Annotation of OpenXM_contrib/gc/os_dep.c, Revision 1.1.1.3
1.1 maekawa 1: /*
1.1.1.2 maekawa 2: * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
1.1 maekawa 3: * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
1.1.1.2 maekawa 4: * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5: * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
1.1 maekawa 6: *
7: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9: *
10: * Permission is hereby granted to use or copy this program
11: * for any purpose, provided the above notices are retained on all copies.
12: * Permission to modify the code and to distribute modified code is granted,
13: * provided the above notices are retained, and a notice that the code was
14: * modified is included with the above copyright notice.
15: */
16:
17: # include "gc_priv.h"
18:
19: # if defined(LINUX) && !defined(POWERPC)
20: # include <linux/version.h>
21: # if (LINUX_VERSION_CODE <= 0x10400)
22: /* Ugly hack to get struct sigcontext_struct definition. Required */
23: /* for some early 1.3.X releases. Will hopefully go away soon. */
24: /* in some later Linux releases, asm/sigcontext.h may have to */
25: /* be included instead. */
26: # define __KERNEL__
27: # include <asm/signal.h>
28: # undef __KERNEL__
29: # else
30: /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31: /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32: /* prototypes, so we have to include the top-level sigcontext.h to */
33: /* make sure the former gets defined to be the latter if appropriate. */
34: # include <features.h>
35: # if 2 <= __GLIBC__
1.1.1.2 maekawa 36: # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
1.1 maekawa 37: /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38: /* has the right declaration for glibc 2.1. */
39: # include <sigcontext.h>
40: # endif /* 0 == __GLIBC_MINOR__ */
41: # else /* not 2 <= __GLIBC__ */
42: /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43: /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44: # include <asm/sigcontext.h>
45: # endif /* 2 <= __GLIBC__ */
46: # endif
47: # endif
48: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS)
49: # include <sys/types.h>
50: # if !defined(MSWIN32) && !defined(SUNOS4)
51: # include <unistd.h>
52: # endif
53: # endif
54:
55: # include <stdio.h>
56: # include <signal.h>
57:
58: /* Blatantly OS dependent routines, except for those that are related */
1.1.1.2 maekawa 59: /* to dynamic loading. */
1.1 maekawa 60:
61: # if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
62: # define NEED_FIND_LIMIT
63: # endif
64:
1.1.1.2 maekawa 65: # if defined(IRIX_THREADS) || defined(HPUX_THREADS)
1.1 maekawa 66: # define NEED_FIND_LIMIT
67: # endif
68:
1.1.1.3 ! maekawa 69: # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
1.1 maekawa 70: # define NEED_FIND_LIMIT
71: # endif
72:
73: # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
74: # define NEED_FIND_LIMIT
75: # endif
76:
1.1.1.2 maekawa 77: # if defined(LINUX) && \
1.1.1.3 ! maekawa 78: (defined(POWERPC) || defined(SPARC) || defined(ALPHA) || defined(IA64) \
! 79: || defined(MIPS))
1.1 maekawa 80: # define NEED_FIND_LIMIT
81: # endif
82:
83: #ifdef NEED_FIND_LIMIT
84: # include <setjmp.h>
85: #endif
86:
87: #ifdef FREEBSD
88: # include <machine/trap.h>
89: #endif
90:
91: #ifdef AMIGA
92: # include <proto/exec.h>
93: # include <proto/dos.h>
94: # include <dos/dosextens.h>
95: # include <workbench/startup.h>
96: #endif
97:
98: #ifdef MSWIN32
99: # define WIN32_LEAN_AND_MEAN
100: # define NOSERVICE
101: # include <windows.h>
102: #endif
103:
104: #ifdef MACOS
105: # include <Processes.h>
106: #endif
107:
108: #ifdef IRIX5
109: # include <sys/uio.h>
110: # include <malloc.h> /* for locking */
111: #endif
112: #ifdef USE_MMAP
113: # include <sys/types.h>
114: # include <sys/mman.h>
115: # include <sys/stat.h>
116: # include <fcntl.h>
117: #endif
118:
119: #ifdef SUNOS5SIGS
120: # include <sys/siginfo.h>
121: # undef setjmp
122: # undef longjmp
123: # define setjmp(env) sigsetjmp(env, 1)
124: # define longjmp(env, val) siglongjmp(env, val)
125: # define jmp_buf sigjmp_buf
126: #endif
127:
128: #ifdef DJGPP
129: /* Apparently necessary for djgpp 2.01. May casuse problems with */
130: /* other versions. */
131: typedef long unsigned int caddr_t;
132: #endif
133:
134: #ifdef PCR
135: # include "il/PCR_IL.h"
136: # include "th/PCR_ThCtl.h"
137: # include "mm/PCR_MM.h"
138: #endif
139:
140: #if !defined(NO_EXECUTE_PERMISSION)
141: # define OPT_PROT_EXEC PROT_EXEC
142: #else
143: # define OPT_PROT_EXEC 0
144: #endif
145:
1.1.1.3 ! maekawa 146: #if defined(SEARCH_FOR_DATA_START)
! 147: /* The following doesn't work if the GC is in a dynamic library. */
1.1.1.2 maekawa 148: /* The I386 case can be handled without a search. The Alpha case */
149: /* used to be handled differently as well, but the rules changed */
150: /* for recent Linux versions. This seems to be the easiest way to */
151: /* cover all versions. */
1.1 maekawa 152: ptr_t GC_data_start;
153:
1.1.1.2 maekawa 154: extern char * GC_copyright[]; /* Any data symbol would do. */
1.1 maekawa 155:
1.1.1.2 maekawa 156: void GC_init_linux_data_start()
1.1 maekawa 157: {
158: extern ptr_t GC_find_limit();
1.1.1.2 maekawa 159:
160: GC_data_start = GC_find_limit((ptr_t)GC_copyright, FALSE);
1.1 maekawa 161: }
162: #endif
163:
164: # ifdef OS2
165:
166: # include <stddef.h>
167:
168: # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
169:
170: struct exe_hdr {
171: unsigned short magic_number;
172: unsigned short padding[29];
173: long new_exe_offset;
174: };
175:
176: #define E_MAGIC(x) (x).magic_number
177: #define EMAGIC 0x5A4D
178: #define E_LFANEW(x) (x).new_exe_offset
179:
180: struct e32_exe {
181: unsigned char magic_number[2];
182: unsigned char byte_order;
183: unsigned char word_order;
184: unsigned long exe_format_level;
185: unsigned short cpu;
186: unsigned short os;
187: unsigned long padding1[13];
188: unsigned long object_table_offset;
189: unsigned long object_count;
190: unsigned long padding2[31];
191: };
192:
193: #define E32_MAGIC1(x) (x).magic_number[0]
194: #define E32MAGIC1 'L'
195: #define E32_MAGIC2(x) (x).magic_number[1]
196: #define E32MAGIC2 'X'
197: #define E32_BORDER(x) (x).byte_order
198: #define E32LEBO 0
199: #define E32_WORDER(x) (x).word_order
200: #define E32LEWO 0
201: #define E32_CPU(x) (x).cpu
202: #define E32CPU286 1
203: #define E32_OBJTAB(x) (x).object_table_offset
204: #define E32_OBJCNT(x) (x).object_count
205:
206: struct o32_obj {
207: unsigned long size;
208: unsigned long base;
209: unsigned long flags;
210: unsigned long pagemap;
211: unsigned long mapsize;
212: unsigned long reserved;
213: };
214:
215: #define O32_FLAGS(x) (x).flags
216: #define OBJREAD 0x0001L
217: #define OBJWRITE 0x0002L
218: #define OBJINVALID 0x0080L
219: #define O32_SIZE(x) (x).size
220: #define O32_BASE(x) (x).base
221:
