 1676: #endif
1677: #if defined(LINUX)
1678: # include <linux/version.h>
1.1.1.2 ! maekawa 1679: # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(IA64)
1.1 maekawa 1680: typedef struct sigcontext s_c;
1681: # else
1682: typedef struct sigcontext_struct s_c;
1683: # endif
1.1.1.2 ! maekawa 1684: # if defined(ALPHA) || defined(M68K)
! 1685: typedef void (* REAL_SIG_PF)(int, int, s_c *);
! 1686: # else
! 1687: # if defined(IA64)
! 1688: typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
! 1689: # else
! 1690: typedef void (* REAL_SIG_PF)(int, s_c);
! 1691: # endif
! 1692: # endif
1.1 maekawa 1693: # ifdef ALPHA
1694: /* Retrieve fault address from sigcontext structure by decoding */
1695: /* instruction. */
1696: char * get_fault_addr(s_c *sc) {
1697: unsigned instr;
1698: word faultaddr;
1699:
1700: instr = *((unsigned *)(sc->sc_pc));
1701: faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
1702: faultaddr += (word) (((int)instr << 16) >> 16);
1703: return (char *)faultaddr;
1704: }
1705: # endif /* !ALPHA */
1706: # endif
1707:
1708: SIG_PF GC_old_bus_handler;
1709: SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1710:
1711: /*ARGSUSED*/
1712: # if defined (SUNOS4) || defined(FREEBSD)
1713: void GC_write_fault_handler(sig, code, scp, addr)
1714: int sig, code;
1715: struct sigcontext *scp;
1716: char * addr;
1717: # ifdef SUNOS4
1718: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1719: # define CODE_OK (FC_CODE(code) == FC_PROT \
1720: || (FC_CODE(code) == FC_OBJERR \
1721: && FC_ERRNO(code) == FC_PROT))
1722: # endif
1723: # ifdef FREEBSD
1724: # define SIG_OK (sig == SIGBUS)
1725: # define CODE_OK (code == BUS_PAGE_FAULT)
1726: # endif
1727: # endif
1728: # if defined(IRIX5) || defined(OSF1)
1729: # include <errno.h>
1730: void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
1731: # define SIG_OK (sig == SIGSEGV)
1732: # ifdef OSF1
1733: # define CODE_OK (code == 2 /* experimentally determined */)
1734: # endif
1735: # ifdef IRIX5
1736: # define CODE_OK (code == EACCES)
1737: # endif
1738: # endif
1739: # if defined(LINUX)
1.1.1.2 ! maekawa 1740: # if defined(ALPHA) || defined(M68K)
1.1 maekawa 1741: void GC_write_fault_handler(int sig, int code, s_c * sc)
1742: # else
1.1.1.2 ! maekawa 1743: # if defined(IA64)
! 1744: void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
! 1745: # else
! 1746: void GC_write_fault_handler(int sig, s_c sc)
! 1747: # endif
1.1 maekawa 1748: # endif
1749: # define SIG_OK (sig == SIGSEGV)
1750: # define CODE_OK TRUE
1.1.1.2 ! maekawa 1751: /* Empirically c.trapno == 14, on IA32, but is that useful? */
! 1752: /* Should probably consider alignment issues on other */
! 1753: /* architectures. */
1.1 maekawa 1754: # endif
1755: # if defined(SUNOS5SIGS)
1.1.1.2 ! maekawa 1756: # ifdef __STDC__
! 1757: void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
! 1758: # else
! 1759: void GC_write_fault_handler(sig, scp, context)
! 1760: int sig;
! 1761: struct SIGINFO *scp;
! 1762: void * context;
! 1763: # endif
! 1764: # ifdef HPUX
! 1765: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
! 1766: # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
! 1767: || (scp -> si_code == BUS_ADRERR) \
! 1768: || (scp -> si_code == BUS_UNKNOWN) \
! 1769: || (scp -> si_code == SEGV_UNKNOWN) \
! 1770: || (scp -> si_code == BUS_OBJERR)
! 1771: # else
! 1772: # define SIG_OK (sig == SIGSEGV)
! 1773: # define CODE_OK (scp -> si_code == SEGV_ACCERR)
! 1774: # endif
1.1 maekawa 1775: # endif
1776: # if defined(MSWIN32)
1777: LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
1778: # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1779: EXCEPTION_ACCESS_VIOLATION)
1780: # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
1781: /* Write fault */
1782: # endif
1783: {
1784: register unsigned i;
1785: # ifdef IRIX5
1786: char * addr = (char *) (size_t) (scp -> sc_badvaddr);
1787: # endif
1788: # if defined(OSF1) && defined(ALPHA)
1789: char * addr = (char *) (scp -> sc_traparg_a0);
1790: # endif
1791: # ifdef SUNOS5SIGS
1792: char * addr = (char *) (scp -> si_addr);
1793: # endif
1794: # ifdef LINUX
1795: # ifdef I386
1796: char * addr = (char *) (sc.cr2);
1797: # else
1798: # if defined(M68K)
1799: char * addr = NULL;
1800:
1801: struct sigcontext *scp = (struct sigcontext *)(&sc);
1802:
1803: int format = (scp->sc_formatvec >> 12) & 0xf;
1804: unsigned long *framedata = (unsigned long *)(scp + 1);
1805: unsigned long ea;
1806:
1807: if (format == 0xa || format == 0xb) {
1808: /* 68020/030 */
1809: ea = framedata[2];
1810: } else if (format == 7) {
1811: /* 68040 */
1812: ea = framedata[3];
1813: } else if (format == 4) {
1814: /* 68060 */
1815: ea = framedata[0];
1816: if (framedata[1] & 0x08000000) {
1817: /* correct addr on misaligned access */
1818: ea = (ea+4095)&(~4095);
1819: }
1820: }
1821: addr = (char *)ea;
1822: # else
1823: # ifdef ALPHA
1824: char * addr = get_fault_addr(sc);
1825: # else
1.1.1.2 ! maekawa 1826: # ifdef IA64
! 1827: char * addr = si -> si_addr;
! 1828: # else
! 1829: # if defined(POWERPC)
! 1830: char * addr = (char *) (sc.regs->dar);
! 1831: # else
1.1 maekawa 1832: --> architecture not supported
1.1.1.2 ! maekawa 1833: # endif
! 1834: # endif
1.1 maekawa 1835: # endif
1836: # endif
1837: # endif
1838: # endif
1839: # if defined(MSWIN32)
1840: char * addr = (char *) (exc_info -> ExceptionRecord
1841: -> ExceptionInformation[1]);
1842: # define sig SIGSEGV
1843: # endif
1844:
1845: if (SIG_OK && CODE_OK) {
1846: register struct hblk * h =
1847: (struct hblk *)((word)addr & ~(GC_page_size-1));
1848: GC_bool in_allocd_block;
1849:
1850: # ifdef SUNOS5SIGS
1851: /* Address is only within the correct physical page. */
1852: in_allocd_block = FALSE;
1853: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1854: if (HDR(h+i) != 0) {
1855: in_allocd_block = TRUE;
1856: }
1857: }
1858: # else
1859: in_allocd_block = (HDR(addr) != 0);
1860: # endif
1861: if (!in_allocd_block) {
1862: /* Heap blocks now begin and end on page boundaries */
1863: SIG_PF old_handler;
1864:
1865: if (sig == SIGSEGV) {
1866: old_handler = GC_old_segv_handler;
1867: } else {
1868: old_handler = GC_old_bus_handler;
1869: }
1870: if (old_handler == SIG_DFL) {
1871: # ifndef MSWIN32
1872: GC_err_printf1("Segfault at 0x%lx\n", addr);
1873: ABORT("Unexpected bus error or segmentation fault");
1874: # else
1875: return(EXCEPTION_CONTINUE_SEARCH);
1876: # endif
1877: } else {
1878: # if defined (SUNOS4) || defined(FREEBSD)
1879: (*old_handler) (sig, code, scp, addr);
1880: return;
1881: # endif
1882: # if defined (SUNOS5SIGS)