222: # else /* IBM's compiler */
223:
224: /* A kludge to get around what appears to be a header file bug */
225: # ifndef WORD
226: # define WORD unsigned short
227: # endif
228: # ifndef DWORD
229: # define DWORD unsigned long
230: # endif
231:
232: # define EXE386 1
233: # include <newexe.h>
234: # include <exe386.h>
235:
236: # endif /* __IBMC__ */
237:
238: # define INCL_DOSEXCEPTIONS
239: # define INCL_DOSPROCESS
240: # define INCL_DOSERRORS
241: # define INCL_DOSMODULEMGR
242: # define INCL_DOSMEMMGR
243: # include <os2.h>
244:
245:
246: /* Disable and enable signals during nontrivial allocations */
247:
248: void GC_disable_signals(void)
249: {
250: ULONG nest;
251:
252: DosEnterMustComplete(&nest);
253: if (nest != 1) ABORT("nested GC_disable_signals");
254: }
255:
256: void GC_enable_signals(void)
257: {
258: ULONG nest;
259:
260: DosExitMustComplete(&nest);
261: if (nest != 0) ABORT("GC_enable_signals");
262: }
263:
264:
265: # else
266:
267: # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
268: && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW)
269:
270: # if defined(sigmask) && !defined(UTS4)
271: /* Use the traditional BSD interface */
272: # define SIGSET_T int
273: # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
274: # define SIG_FILL(set) (set) = 0x7fffffff
275: /* Setting the leading bit appears to provoke a bug in some */
276: /* longjmp implementations. Most systems appear not to have */
277: /* a signal 32. */
278: # define SIGSETMASK(old, new) (old) = sigsetmask(new)
279: # else
280: /* Use POSIX/SYSV interface */
281: # define SIGSET_T sigset_t
282: # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
283: # define SIG_FILL(set) sigfillset(&set)
284: # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
285: # endif
286:
287: static GC_bool mask_initialized = FALSE;
288:
289: static SIGSET_T new_mask;
290:
291: static SIGSET_T old_mask;
292:
293: static SIGSET_T dummy;
294:
295: #if defined(PRINTSTATS) && !defined(THREADS)
296: # define CHECK_SIGNALS
297: int GC_sig_disabled = 0;
298: #endif
299:
300: void GC_disable_signals()
301: {
302: if (!mask_initialized) {
303: SIG_FILL(new_mask);
304:
305: SIG_DEL(new_mask, SIGSEGV);
306: SIG_DEL(new_mask, SIGILL);
307: SIG_DEL(new_mask, SIGQUIT);
308: # ifdef SIGBUS
309: SIG_DEL(new_mask, SIGBUS);
310: # endif
311: # ifdef SIGIOT
312: SIG_DEL(new_mask, SIGIOT);
313: # endif
314: # ifdef SIGEMT
315: SIG_DEL(new_mask, SIGEMT);
316: # endif
317: # ifdef SIGTRAP
318: SIG_DEL(new_mask, SIGTRAP);
319: # endif
320: mask_initialized = TRUE;
321: }
322: # ifdef CHECK_SIGNALS
323: if (GC_sig_disabled != 0) ABORT("Nested disables");
324: GC_sig_disabled++;
325: # endif
326: SIGSETMASK(old_mask,new_mask);
327: }
328:
329: void GC_enable_signals()
330: {
331: # ifdef CHECK_SIGNALS
332: if (GC_sig_disabled != 1) ABORT("Unmatched enable");
333: GC_sig_disabled--;
334: # endif
335: SIGSETMASK(dummy,old_mask);
336: }
337:
338: # endif /* !PCR */
339:
340: # endif /*!OS/2 */
341:
342: /* Ivan Demakov: simplest way (to me) */
343: #ifdef DOS4GW
344: void GC_disable_signals() { }
345: void GC_enable_signals() { }
346: #endif
347:
348: /* Find the page size */
349: word GC_page_size;
350:
351: # ifdef MSWIN32
352: void GC_setpagesize()
353: {
354: SYSTEM_INFO sysinfo;
355:
356: GetSystemInfo(&sysinfo);
357: GC_page_size = sysinfo.dwPageSize;
358: }
359:
360: # else
1.1.1.2 maekawa 361: # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
362: || defined(USE_MUNMAP)
1.1 maekawa 363: void GC_setpagesize()
364: {
365: GC_page_size = GETPAGESIZE();
366: }
367: # else
368: /* It's acceptable to fake it. */
369: void GC_setpagesize()
370: {
371: GC_page_size = HBLKSIZE;
372: }
373: # endif
374: # endif
375:
376: /*
377: * Find the base of the stack.
378: * Used only in single-threaded environment.
379: * With threads, GC_mark_roots needs to know how to do this.
380: * Called with allocator lock held.
381: */
382: # ifdef MSWIN32
383: # define is_writable(prot) ((prot) == PAGE_READWRITE \
384: || (prot) == PAGE_WRITECOPY \
385: || (prot) == PAGE_EXECUTE_READWRITE \
386: || (prot) == PAGE_EXECUTE_WRITECOPY)
387: /* Return the number of bytes that are writable starting at p. */
388: /* The pointer p is assumed to be page aligned. */
389: /* If base is not 0, *base becomes the beginning of the */
390: /* allocation region containing p. */
391: word GC_get_writable_length(ptr_t p, ptr_t *base)
392: {
393: MEMORY_BASIC_INFORMATION buf;
394: word result;
395: word protect;
396:
397: result = VirtualQuery(p, &buf, sizeof(buf));
398: if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
399: if (base != 0) *base = (ptr_t)(buf.AllocationBase);
400: protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
401: if (!is_writable(protect)) {
402: return(0);
403: }
404: if (buf.State != MEM_COMMIT) return(0);
405: return(buf.RegionSize);
406: }
407:
408: ptr_t GC_get_stack_base()
409: {
410: int dummy;
411: ptr_t sp = (ptr_t)(&dummy);
412: ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
413: word size = GC_get_writable_length(trunc_sp, 0);
414:
415: return(trunc_sp + size);
416: }
417:
418:
419: # else
420:
421: # ifdef OS2
422:
423: ptr_t GC_get_stack_base()
424: {
425: PTIB ptib;
426: PPIB ppib;
427:
428: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
429: GC_err_printf0("DosGetInfoBlocks failed\n");
430: ABORT("DosGetInfoBlocks failed\n");
431: }
432: return((ptr_t)(ptib -> tib_pstacklimit));
433: }
434:
435: # else
436:
437: # ifdef AMIGA
438:
439: ptr_t GC_get_stack_base()
440: {
1.1.1.2 maekawa 441: struct Process *proc = (struct Process*)SysBase->ThisTask;
442:
443: /* Reference: Amiga Guru Book Pages: 42,567,574 */
444: if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS
445: && proc->pr_CLI != NULL) {
446: /* first ULONG is StackSize */
447: /*longPtr = proc->pr_ReturnAddr;
448: size = longPtr[0];*/
449:
450: return (char *)proc->pr_ReturnAddr + sizeof(ULONG);
451: } else {
452: return (char *)proc->pr_Task.tc_SPUpper;
453: }
454: }
455:
456: #if 0 /* old version */
457: ptr_t GC_get_stack_base()
458: {
1.1 maekawa 459: extern struct WBStartup *_WBenchMsg;
460: extern long __base;
461: extern long __stack;
462: struct Task *task;
463: struct Process *proc;
464: struct CommandLineInterface *cli;
465: long size;
466:
467: if ((task = FindTask(0)) == 0) {
468: GC_err_puts("Cannot find own task structure\n");
469: ABORT("task missing");
470: }
471: proc = (struct Process *)task;
472: cli = BADDR(proc->pr_CLI);
473:
474: if (_WBenchMsg != 0 || cli == 0) {
475: size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower;
476: } else {
477: size = cli->cli_DefaultStack * 4;
478: }
479: return (ptr_t)(__base + GC_max(size, __stack));
480: }
1.1.1.2 maekawa 481: #endif /* 0 */
1.1 maekawa 482:
1.1.1.2 maekawa 483: # else /* !AMIGA, !OS2, ... */
1.1 maekawa 484:
485: # ifdef NEED_FIND_LIMIT
486: /* Some tools to implement HEURISTIC2 */