1883: (*(REAL_SIG_PF)old_handler) (sig, scp, context);
1884: return;
1885: # endif
1886: # if defined (LINUX)
1.1.1.2 ! maekawa 1887: # if defined(ALPHA) || defined(M68K)
1.1 maekawa 1888: (*(REAL_SIG_PF)old_handler) (sig, code, sc);
1889: # else
1.1.1.2 ! maekawa 1890: # if defined(IA64)
! 1891: (*(REAL_SIG_PF)old_handler) (sig, si, scp);
! 1892: # else
1.1 maekawa 1893: (*(REAL_SIG_PF)old_handler) (sig, sc);
1.1.1.2 ! maekawa 1894: # endif
1.1 maekawa 1895: # endif
1896: return;
1897: # endif
1898: # if defined (IRIX5) || defined(OSF1)
1899: (*(REAL_SIG_PF)old_handler) (sig, code, scp);
1900: return;
1901: # endif
1902: # ifdef MSWIN32
1903: return((*old_handler)(exc_info));
1904: # endif
1905: }
1906: }
1907: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1908: register int index = PHT_HASH(h+i);
1909:
1910: set_pht_entry_from_index(GC_dirty_pages, index);
1911: }
1912: UNPROTECT(h, GC_page_size);
1913: # if defined(OSF1) || defined(LINUX)
1914: /* These reset the signal handler each time by default. */
1915: signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
1916: # endif
1917: /* The write may not take place before dirty bits are read. */
1918: /* But then we'll fault again ... */
1919: # ifdef MSWIN32
1920: return(EXCEPTION_CONTINUE_EXECUTION);
1921: # else
1922: return;
1923: # endif
1924: }
1925: #ifdef MSWIN32
1926: return EXCEPTION_CONTINUE_SEARCH;
1927: #else
1928: GC_err_printf1("Segfault at 0x%lx\n", addr);
1929: ABORT("Unexpected bus error or segmentation fault");
1930: #endif
1931: }
1932:
1933: /*
1934: * We hold the allocation lock. We expect block h to be written
1935: * shortly.
1936: */
1937: void GC_write_hint(h)
1938: struct hblk *h;
1939: {
1940: register struct hblk * h_trunc;
1941: register unsigned i;
1942: register GC_bool found_clean;
1943:
1944: if (!GC_dirty_maintained) return;
1945: h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
1946: found_clean = FALSE;
1947: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1948: register int index = PHT_HASH(h_trunc+i);
1949:
1950: if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
1951: found_clean = TRUE;
1952: set_pht_entry_from_index(GC_dirty_pages, index);
1953: }
1954: }
1955: if (found_clean) {
1956: UNPROTECT(h_trunc, GC_page_size);
1957: }
1958: }
1959:
1960: void GC_dirty_init()
1961: {
1.1.1.2 ! maekawa 1962: #if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */
1.1 maekawa 1963: struct sigaction act, oldact;
1964: # ifdef IRIX5
1965: act.sa_flags = SA_RESTART;
1966: act.sa_handler = GC_write_fault_handler;
1967: # else
1968: act.sa_flags = SA_RESTART | SA_SIGINFO;
1969: act.sa_sigaction = GC_write_fault_handler;
1970: # endif
1971: (void)sigemptyset(&act.sa_mask);
1972: #endif
1973: # ifdef PRINTSTATS
1974: GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
1975: # endif
1976: GC_dirty_maintained = TRUE;
1977: if (GC_page_size % HBLKSIZE != 0) {
1978: GC_err_printf0("Page size not multiple of HBLKSIZE\n");
1979: ABORT("Page size not multiple of HBLKSIZE");
1980: }
1981: # if defined(SUNOS4) || defined(FREEBSD)
1982: GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
1983: if (GC_old_bus_handler == SIG_IGN) {
1984: GC_err_printf0("Previously ignored bus error!?");
1985: GC_old_bus_handler = SIG_DFL;
1986: }
1987: if (GC_old_bus_handler != SIG_DFL) {