487: # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
488: /* static */ jmp_buf GC_jmp_buf;
489:
490: /*ARGSUSED*/
491: void GC_fault_handler(sig)
492: int sig;
493: {
494: longjmp(GC_jmp_buf, 1);
495: }
496:
497: # ifdef __STDC__
498: typedef void (*handler)(int);
499: # else
500: typedef void (*handler)();
501: # endif
502:
1.1.1.2 maekawa 503: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
1.1 maekawa 504: static struct sigaction old_segv_act;
1.1.1.2 maekawa 505: # if defined(_sigargs) || defined(HPUX) /* !Irix6.x */
1.1 maekawa 506: static struct sigaction old_bus_act;
507: # endif
508: # else
509: static handler old_segv_handler, old_bus_handler;
510: # endif
511:
512: void GC_setup_temporary_fault_handler()
513: {
1.1.1.2 maekawa 514: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
1.1 maekawa 515: struct sigaction act;
516:
517: act.sa_handler = GC_fault_handler;
518: act.sa_flags = SA_RESTART | SA_NODEFER;
519: /* The presence of SA_NODEFER represents yet another gross */
520: /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
521: /* interact correctly with -lthread. We hide the confusion */
522: /* by making sure that signal handling doesn't affect the */
523: /* signal mask. */
524:
525: (void) sigemptyset(&act.sa_mask);
526: # ifdef IRIX_THREADS
527: /* Older versions have a bug related to retrieving and */
528: /* and setting a handler at the same time. */
529: (void) sigaction(SIGSEGV, 0, &old_segv_act);
530: (void) sigaction(SIGSEGV, &act, 0);
531: # else
532: (void) sigaction(SIGSEGV, &act, &old_segv_act);
1.1.1.2 maekawa 533: # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
534: || defined(HPUX)
535: /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
536: /* Pthreads doesn't exist under Irix 5.x, so we */
537: /* don't have to worry in the threads case. */
1.1 maekawa 538: (void) sigaction(SIGBUS, &act, &old_bus_act);
539: # endif
540: # endif /* IRIX_THREADS */
541: # else
542: old_segv_handler = signal(SIGSEGV, GC_fault_handler);
543: # ifdef SIGBUS
544: old_bus_handler = signal(SIGBUS, GC_fault_handler);
545: # endif
546: # endif
547: }
548:
549: void GC_reset_fault_handler()
550: {
1.1.1.2 maekawa 551: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
1.1 maekawa 552: (void) sigaction(SIGSEGV, &old_segv_act, 0);
1.1.1.2 maekawa 553: # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
554: || defined(HPUX)
1.1 maekawa 555: (void) sigaction(SIGBUS, &old_bus_act, 0);
556: # endif
557: # else
558: (void) signal(SIGSEGV, old_segv_handler);
559: # ifdef SIGBUS
560: (void) signal(SIGBUS, old_bus_handler);
561: # endif
562: # endif
563: }
564:
565: /* Return the first nonaddressible location > p (up) or */
566: /* the smallest location q s.t. [q,p] is addressible (!up). */
567: ptr_t GC_find_limit(p, up)
568: ptr_t p;
569: GC_bool up;
570: {
571: static VOLATILE ptr_t result;
572: /* Needs to be static, since otherwise it may not be */
573: /* preserved across the longjmp. Can safely be */
574: /* static since it's only called once, with the */
575: /* allocation lock held. */
576:
577:
578: GC_setup_temporary_fault_handler();
579: if (setjmp(GC_jmp_buf) == 0) {
580: result = (ptr_t)(((word)(p))
581: & ~(MIN_PAGE_SIZE-1));
582: for (;;) {
583: if (up) {
584: result += MIN_PAGE_SIZE;
585: } else {
586: result -= MIN_PAGE_SIZE;
587: }
588: GC_noop1((word)(*result));
589: }
590: }
591: GC_reset_fault_handler();
592: if (!up) {
593: result += MIN_PAGE_SIZE;
594: }
595: return(result);
596: }
597: # endif
598:
1.1.1.2 maekawa 599: #ifdef LINUX_STACKBOTTOM
600:
1.1.1.3 ! maekawa 601: #include <sys/types.h>
! 602: #include <sys/stat.h>
! 603: #include <fcntl.h>
! 604:
1.1.1.2 maekawa 605: # define STAT_SKIP 27 /* Number of fields preceding startstack */
1.1.1.3 ! maekawa 606: /* field in /proc/self/stat */
1.1.1.2 maekawa 607:
608: ptr_t GC_linux_stack_base(void)
609: {
1.1.1.3 ! maekawa 610: /* We read the stack base value from /proc/self/stat. We do this */
! 611: /* using direct I/O system calls in order to avoid calling malloc */
! 612: /* in case REDIRECT_MALLOC is defined. */
! 613: # define STAT_BUF_SIZE 4096
! 614: # ifdef USE_LD_WRAP
! 615: # define STAT_READ __real_read
! 616: # else
! 617: # define STAT_READ read
! 618: # endif
! 619: char stat_buf[STAT_BUF_SIZE];
! 620: int f;
1.1.1.2 maekawa 621: char c;
622: word result = 0;
1.1.1.3 ! maekawa 623: size_t i, buf_offset = 0;
1.1.1.2 maekawa 624:
1.1.1.3 ! maekawa 625: f = open("/proc/self/stat", O_RDONLY);
! 626: if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
! 627: ABORT("Couldn't read /proc/self/stat");
! 628: }
! 629: c = stat_buf[buf_offset++];
1.1.1.2 maekawa 630: /* Skip the required number of fields. This number is hopefully */
631: /* constant across all Linux implementations. */
632: for (i = 0; i < STAT_SKIP; ++i) {
1.1.1.3 ! maekawa 633: while (isspace(c)) c = stat_buf[buf_offset++];
! 634: while (!isspace(c)) c = stat_buf[buf_offset++];
1.1.1.2 maekawa 635: }
1.1.1.3 ! maekawa 636: while (isspace(c)) c = stat_buf[buf_offset++];
1.1.1.2 maekawa 637: while (isdigit(c)) {
638: result *= 10;
639: result += c - '0';
1.1.1.3 ! maekawa 640: c = stat_buf[buf_offset++];
1.1.1.2 maekawa 641: }
1.1.1.3 ! maekawa 642: close(f);
1.1.1.2 maekawa 643: if (result < 0x10000000) ABORT("Absurd stack bottom value");
644: return (ptr_t)result;
645: }
646:
647: #endif /* LINUX_STACKBOTTOM */
1.1 maekawa 648:
649: ptr_t GC_get_stack_base()
650: {
651: word dummy;
652: ptr_t result;
653:
654: # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
655:
656: # ifdef STACKBOTTOM
657: return(STACKBOTTOM);
658: # else
659: # ifdef HEURISTIC1
660: # ifdef STACK_GROWS_DOWN
661: result = (ptr_t)((((word)(&dummy))
662: + STACKBOTTOM_ALIGNMENT_M1)
663: & ~STACKBOTTOM_ALIGNMENT_M1);
664: # else
665: result = (ptr_t)(((word)(&dummy))
666: & ~STACKBOTTOM_ALIGNMENT_M1);
667: # endif
668: # endif /* HEURISTIC1 */
1.1.1.2 maekawa 669: # ifdef LINUX_STACKBOTTOM
670: result = GC_linux_stack_base();
671: # endif
1.1 maekawa 672: # ifdef HEURISTIC2
673: # ifdef STACK_GROWS_DOWN
674: result = GC_find_limit((ptr_t)(&dummy), TRUE);
675: # ifdef HEURISTIC2_LIMIT
676: if (result > HEURISTIC2_LIMIT
677: && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
678: result = HEURISTIC2_LIMIT;
679: }
680: # endif
681: # else
682: result = GC_find_limit((ptr_t)(&dummy), FALSE);
683: # ifdef HEURISTIC2_LIMIT
684: if (result < HEURISTIC2_LIMIT
685: && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
686: result = HEURISTIC2_LIMIT;
687: }
688: # endif
689: # endif
690:
691: # endif /* HEURISTIC2 */
692: # ifdef STACK_GROWS_DOWN
693: if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
694: # endif
695: return(result);
696: # endif /* STACKBOTTOM */
697: }
698:
699: # endif /* ! AMIGA */
700: # endif /* ! OS2 */
701: # endif /* ! MSWIN32 */
702:
703: /*
704: * Register static data segment(s) as roots.