1988: # ifdef PRINTSTATS
1989: GC_err_printf0("Replaced other SIGBUS handler\n");
1990: # endif
1991: }
1992: # endif
1993: # if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
1994: GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
1995: if (GC_old_segv_handler == SIG_IGN) {
1996: GC_err_printf0("Previously ignored segmentation violation!?");
1997: GC_old_segv_handler = SIG_DFL;
1998: }
1999: if (GC_old_segv_handler != SIG_DFL) {
2000: # ifdef PRINTSTATS
2001: GC_err_printf0("Replaced other SIGSEGV handler\n");
2002: # endif
2003: }
2004: # endif
2005: # if defined(SUNOS5SIGS) || defined(IRIX5)
1.1.1.2 ! maekawa 2006: # if defined(IRIX_THREADS) || defined(IRIX_JDK_THREADS)
1.1 maekawa 2007: sigaction(SIGSEGV, 0, &oldact);
2008: sigaction(SIGSEGV, &act, 0);
2009: # else
2010: sigaction(SIGSEGV, &act, &oldact);
2011: # endif
2012: # if defined(_sigargs)
2013: /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2014: /* sa_sigaction. */
2015: GC_old_segv_handler = oldact.sa_handler;
2016: # else /* Irix 6.x or SUNOS5SIGS */
2017: if (oldact.sa_flags & SA_SIGINFO) {
2018: GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2019: } else {
2020: GC_old_segv_handler = oldact.sa_handler;
2021: }
2022: # endif
2023: if (GC_old_segv_handler == SIG_IGN) {
2024: GC_err_printf0("Previously ignored segmentation violation!?");
2025: GC_old_segv_handler = SIG_DFL;
2026: }
2027: if (GC_old_segv_handler != SIG_DFL) {
2028: # ifdef PRINTSTATS
2029: GC_err_printf0("Replaced other SIGSEGV handler\n");
2030: # endif
2031: }
1.1.1.2 ! maekawa 2032: # ifdef HPUX
! 2033: sigaction(SIGBUS, &act, &oldact);
! 2034: GC_old_bus_handler = oldact.sa_handler;
! 2035: if (GC_old_segv_handler != SIG_DFL) {
! 2036: # ifdef PRINTSTATS
! 2037: GC_err_printf0("Replaced other SIGBUS handler\n");
! 2038: # endif
! 2039: }
! 2040: # endif
1.1 maekawa 2041: # endif
2042: # if defined(MSWIN32)
2043: GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2044: if (GC_old_segv_handler != NULL) {
2045: # ifdef PRINTSTATS
2046: GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2047: # endif
2048: } else {
2049: GC_old_segv_handler = SIG_DFL;
2050: }
2051: # endif
2052: }
2053:
2054:
2055:
2056: void GC_protect_heap()
2057: {
2058: ptr_t start;
2059: word len;
2060: unsigned i;
2061:
2062: for (i = 0; i < GC_n_heap_sects; i++) {
2063: start = GC_heap_sects[i].hs_start;
2064: len = GC_heap_sects[i].hs_bytes;
2065: PROTECT(start, len);
2066: }
2067: }
2068:
2069: /* We assume that either the world is stopped or its OK to lose dirty */
2070: /* bits while this is happenning (as in GC_enable_incremental). */
2071: void GC_read_dirty()
2072: {
2073: BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2074: (sizeof GC_dirty_pages));
2075: BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2076: GC_protect_heap();
2077: }
2078:
2079: GC_bool GC_page_was_dirty(h)
2080: struct hblk * h;
2081: {
2082: register word index = PHT_HASH(h);
2083:
2084: return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2085: }
2086:
2087: /*
2088: * Acquiring the allocation lock here is dangerous, since this
2089: * can be called from within GC_call_with_alloc_lock, and the cord
2090: * package does so. On systems that allow nested lock acquisition, this
2091: * happens to work.