705: * If more data segments are added later then they need to be registered
706: * add that point (as we do with SunOS dynamic loading),
707: * or GC_mark_roots needs to check for them (as we do with PCR).
708: * Called with allocator lock held.
709: */
710:
711: # ifdef OS2
712:
713: void GC_register_data_segments()
714: {
715: PTIB ptib;
716: PPIB ppib;
717: HMODULE module_handle;
718: # define PBUFSIZ 512
719: UCHAR path[PBUFSIZ];
720: FILE * myexefile;
721: struct exe_hdr hdrdos; /* MSDOS header. */
722: struct e32_exe hdr386; /* Real header for my executable */
723: struct o32_obj seg; /* Currrent segment */
724: int nsegs;
725:
726:
727: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
728: GC_err_printf0("DosGetInfoBlocks failed\n");
729: ABORT("DosGetInfoBlocks failed\n");
730: }
731: module_handle = ppib -> pib_hmte;
732: if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
733: GC_err_printf0("DosQueryModuleName failed\n");
734: ABORT("DosGetInfoBlocks failed\n");
735: }
736: myexefile = fopen(path, "rb");
737: if (myexefile == 0) {
738: GC_err_puts("Couldn't open executable ");
739: GC_err_puts(path); GC_err_puts("\n");
740: ABORT("Failed to open executable\n");
741: }
742: if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
743: GC_err_puts("Couldn't read MSDOS header from ");
744: GC_err_puts(path); GC_err_puts("\n");
745: ABORT("Couldn't read MSDOS header");
746: }
747: if (E_MAGIC(hdrdos) != EMAGIC) {
748: GC_err_puts("Executable has wrong DOS magic number: ");
749: GC_err_puts(path); GC_err_puts("\n");
750: ABORT("Bad DOS magic number");
751: }
752: if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
753: GC_err_puts("Seek to new header failed in ");
754: GC_err_puts(path); GC_err_puts("\n");
755: ABORT("Bad DOS magic number");
756: }
757: if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
758: GC_err_puts("Couldn't read MSDOS header from ");
759: GC_err_puts(path); GC_err_puts("\n");
760: ABORT("Couldn't read OS/2 header");
761: }
762: if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
763: GC_err_puts("Executable has wrong OS/2 magic number:");
764: GC_err_puts(path); GC_err_puts("\n");
765: ABORT("Bad OS/2 magic number");
766: }
767: if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
768: GC_err_puts("Executable %s has wrong byte order: ");
769: GC_err_puts(path); GC_err_puts("\n");
770: ABORT("Bad byte order");
771: }
772: if ( E32_CPU(hdr386) == E32CPU286) {
773: GC_err_puts("GC can't handle 80286 executables: ");
774: GC_err_puts(path); GC_err_puts("\n");
775: EXIT();
776: }
777: if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
778: SEEK_SET) != 0) {
779: GC_err_puts("Seek to object table failed: ");
780: GC_err_puts(path); GC_err_puts("\n");
781: ABORT("Seek to object table failed");
782: }
783: for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
784: int flags;
785: if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
786: GC_err_puts("Couldn't read obj table entry from ");
787: GC_err_puts(path); GC_err_puts("\n");
788: ABORT("Couldn't read obj table entry");
789: }
790: flags = O32_FLAGS(seg);
791: if (!(flags & OBJWRITE)) continue;
792: if (!(flags & OBJREAD)) continue;
793: if (flags & OBJINVALID) {
794: GC_err_printf0("Object with invalid pages?\n");
795: continue;
796: }
797: GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
798: }
799: }
800:
801: # else
802:
803: # ifdef MSWIN32
804: /* Unfortunately, we have to handle win32s very differently from NT, */
805: /* Since VirtualQuery has very different semantics. In particular, */
806: /* under win32s a VirtualQuery call on an unmapped page returns an */
807: /* invalid result. Under GC_register_data_segments is a noop and */
808: /* all real work is done by GC_register_dynamic_libraries. Under */
809: /* win32s, we cannot find the data segments associated with dll's. */
810: /* We rgister the main data segment here. */
811: GC_bool GC_win32s = FALSE; /* We're running under win32s. */
812:
813: GC_bool GC_is_win32s()
814: {
815: DWORD v = GetVersion();
816:
817: /* Check that this is not NT, and Windows major version <= 3 */
818: return ((v & 0x80000000) && (v & 0xff) <= 3);
819: }
820:
821: void GC_init_win32()
822: {
823: GC_win32s = GC_is_win32s();
824: }
825:
826: /* Return the smallest address a such that VirtualQuery */
827: /* returns correct results for all addresses between a and start. */
828: /* Assumes VirtualQuery returns correct information for start. */
829: ptr_t GC_least_described_address(ptr_t start)
830: {
831: MEMORY_BASIC_INFORMATION buf;
832: SYSTEM_INFO sysinfo;
833: DWORD result;
834: LPVOID limit;
835: ptr_t p;
836: LPVOID q;
837:
838: GetSystemInfo(&sysinfo);
839: limit = sysinfo.lpMinimumApplicationAddress;
840: p = (ptr_t)((word)start & ~(GC_page_size - 1));
841: for (;;) {
842: q = (LPVOID)(p - GC_page_size);
843: if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
844: result = VirtualQuery(q, &buf, sizeof(buf));
845: if (result != sizeof(buf) || buf.AllocationBase == 0) break;
846: p = (ptr_t)(buf.AllocationBase);
847: }
848: return(p);
849: }
850:
851: /* Is p the start of either the malloc heap, or of one of our */
852: /* heap sections? */
853: GC_bool GC_is_heap_base (ptr_t p)
854: {
855:
856: register unsigned i;
857:
858: # ifndef REDIRECT_MALLOC
859: static ptr_t malloc_heap_pointer = 0;
860:
861: if (0 == malloc_heap_pointer) {
862: MEMORY_BASIC_INFORMATION buf;
863: register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf));
864:
865: if (result != sizeof(buf)) {
866: ABORT("Weird VirtualQuery result");
867: }
868: malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
869: }
870: if (p == malloc_heap_pointer) return(TRUE);
871: # endif
872: for (i = 0; i < GC_n_heap_bases; i++) {
873: if (GC_heap_bases[i] == p) return(TRUE);
874: }
875: return(FALSE);
876: }
877:
878: void GC_register_root_section(ptr_t static_root)
879: {
880: MEMORY_BASIC_INFORMATION buf;
881: SYSTEM_INFO sysinfo;
882: DWORD result;
883: DWORD protect;
884: LPVOID p;
885: char * base;
886: char * limit, * new_limit;
887:
888: if (!GC_win32s) return;
889: p = base = limit = GC_least_described_address(static_root);
890: GetSystemInfo(&sysinfo);
891: while (p < sysinfo.lpMaximumApplicationAddress) {
892: result = VirtualQuery(p, &buf, sizeof(buf));
893: if (result != sizeof(buf) || buf.AllocationBase == 0
894: || GC_is_heap_base(buf.AllocationBase)) break;
895: new_limit = (char *)p + buf.RegionSize;
896: protect = buf.Protect;
897: if (buf.State == MEM_COMMIT
898: && is_writable(protect)) {
899: if ((char *)p == limit) {
900: limit = new_limit;
901: } else {
902: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
903: base = p;
904: limit = new_limit;
905: }
906: }
907: if (p > (LPVOID)new_limit /* overflow */) break;
908: p = (LPVOID)new_limit;
909: }
910: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
911: }
912:
913: void GC_register_data_segments()
914: {
915: static char dummy;
916:
917: GC_register_root_section((ptr_t)(&dummy));
918: }
919: # else
920: # ifdef AMIGA
921:
1.1.1.2 maekawa 922: void GC_register_data_segments()
923: {
924: struct Process *proc;
925: struct CommandLineInterface *cli;
926: BPTR myseglist;
927: ULONG *data;
928:
929: int num;
930:
931:
932: # ifdef __GNUC__
933: ULONG dataSegSize;
934: GC_bool found_segment = FALSE;
935: extern char __data_size[];
936:
937: dataSegSize=__data_size+8;
938: /* Can`t find the Location of __data_size, because
939: it`s possible that is it, inside the segment. */
940:
941: # endif
942:
943: proc= (struct Process*)SysBase->ThisTask;
944:
945: /* Reference: Amiga Guru Book Pages: 538ff,565,573
946: and XOper.asm */
947: if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS) {
948: if (proc->pr_CLI == NULL) {
949: myseglist = proc->pr_SegList;
950: } else {
951: /* ProcLoaded 'Loaded as a command: '*/
952: cli = BADDR(proc->pr_CLI);
953: myseglist = cli->cli_Module;
954: }
955: } else {
956: ABORT("Not a Process.");
957: }
958:
959: if (myseglist == NULL) {
960: ABORT("Arrrgh.. can't find segments, aborting");
961: }
962:
963: /* xoper hunks Shell Process */
964:
965: num=0;
966: for (data = (ULONG *)BADDR(myseglist); data != NULL;
967: data = (ULONG *)BADDR(data[0])) {
968: if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
969: ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
970: # ifdef __GNUC__
971: if (dataSegSize == data[-1]) {
972: found_segment = TRUE;
973: }
974: # endif
975: GC_add_roots_inner((char *)&data[1],
976: ((char *)&data[1]) + data[-1], FALSE);
977: }
978: ++num;
979: } /* for */
980: # ifdef __GNUC__
981: if (!found_segment) {
982: ABORT("Can`t find correct Segments.\nSolution: Use an newer version of ixemul.library");
983: }
984: # endif
985: }
986:
987: #if 0 /* old version */
1.1 maekawa 988: void GC_register_data_segments()
989: {
990: extern struct WBStartup *_WBenchMsg;
991: struct Process *proc;
992: struct CommandLineInterface *cli;
993: BPTR myseglist;
994: ULONG *data;
995:
996: if ( _WBenchMsg != 0 ) {
997: if ((myseglist = _WBenchMsg->sm_Segment) == 0) {
998: GC_err_puts("No seglist from workbench\n");
999: return;
1000: }
1001: } else {
1002: if ((proc = (struct Process *)FindTask(0)) == 0) {
1003: GC_err_puts("Cannot find process structure\n");
1004: return;
1005: }
1006: if ((cli = BADDR(proc->pr_CLI)) == 0) {
1007: GC_err_puts("No CLI\n");
1008: return;
1009: }
1010: if ((myseglist = cli->cli_Module) == 0) {
1011: GC_err_puts("No seglist from CLI\n");
1012: return;
1013: }
1014: }
1015:
1016: for (data = (ULONG *)BADDR(myseglist); data != 0;
1017: data = (ULONG *)BADDR(data[0])) {
1018: # ifdef AMIGA_SKIP_SEG
1019: if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
1020: ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
1021: # else
1022: {
1023: # endif /* AMIGA_SKIP_SEG */
1024: GC_add_roots_inner((char *)&data[1],
1025: ((char *)&data[1]) + data[-1], FALSE);
1026: }
1027: }
1028: }
1.1.1.2 maekawa 1029: #endif /* old version */
1.1 maekawa 1030:
1031:
1032: # else
1033:
1034: # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
1035: char * GC_SysVGetDataStart(max_page_size, etext_addr)
1036: int max_page_size;
1037: int * etext_addr;
1038: {
1039: word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1040: & ~(sizeof(word) - 1);
1041: /* etext rounded to word boundary */
1042: word next_page = ((text_end + (word)max_page_size - 1)
1043: & ~((word)max_page_size - 1));
1044: word page_offset = (text_end & ((word)max_page_size - 1));
1045: VOLATILE char * result = (char *)(next_page + page_offset);
1046: /* Note that this isnt equivalent to just adding */
1047: /* max_page_size to &etext if &etext is at a page boundary */
1048:
1049: GC_setup_temporary_fault_handler();
1050: if (setjmp(GC_jmp_buf) == 0) {
1051: /* Try writing to the address. */
1052: *result = *result;
1053: GC_reset_fault_handler();
1054: } else {
1055: GC_reset_fault_handler();
1056: /* We got here via a longjmp. The address is not readable. */
1057: /* This is known to happen under Solaris 2.4 + gcc, which place */
1058: /* string constants in the text segment, but after etext. */
1059: /* Use plan B. Note that we now know there is a gap between */
1060: /* text and data segments, so plan A bought us something. */
1061: result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
1062: }
1063: return((char *)result);
1064: }
1065: # endif
1066:
1067:
1068: void GC_register_data_segments()
1069: {
1.1.1.2 maekawa 1070: # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
1071: && !defined(MACOSX)
1.1 maekawa 1072: # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
1073: /* As of Solaris 2.3, the Solaris threads implementation */
1074: /* allocates the data structure for the initial thread with */
1075: /* sbrk at process startup. It needs to be scanned, so that */
1076: /* we don't lose some malloc allocated data structures */
1077: /* hanging from it. We're on thin ice here ... */
1078: extern caddr_t sbrk();
1079:
1080: GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1081: # else
1082: GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1083: # endif
1084: # endif
1.1.1.2 maekawa 1085: # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1.1 maekawa 1086: GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
1087: # endif
1088: # if defined(MACOS)
1089: {
1090: # if defined(THINK_C)
1091: extern void* GC_MacGetDataStart(void);
1092: /* globals begin above stack and end at a5. */
1093: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1094: (ptr_t)LMGetCurrentA5(), FALSE);
1095: # else
1096: # if defined(__MWERKS__)
1097: # if !__POWERPC__
1098: extern void* GC_MacGetDataStart(void);
1099: /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1100: # if __option(far_data)
1101: extern void* GC_MacGetDataEnd(void);
1102: # endif
1103: /* globals begin above stack and end at a5. */
1104: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1105: (ptr_t)LMGetCurrentA5(), FALSE);
1106: /* MATTHEW: Handle Far Globals */
1107: # if __option(far_data)
1108: /* Far globals follow he QD globals: */
1109: GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1110: (ptr_t)GC_MacGetDataEnd(), FALSE);
1111: # endif
1112: # else
1113: extern char __data_start__[], __data_end__[];
1114: GC_add_roots_inner((ptr_t)&__data_start__,
1115: (ptr_t)&__data_end__, FALSE);
1116: # endif /* __POWERPC__ */
1117: # endif /* __MWERKS__ */
1118: # endif /* !THINK_C */
1119: }
1120: # endif /* MACOS */
1121:
1122: /* Dynamic libraries are added at every collection, since they may */
1123: /* change. */
1124: }
1125:
1126: # endif /* ! AMIGA */
1127: # endif /* ! MSWIN32 */
1128: # endif /* ! OS2 */
1129:
1130: /*
1131: * Auxiliary routines for obtaining memory from OS.