2092: * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2093: */
2094:
2095: void GC_begin_syscall()
2096: {
2097: if (!I_HOLD_LOCK()) LOCK();
2098: }
2099:
2100: void GC_end_syscall()
2101: {
2102: if (!I_HOLD_LOCK()) UNLOCK();
2103: }
2104:
2105: void GC_unprotect_range(addr, len)
2106: ptr_t addr;
2107: word len;
2108: {
2109: struct hblk * start_block;
2110: struct hblk * end_block;
2111: register struct hblk *h;
2112: ptr_t obj_start;
2113:
2114: if (!GC_incremental) return;
2115: obj_start = GC_base(addr);
2116: if (obj_start == 0) return;
2117: if (GC_base(addr + len - 1) != obj_start) {
2118: ABORT("GC_unprotect_range(range bigger than object)");
2119: }
2120: start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2121: end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2122: end_block += GC_page_size/HBLKSIZE - 1;
2123: for (h = start_block; h <= end_block; h++) {
2124: register word index = PHT_HASH(h);
2125:
2126: set_pht_entry_from_index(GC_dirty_pages, index);
2127: }
2128: UNPROTECT(start_block,
2129: ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2130: }
2131:
2132: #ifndef MSWIN32
2133: /* Replacement for UNIX system call. */
2134: /* Other calls that write to the heap */
2135: /* should be handled similarly. */
2136: # if defined(__STDC__) && !defined(SUNOS4)
2137: # include <unistd.h>
2138: ssize_t read(int fd, void *buf, size_t nbyte)
2139: # else
2140: # ifndef LINT
2141: int read(fd, buf, nbyte)
2142: # else
2143: int GC_read(fd, buf, nbyte)
2144: # endif
2145: int fd;
2146: char *buf;
2147: int nbyte;
2148: # endif
2149: {
2150: int result;
2151:
2152: GC_begin_syscall();
2153: GC_unprotect_range(buf, (word)nbyte);
2154: # ifdef IRIX5
2155: /* Indirect system call may not always be easily available. */
2156: /* We could call _read, but that would interfere with the */
2157: /* libpthread interception of read. */
2158: {
2159: struct iovec iov;
2160:
2161: iov.iov_base = buf;
2162: iov.iov_len = nbyte;
2163: result = readv(fd, &iov, 1);
2164: }
2165: # else
2166: result = syscall(SYS_read, fd, buf, nbyte);
2167: # endif
2168: GC_end_syscall();
2169: return(result);
2170: }
2171: #endif /* !MSWIN32 */
2172:
2173: /*ARGSUSED*/
2174: GC_bool GC_page_was_ever_dirty(h)
2175: struct hblk *h;
2176: {
2177: return(TRUE);
2178: }
2179:
2180: /* Reset the n pages starting at h to "was never dirty" status. */
2181: /*ARGSUSED*/
2182: void GC_is_fresh(h, n)
2183: struct hblk *h;
2184: word n;
2185: {
2186: }
2187:
2188: # endif /* MPROTECT_VDB */
2189:
2190: # ifdef PROC_VDB
2191:
2192: /*
2193: * See DEFAULT_VDB for interface descriptions.
2194: */
2195:
2196: /*
2197: * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2198: * from which we can read page modified bits. This facility is far from
2199: * optimal (e.g. we would like to get the info for only some of the
2200: * address space), but it avoids intercepting system calls.