1132: */
1133:
1134: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1135: && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW)
1136:
1137: # ifdef SUNOS4
1138: extern caddr_t sbrk();
1139: # endif
1140: # ifdef __STDC__
1141: # define SBRK_ARG_T ptrdiff_t
1142: # else
1143: # define SBRK_ARG_T int
1144: # endif
1145:
1146: # ifdef RS6000
1147: /* The compiler seems to generate speculative reads one past the end of */
1148: /* an allocated object. Hence we need to make sure that the page */
1149: /* following the last heap page is also mapped. */
1150: ptr_t GC_unix_get_mem(bytes)
1151: word bytes;
1152: {
1153: caddr_t cur_brk = (caddr_t)sbrk(0);
1154: caddr_t result;
1155: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1156: static caddr_t my_brk_val = 0;
1157:
1158: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1159: if (lsbs != 0) {
1160: if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1161: }
1162: if (cur_brk == my_brk_val) {
1163: /* Use the extra block we allocated last time. */
1164: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1165: if (result == (caddr_t)(-1)) return(0);
1166: result -= GC_page_size;
1167: } else {
1168: result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1169: if (result == (caddr_t)(-1)) return(0);
1170: }
1171: my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1172: return((ptr_t)result);
1173: }
1174:
1175: #else /* Not RS6000 */
1176:
1177: #if defined(USE_MMAP)
1178: /* Tested only under IRIX5 and Solaris 2 */
1179:
1180: #ifdef USE_MMAP_FIXED
1181: # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1182: /* Seems to yield better performance on Solaris 2, but can */
1183: /* be unreliable if something is already mapped at the address. */
1184: #else
1185: # define GC_MMAP_FLAGS MAP_PRIVATE
1186: #endif
1187:
1188: ptr_t GC_unix_get_mem(bytes)
1189: word bytes;
1190: {
1191: static GC_bool initialized = FALSE;
1192: static int fd;
1193: void *result;
1194: static ptr_t last_addr = HEAP_START;
1195:
1196: if (!initialized) {
1197: fd = open("/dev/zero", O_RDONLY);
1198: initialized = TRUE;
1199: }
1200: if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1201: result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1202: GC_MMAP_FLAGS, fd, 0/* offset */);
1203: if (result == MAP_FAILED) return(0);
1204: last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1205: last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1206: return((ptr_t)result);
1207: }
1208:
1209: #else /* Not RS6000, not USE_MMAP */
1210: ptr_t GC_unix_get_mem(bytes)
1211: word bytes;
1212: {
1213: ptr_t result;
1214: # ifdef IRIX5
1215: /* Bare sbrk isn't thread safe. Play by malloc rules. */
1216: /* The equivalent may be needed on other systems as well. */
1217: __LOCK_MALLOC();
1218: # endif
1219: {
1220: ptr_t cur_brk = (ptr_t)sbrk(0);
1221: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1222:
1223: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1224: if (lsbs != 0) {
1225: if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1226: }
1227: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1228: if (result == (ptr_t)(-1)) result = 0;
1229: }
1230: # ifdef IRIX5
1231: __UNLOCK_MALLOC();
1232: # endif
1233: return(result);
1234: }
1235:
1236: #endif /* Not USE_MMAP */
1237: #endif /* Not RS6000 */
1238:
1239: # endif /* UN*X */
1240:
1241: # ifdef OS2
1242:
1243: void * os2_alloc(size_t bytes)
1244: {
1245: void * result;
1246:
1247: if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1248: PAG_WRITE | PAG_COMMIT)
1249: != NO_ERROR) {
1250: return(0);
1251: }
1252: if (result == 0) return(os2_alloc(bytes));
1253: return(result);
1254: }
1255:
1256: # endif /* OS2 */
1257:
1258:
1259: # ifdef MSWIN32
1260: word GC_n_heap_bases = 0;
1261:
1262: ptr_t GC_win32_get_mem(bytes)
1263: word bytes;
1264: {
1265: ptr_t result;
1266:
1267: if (GC_win32s) {
1268: /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1269: /* There are also unconfirmed rumors of other */
1270: /* problems, so we dodge the issue. */
1271: result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1272: result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1273: } else {
1274: result = (ptr_t) VirtualAlloc(NULL, bytes,
1275: MEM_COMMIT | MEM_RESERVE,
1276: PAGE_EXECUTE_READWRITE);
1277: }
1278: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1279: /* If I read the documentation correctly, this can */
1280: /* only happen if HBLKSIZE > 64k or not a power of 2. */
1281: if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1282: GC_heap_bases[GC_n_heap_bases++] = result;
1283: return(result);
1284: }
1285:
1286: void GC_win32_free_heap ()
1287: {
1288: if (GC_win32s) {
1289: while (GC_n_heap_bases > 0) {
1290: GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1291: GC_heap_bases[GC_n_heap_bases] = 0;
1292: }
1293: }
1294: }
1295:
1296:
1297: # endif
1298:
1.1.1.2 maekawa 1299: #ifdef USE_MUNMAP
1300:
1301: /* For now, this only works on some Unix-like systems. If you */
1302: /* have something else, don't define USE_MUNMAP. */
1303: /* We assume ANSI C to support this feature. */
1304: #include <unistd.h>
1305: #include <sys/mman.h>
1306: #include <sys/stat.h>
1307: #include <sys/types.h>
1308: #include <fcntl.h>
1309:
1310: /* Compute a page aligned starting address for the unmap */
1311: /* operation on a block of size bytes starting at start. */
1312: /* Return 0 if the block is too small to make this feasible. */
1313: ptr_t GC_unmap_start(ptr_t start, word bytes)
1314: {
1315: ptr_t result = start;
1316: /* Round start to next page boundary. */
1317: result += GC_page_size - 1;
1318: result = (ptr_t)((word)result & ~(GC_page_size - 1));
1319: if (result + GC_page_size > start + bytes) return 0;
1320: return result;
1321: }
1322:
1323: /* Compute end address for an unmap operation on the indicated */
1324: /* block. */
1325: ptr_t GC_unmap_end(ptr_t start, word bytes)
1326: {
1327: ptr_t end_addr = start + bytes;
1328: end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1329: return end_addr;
1330: }
1331:
1332: /* We assume that GC_remap is called on exactly the same range */
1333: /* as a previous call to GC_unmap. It is safe to consistently */
1334: /* round the endpoints in both places. */
1335: void GC_unmap(ptr_t start, word bytes)
1336: {
1337: ptr_t start_addr = GC_unmap_start(start, bytes);
1338: ptr_t end_addr = GC_unmap_end(start, bytes);
1339: word len = end_addr - start_addr;
1340: if (0 == start_addr) return;
1341: if (munmap(start_addr, len) != 0) ABORT("munmap failed");
1342: GC_unmapped_bytes += len;
1343: }
1344:
1345:
1346: void GC_remap(ptr_t start, word bytes)
1347: {
1348: static int zero_descr = -1;
1349: ptr_t start_addr = GC_unmap_start(start, bytes);
1350: ptr_t end_addr = GC_unmap_end(start, bytes);
1351: word len = end_addr - start_addr;
1352: ptr_t result;
1353:
1354: if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
1355: if (0 == start_addr) return;
1356: result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1357: MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
1358: if (result != start_addr) {
1359: ABORT("mmap remapping failed");
1360: }
1361: GC_unmapped_bytes -= len;
1362: }
1363:
1364: /* Two adjacent blocks have already been unmapped and are about to */
1365: /* be merged. Unmap the whole block. This typically requires */
1366: /* that we unmap a small section in the middle that was not previously */
1367: /* unmapped due to alignment constraints. */
1368: void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1369: {
1370: ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1371: ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1372: ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1373: ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1374: ptr_t start_addr = end1_addr;
1375: ptr_t end_addr = start2_addr;
1376: word len;
1377: GC_ASSERT(start1 + bytes1 == start2);
1378: if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1379: if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1380: if (0 == start_addr) return;
1381: len = end_addr - start_addr;
1382: if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1383: GC_unmapped_bytes += len;
1384: }
1385:
1386: #endif /* USE_MUNMAP */
1387:
1.1 maekawa 1388: /* Routine for pushing any additional roots. In THREADS */
1389: /* environment, this is also responsible for marking from */
1390: /* thread stacks. In the SRC_M3 case, it also handles */
1391: /* global variables. */
1392: #ifndef THREADS
1393: void (*GC_push_other_roots)() = 0;
1394: #else /* THREADS */
1395:
1396: # ifdef PCR
1397: PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1398: {
1399: struct PCR_ThCtl_TInfoRep info;
1400: PCR_ERes result;
1401:
1402: info.ti_stkLow = info.ti_stkHi = 0;
1403: result = PCR_ThCtl_GetInfo(t, &info);
1404: GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1405: return(result);
1406: }
1407:
1408: /* Push the contents of an old object. We treat this as stack */
1409: /* data only becasue that makes it robust against mark stack */
1410: /* overflow. */
1411: PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1412: {
1413: GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1414: return(PCR_ERes_okay);
1415: }
1416:
1417:
1418: void GC_default_push_other_roots()
1419: {
1420: /* Traverse data allocated by previous memory managers. */
1421: {
1422: extern struct PCR_MM_ProcsRep * GC_old_allocator;
1423:
1424: if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1425: GC_push_old_obj, 0)
1426: != PCR_ERes_okay) {
1427: ABORT("Old object enumeration failed");
1428: }
1429: }
1430: /* Traverse all thread stacks. */
1431: if (PCR_ERes_IsErr(
1432: PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1433: || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1434: ABORT("Thread stack marking failed\n");
1435: }
1436: }
1437:
1438: # endif /* PCR */
1439:
1440: # ifdef SRC_M3
1441:
1442: # ifdef ALL_INTERIOR_POINTERS
1443: --> misconfigured
1444: # endif
1445:
1446:
1447: extern void ThreadF__ProcessStacks();
1448:
1449: void GC_push_thread_stack(start, stop)
1450: word start, stop;
1451: {
1452: GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1453: }
1454:
1455: /* Push routine with M3 specific calling convention. */
1456: GC_m3_push_root(dummy1, p, dummy2, dummy3)
1457: word *p;
1458: ptr_t dummy1, dummy2;
1459: int dummy3;
1460: {
1461: word q = *p;
1462:
1463: if ((ptr_t)(q) >= GC_least_plausible_heap_addr
1464: && (ptr_t)(q) < GC_greatest_plausible_heap_addr) {
1465: GC_push_one_checked(q,FALSE);
1466: }
1467: }
1468:
1469: /* M3 set equivalent to RTHeap.TracedRefTypes */
1470: typedef struct { int elts[1]; } RefTypeSet;
1471: RefTypeSet GC_TracedRefTypes = {{0x1}};
1472:
1473: /* From finalize.c */
1474: extern void GC_push_finalizer_structures();
1475:
1476: /* From stubborn.c: */
1477: # ifdef STUBBORN_ALLOC
1478: extern GC_PTR * GC_changing_list_start;
1479: # endif
1480:
1481:
1482: void GC_default_push_other_roots()
1483: {
1484: /* Use the M3 provided routine for finding static roots. */
1485: /* This is a bit dubious, since it presumes no C roots. */
1486: /* We handle the collector roots explicitly. */
1487: {
1488: # ifdef STUBBORN_ALLOC
1489: GC_push_one(GC_changing_list_start);
1490: # endif
1491: GC_push_finalizer_structures();
1492: RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1493: }
1494: if (GC_words_allocd > 0) {
1495: ThreadF__ProcessStacks(GC_push_thread_stack);
1496: }
1497: /* Otherwise this isn't absolutely necessary, and we have */
1498: /* startup ordering problems. */
1499: }
1500:
1501: # endif /* SRC_M3 */
1502:
1503: # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1504: || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1.1.1.2 maekawa 1505: || defined(IRIX_JDK_THREADS) || defined(HPUX_THREADS)
1.1 maekawa 1506:
1507: extern void GC_push_all_stacks();
1508:
1509: void GC_default_push_other_roots()
1510: {
1511: GC_push_all_stacks();
1512: }
1513:
1514: # endif /* SOLARIS_THREADS || ... */
1515:
1516: void (*GC_push_other_roots)() = GC_default_push_other_roots;
1517:
1518: #endif
1519:
1520: /*
1521: * Routines for accessing dirty bits on virtual pages.
1522: * We plan to eventaually implement four strategies for doing so:
1523: * DEFAULT_VDB: A simple dummy implementation that treats every page
1524: * as possibly dirty. This makes incremental collection
1525: * useless, but the implementation is still correct.
1526: * PCR_VDB: Use PPCRs virtual dirty bit facility.
1527: * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1528: * works under some SVR4 variants. Even then, it may be
1529: * too slow to be entirely satisfactory. Requires reading
1530: * dirty bits for entire address space. Implementations tend
1531: * to assume that the client is a (slow) debugger.
1532: * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1533: * dirtied pages. The implementation (and implementability)
1534: * is highly system dependent. This usually fails when system
1535: * calls write to a protected page. We prevent the read system
1536: * call from doing so. It is the clients responsibility to
1537: * make sure that other system calls are similarly protected
1538: * or write only to the stack.
1539: */
1540:
1541: GC_bool GC_dirty_maintained = FALSE;
1542:
1543: # ifdef DEFAULT_VDB
1544:
1545: /* All of the following assume the allocation lock is held, and */
1546: /* signals are disabled. */
1547:
1548: /* The client asserts that unallocated pages in the heap are never */
1549: /* written. */
1550:
1551: /* Initialize virtual dirty bit implementation. */
1552: void GC_dirty_init()
1553: {
1554: GC_dirty_maintained = TRUE;
1555: }
1556:
1557: /* Retrieve system dirty bits for heap to a local buffer. */
1558: /* Restore the systems notion of which pages are dirty. */
1559: void GC_read_dirty()
1560: {}
1561:
1562: /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1563: /* If the actual page size is different, this returns TRUE if any */
1564: /* of the pages overlapping h are dirty. This routine may err on the */
1565: /* side of labelling pages as dirty (and this implementation does). */
1566: /*ARGSUSED*/
1567: GC_bool GC_page_was_dirty(h)
1568: struct hblk *h;
1569: {
1570: return(TRUE);
1571: }
1572:
1573: /*
1574: * The following two routines are typically less crucial. They matter
1575: * most with large dynamic libraries, or if we can't accurately identify
1576: * stacks, e.g. under Solaris 2.X. Otherwise the following default
1577: * versions are adequate.
1578: */
1579:
1580: /* Could any valid GC heap pointer ever have been written to this page? */
1581: /*ARGSUSED*/
1582: GC_bool GC_page_was_ever_dirty(h)
1583: struct hblk *h;
1584: {
1585: return(TRUE);
1586: }
1587:
1588: /* Reset the n pages starting at h to "was never dirty" status. */
1589: void GC_is_fresh(h, n)
1590: struct hblk *h;
1591: word n;
1592: {
1593: }
1594:
1595: /* A call hints that h is about to be written. */
1596: /* May speed up some dirty bit implementations. */
1597: /*ARGSUSED*/
1598: void GC_write_hint(h)
1599: struct hblk *h;
1600: {
1601: }
1602:
1603: # endif /* DEFAULT_VDB */
1604:
1605:
1606: # ifdef MPROTECT_VDB
1607:
1608: /*
1609: * See DEFAULT_VDB for interface descriptions.
1610: */
1611:
1612: /*
1613: * This implementation maintains dirty bits itself by catching write
1614: * faults and keeping track of them. We assume nobody else catches
1615: * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1616: * except as a result of a read system call. This means clients must
1617: * either ensure that system calls do not touch the heap, or must
1618: * provide their own wrappers analogous to the one for read.
1619: * We assume the page size is a multiple of HBLKSIZE.
1620: * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1621: * tried to use portable code where easily possible. It is known
1622: * not to work under a number of other systems.