2201: */
2202:
2203: #include <errno.h>
2204: #include <sys/types.h>
2205: #include <sys/signal.h>
2206: #include <sys/fault.h>
2207: #include <sys/syscall.h>
2208: #include <sys/procfs.h>
2209: #include <sys/stat.h>
2210: #include <fcntl.h>
2211:
2212: #define INITIAL_BUF_SZ 4096
2213: word GC_proc_buf_size = INITIAL_BUF_SZ;
2214: char *GC_proc_buf;
2215:
2216: #ifdef SOLARIS_THREADS
2217: /* We don't have exact sp values for threads. So we count on */
2218: /* occasionally declaring stack pages to be fresh. Thus we */
2219: /* need a real implementation of GC_is_fresh. We can't clear */
2220: /* entries in GC_written_pages, since that would declare all */
2221: /* pages with the given hash address to be fresh. */
2222: # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2223: struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2224: /* Collisions are dropped. */
2225:
2226: # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2227: # define ADD_FRESH_PAGE(h) \
2228: GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2229: # define PAGE_IS_FRESH(h) \
2230: (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2231: #endif
2232:
2233: /* Add all pages in pht2 to pht1 */
2234: void GC_or_pages(pht1, pht2)
2235: page_hash_table pht1, pht2;
2236: {
2237: register int i;
2238:
2239: for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
2240: }
2241:
2242: int GC_proc_fd;
2243:
2244: void GC_dirty_init()
2245: {
2246: int fd;
2247: char buf[30];
2248:
2249: GC_dirty_maintained = TRUE;
2250: if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
2251: register int i;
2252:
2253: for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
2254: # ifdef PRINTSTATS
2255: GC_printf1("Allocated words:%lu:all pages may have been written\n",
2256: (unsigned long)
2257: (GC_words_allocd + GC_words_allocd_before_gc));
2258: # endif
2259: }
2260: sprintf(buf, "/proc/%d", getpid());
2261: fd = open(buf, O_RDONLY);
2262: if (fd < 0) {
2263: ABORT("/proc open failed");
2264: }
2265: GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
2266: close(fd);
2267: if (GC_proc_fd < 0) {
2268: ABORT("/proc ioctl failed");
2269: }
2270: GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
2271: # ifdef SOLARIS_THREADS
2272: GC_fresh_pages = (struct hblk **)
2273: GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
2274: if (GC_fresh_pages == 0) {
2275: GC_err_printf0("No space for fresh pages\n");
2276: EXIT();
2277: }
2278: BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
2279: # endif
2280: }
2281:
2282: /* Ignore write hints. They don't help us here. */
2283: /*ARGSUSED*/
2284: void GC_write_hint(h)
2285: struct hblk *h;
2286: {
2287: }
2288:
2289: #ifdef SOLARIS_THREADS
2290: # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2291: #else
2292: # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2293: #endif
2294:
2295: void GC_read_dirty()
2296: {
2297: unsigned long ps, np;
2298: int nmaps;
2299: ptr_t vaddr;
2300: struct prasmap * map;
2301: char * bufp;
2302: ptr_t current_addr, limit;
2303: int i;
2304: int dummy;
2305:
2306: BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
2307:
2308: bufp = GC_proc_buf;
2309: if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2310: # ifdef PRINTSTATS
2311: GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2312: GC_proc_buf_size);
2313: # endif
2314: {
2315: /* Retry with larger buffer. */
2316: word new_size = 2 * GC_proc_buf_size;
2317: char * new_buf = GC_scratch_alloc(new_size);
2318:
2319: if (new_buf != 0) {
2320: GC_proc_buf = bufp = new_buf;
2321: GC_proc_buf_size = new_size;
2322: }
2323: if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2324: WARN("Insufficient space for /proc read\n", 0);
2325: /* Punt: */
2326: memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2327: memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2328: # ifdef SOLARIS_THREADS
2329: BZERO(GC_fresh_pages,
2330: MAX_FRESH_PAGES * sizeof (struct hblk *));
2331: # endif
2332: return;
2333: }
2334: }
2335: }
2336: /* Copy dirty bits into GC_grungy_pages */
2337: nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2338: /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2339: nmaps, PG_REFERENCED, PG_MODIFIED); */
2340: bufp = bufp + sizeof(struct prpageheader);
2341: for (i = 0; i < nmaps; i++) {
2342: map = (struct prasmap *)bufp;
2343: vaddr = (ptr_t)(map -> pr_vaddr);
2344: ps = map -> pr_pagesize;
2345: np = map -> pr_npage;
2346: /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2347: limit = vaddr + ps * np;
2348: bufp += sizeof (struct prasmap);
2349: for (current_addr = vaddr;
2350: current_addr < limit; current_addr += ps){
2351: if ((*bufp++) & PG_MODIFIED) {
2352: register struct hblk * h = (struct hblk *) current_addr;
2353:
2354: while ((ptr_t)h < current_addr + ps) {
2355: register word index = PHT_HASH(h);
2356:
2357: set_pht_entry_from_index(GC_grungy_pages, index);
2358: # ifdef SOLARIS_THREADS
2359: {
2360: register int slot = FRESH_PAGE_SLOT(h);
2361:
2362: if (GC_fresh_pages[slot] == h) {
2363: GC_fresh_pages[slot] = 0;
2364: }
2365: }
2366: # endif
2367: h++;
2368: }
2369: }
2370: }
2371: bufp += sizeof(long) - 1;
2372: bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2373: }
2374: /* Update GC_written_pages. */
2375: GC_or_pages(GC_written_pages, GC_grungy_pages);
2376: # ifdef SOLARIS_THREADS
2377: /* Make sure that old stacks are considered completely clean */
2378: /* unless written again. */
2379: GC_old_stacks_are_fresh();
2380: # endif
2381: }
2382:
2383: #undef READ
2384:
2385: GC_bool GC_page_was_dirty(h)
2386: struct hblk *h;
2387: {
2388: register word index = PHT_HASH(h);
2389: register GC_bool result;
2390:
2391: result = get_pht_entry_from_index(GC_grungy_pages, index);
2392: # ifdef SOLARIS_THREADS
2393: if (result && PAGE_IS_FRESH(h)) result = FALSE;
2394: /* This happens only if page was declared fresh since */
2395: /* the read_dirty call, e.g. because it's in an unused */
2396: /* thread stack. It's OK to treat it as clean, in */
2397: /* that case. And it's consistent with */
2398: /* GC_page_was_ever_dirty. */
2399: # endif
2400: return(result);
2401: }
2402:
2403: GC_bool GC_page_was_ever_dirty(h)
2404: struct hblk *h;
2405: {
2406: register word index = PHT_HASH(h);
2407: register GC_bool result;
2408:
2409: result = get_pht_entry_from_index(GC_written_pages, index);
2410: # ifdef SOLARIS_THREADS
2411: if (result && PAGE_IS_FRESH(h)) result = FALSE;
2412: # endif
2413: return(result);
2414: }
2415:
2416: /* Caller holds allocation lock. */
2417: void GC_is_fresh(h, n)
2418: struct hblk *h;
2419: word n;
2420: {
2421:
2422: register word index;
2423:
2424: # ifdef SOLARIS_THREADS
2425: register word i;
2426:
2427: if (GC_fresh_pages != 0) {
2428: for (i = 0; i < n; i++) {
2429: ADD_FRESH_PAGE(h + i);
2430: }
2431: }
2432: # endif
2433: }
2434:
2435: # endif /* PROC_VDB */
2436:
2437:
2438: # ifdef PCR_VDB
2439:
2440: # include "vd/PCR_VD.h"
2441:
2442: # define NPAGES (32*1024) /* 128 MB */
2443:
2444: PCR_VD_DB GC_grungy_bits[NPAGES];
2445:
2446: ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2447: /* HBLKSIZE aligned. */
2448:
2449: void GC_dirty_init()
2450: {
2451: GC_dirty_maintained = TRUE;
2452: /* For the time being, we assume the heap generally grows up */
2453: GC_vd_base = GC_heap_sects[0].hs_start;
2454: if (GC_vd_base == 0) {
2455: ABORT("Bad initial heap segment");
2456: }
2457: if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2458: != PCR_ERes_okay) {
2459: ABORT("dirty bit initialization failed");
2460: }
2461: }
2462:
2463: void GC_read_dirty()
2464: {
2465: /* lazily enable dirty bits on newly added heap sects */
2466: {
2467: static int onhs = 0;
2468: int nhs = GC_n_heap_sects;
2469: for( ; onhs < nhs; onhs++ ) {
2470: PCR_VD_WriteProtectEnable(
2471: GC_heap_sects[onhs].hs_start,
2472: GC_heap_sects[onhs].hs_bytes );
2473: }
2474: }
2475:
2476:
2477: if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2478: != PCR_ERes_okay) {
2479: ABORT("dirty bit read failed");
2480: }
2481: }
2482:
2483: GC_bool GC_page_was_dirty(h)
2484: struct hblk *h;
2485: {
2486: if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2487: return(TRUE);
2488: }
2489: return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2490: }
2491:
2492: /*ARGSUSED*/
2493: void GC_write_hint(h)
2494: struct hblk *h;
2495: {
2496: PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2497: PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2498: }
2499:
2500: # endif /* PCR_VDB */
2501:
2502: /*
2503: * Call stack save code for debugging.
2504: * Should probably be in mach_dep.c, but that requires reorganization.
2505: */
2506: #if defined(SPARC) && !defined(LINUX)
2507: # if defined(SUNOS4)
2508: # include <machine/frame.h>
2509: # else
2510: # if defined (DRSNX)
2511: # include <sys/sparc/frame.h>
2512: # else
1.1.1.2 ! maekawa 2513: # if defined(OPENBSD)
! 2514: # include <frame.h>
! 2515: # else
! 2516: # include <sys/frame.h>
! 2517: # endif
1.1 maekawa 2518: # endif
2519: # endif
2520: # if NARGS > 6
2521: --> We only know how to to get the first 6 arguments
2522: # endif
2523:
2524: #ifdef SAVE_CALL_CHAIN
2525: /* Fill in the pc and argument information for up to NFRAMES of my */
2526: /* callers. Ignore my frame and my callers frame. */
1.1.1.2 ! maekawa 2527:
! 2528: #ifdef OPENBSD
! 2529: # define FR_SAVFP fr_fp
! 2530: # define FR_SAVPC fr_pc
! 2531: #else
! 2532: # define FR_SAVFP fr_savfp
! 2533: # define FR_SAVPC fr_savpc
! 2534: #endif
! 2535:
1.1 maekawa 2536: void GC_save_callers (info)
2537: struct callinfo info[NFRAMES];
2538: {
2539: struct frame *frame;
2540: struct frame *fp;
2541: int nframes = 0;
2542: word GC_save_regs_in_stack();
2543:
2544: frame = (struct frame *) GC_save_regs_in_stack ();
2545:
1.1.1.2 ! maekawa 2546: for (fp = frame -> FR_SAVFP; fp != 0 && nframes < NFRAMES;
! 2547: fp = fp -> FR_SAVFP, nframes++) {
1.1 maekawa 2548: register int i;
2549:
1.1.1.2 ! maekawa 2550: info[nframes].ci_pc = fp->FR_SAVPC;
1.1 maekawa 2551: for (i = 0; i < NARGS; i++) {
2552: info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
2553: }
2554: }
2555: if (nframes < NFRAMES) info[nframes].ci_pc = 0;
2556: }
2557:
2558: #endif /* SAVE_CALL_CHAIN */
2559: #endif /* SPARC */
2560:
2561:
2562:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>