1623: */
1624:
1625: # ifndef MSWIN32
1626:
1627: # include <sys/mman.h>
1628: # include <signal.h>
1629: # include <sys/syscall.h>
1630:
1631: # define PROTECT(addr, len) \
1.1.1.2 maekawa 1632: if (mprotect((caddr_t)(addr), (size_t)(len), \
1.1 maekawa 1633: PROT_READ | OPT_PROT_EXEC) < 0) { \
1634: ABORT("mprotect failed"); \
1635: }
1636: # define UNPROTECT(addr, len) \
1.1.1.2 maekawa 1637: if (mprotect((caddr_t)(addr), (size_t)(len), \
1.1 maekawa 1638: PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1639: ABORT("un-mprotect failed"); \
1640: }
1641:
1642: # else
1643:
1644: # include <signal.h>
1645:
1646: static DWORD protect_junk;
1647: # define PROTECT(addr, len) \
1648: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1649: &protect_junk)) { \
1650: DWORD last_error = GetLastError(); \
1651: GC_printf1("Last error code: %lx\n", last_error); \
1652: ABORT("VirtualProtect failed"); \
1653: }
1654: # define UNPROTECT(addr, len) \
1655: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1656: &protect_junk)) { \
1657: ABORT("un-VirtualProtect failed"); \
1658: }
1659:
1660: # endif
1661:
1662: #if defined(SUNOS4) || defined(FREEBSD)
1663: typedef void (* SIG_PF)();
1664: #endif
1665: #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX)
1.1.1.2 maekawa 1666: # ifdef __STDC__
1.1 maekawa 1667: typedef void (* SIG_PF)(int);
1.1.1.2 maekawa 1668: # else
1669: typedef void (* SIG_PF)();
1670: # endif
1.1 maekawa 1671: #endif
1672: #if defined(MSWIN32)
1673: typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1674: # undef SIG_DFL
1675: # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1676: #endif
1677:
1678: #if defined(IRIX5) || defined(OSF1)
1679: typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1680: #endif
1681: #if defined(SUNOS5SIGS)
1.1.1.2 maekawa 1682: # ifdef HPUX
1683: # define SIGINFO __siginfo
1684: # else
1685: # define SIGINFO siginfo
1686: # endif
1687: # ifdef __STDC__
1688: typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
1689: # else
1690: typedef void (* REAL_SIG_PF)();
1691: # endif
1.1 maekawa 1692: #endif
1693: #if defined(LINUX)
1694: # include <linux/version.h>
1.1.1.2 maekawa 1695: # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(IA64)
1.1 maekawa 1696: typedef struct sigcontext s_c;
1697: # else
1698: typedef struct sigcontext_struct s_c;
1699: # endif
1.1.1.2 maekawa 1700: # if defined(ALPHA) || defined(M68K)
1701: typedef void (* REAL_SIG_PF)(int, int, s_c *);
1702: # else
1703: # if defined(IA64)
1704: typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
1705: # else
1706: typedef void (* REAL_SIG_PF)(int, s_c);
1707: # endif
1708: # endif
1.1 maekawa 1709: # ifdef ALPHA
1710: /* Retrieve fault address from sigcontext structure by decoding */
1711: /* instruction. */
1712: char * get_fault_addr(s_c *sc) {
1713: unsigned instr;
1714: word faultaddr;
1715:
1716: instr = *((unsigned *)(sc->sc_pc));
1717: faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
1718: faultaddr += (word) (((int)instr << 16) >> 16);
1719: return (char *)faultaddr;
1720: }
1721: # endif /* !ALPHA */
1722: # endif
1723:
1724: SIG_PF GC_old_bus_handler;
1725: SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1726:
1727: /*ARGSUSED*/
1728: # if defined (SUNOS4) || defined(FREEBSD)
1729: void GC_write_fault_handler(sig, code, scp, addr)
1730: int sig, code;
1731: struct sigcontext *scp;
1732: char * addr;
1733: # ifdef SUNOS4
1734: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1735: # define CODE_OK (FC_CODE(code) == FC_PROT \
1736: || (FC_CODE(code) == FC_OBJERR \
1737: && FC_ERRNO(code) == FC_PROT))
1738: # endif
1739: # ifdef FREEBSD
1740: # define SIG_OK (sig == SIGBUS)
1741: # define CODE_OK (code == BUS_PAGE_FAULT)
1742: # endif
1743: # endif
1744: # if defined(IRIX5) || defined(OSF1)
1745: # include <errno.h>
1746: void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
1747: # define SIG_OK (sig == SIGSEGV)
1748: # ifdef OSF1
1749: # define CODE_OK (code == 2 /* experimentally determined */)
1750: # endif
1751: # ifdef IRIX5
1752: # define CODE_OK (code == EACCES)
1753: # endif
1754: # endif
1755: # if defined(LINUX)
1.1.1.2 maekawa 1756: # if defined(ALPHA) || defined(M68K)
1.1 maekawa 1757: void GC_write_fault_handler(int sig, int code, s_c * sc)
1758: # else
1.1.1.2 maekawa 1759: # if defined(IA64)
1760: void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
1761: # else
1762: void GC_write_fault_handler(int sig, s_c sc)
1763: # endif
1.1 maekawa 1764: # endif
1765: # define SIG_OK (sig == SIGSEGV)
1766: # define CODE_OK TRUE
1.1.1.2 maekawa 1767: /* Empirically c.trapno == 14, on IA32, but is that useful? */
1768: /* Should probably consider alignment issues on other */
1769: /* architectures. */
1.1 maekawa 1770: # endif
1771: # if defined(SUNOS5SIGS)
1.1.1.2 maekawa 1772: # ifdef __STDC__
1773: void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
1774: # else
1775: void GC_write_fault_handler(sig, scp, context)
1776: int sig;
1777: struct SIGINFO *scp;
1778: void * context;
1779: # endif
1780: # ifdef HPUX
1781: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1782: # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
1783: || (scp -> si_code == BUS_ADRERR) \
1784: || (scp -> si_code == BUS_UNKNOWN) \
1785: || (scp -> si_code == SEGV_UNKNOWN) \
1786: || (scp -> si_code == BUS_OBJERR)
1787: # else
1788: # define SIG_OK (sig == SIGSEGV)
1789: # define CODE_OK (scp -> si_code == SEGV_ACCERR)
1790: # endif
1.1 maekawa 1791: # endif
1792: # if defined(MSWIN32)
1793: LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
1794: # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1795: EXCEPTION_ACCESS_VIOLATION)
1796: # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
1797: /* Write fault */
1798: # endif
1799: {
1800: register unsigned i;
1801: # ifdef IRIX5
1802: char * addr = (char *) (size_t) (scp -> sc_badvaddr);
1803: # endif
1804: # if defined(OSF1) && defined(ALPHA)
1805: char * addr = (char *) (scp -> sc_traparg_a0);
1806: # endif
1807: # ifdef SUNOS5SIGS
1808: char * addr = (char *) (scp -> si_addr);
1809: # endif
1810: # ifdef LINUX
1811: # ifdef I386
1812: char * addr = (char *) (sc.cr2);
1813: # else
1814: # if defined(M68K)
1815: char * addr = NULL;
1816:
1817: struct sigcontext *scp = (struct sigcontext *)(&sc);
1818:
1819: int format = (scp->sc_formatvec >> 12) & 0xf;
1820: unsigned long *framedata = (unsigned long *)(scp + 1);
1821: unsigned long ea;
1822:
1823: if (format == 0xa || format == 0xb) {
1824: /* 68020/030 */
1825: ea = framedata[2];
1826: } else if (format == 7) {
1827: /* 68040 */
1828: ea = framedata[3];
1829: } else if (format == 4) {
1830: /* 68060 */
1831: ea = framedata[0];
1832: if (framedata[1] & 0x08000000) {
1833: /* correct addr on misaligned access */
1834: ea = (ea+4095)&(~4095);
1835: }
1836: }
1837: addr = (char *)ea;
1838: # else
1839: # ifdef ALPHA
1840: char * addr = get_fault_addr(sc);
1841: # else
1.1.1.2 maekawa 1842: # ifdef IA64
1843: char * addr = si -> si_addr;
1.1.1.3 ! maekawa 1844: /* I believe this is claimed to work on all platforms for */
! 1845: /* Linux 2.3.47 and later. Hopefully we don't have to */
! 1846: /* worry about earlier kernels on IA64. */
1.1.1.2 maekawa 1847: # else
1848: # if defined(POWERPC)
1849: char * addr = (char *) (sc.regs->dar);
1850: # else
1.1 maekawa 1851: --> architecture not supported
1.1.1.2 maekawa 1852: # endif
1853: # endif
1.1 maekawa 1854: # endif
1855: # endif
1856: # endif
1857: # endif
1858: # if defined(MSWIN32)
1859: char * addr = (char *) (exc_info -> ExceptionRecord
1860: -> ExceptionInformation[1]);
1861: # define sig SIGSEGV
1862: # endif
1863:
1864: if (SIG_OK && CODE_OK) {
1865: register struct hblk * h =
1866: (struct hblk *)((word)addr & ~(GC_page_size-1));
1867: GC_bool in_allocd_block;
1868:
1869: # ifdef SUNOS5SIGS
1870: /* Address is only within the correct physical page. */
1871: in_allocd_block = FALSE;
1872: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1873: if (HDR(h+i) != 0) {
1874: in_allocd_block = TRUE;
1875: }
1876: }
1877: # else
1878: in_allocd_block = (HDR(addr) != 0);
1879: # endif
1880: if (!in_allocd_block) {
1881: /* Heap blocks now begin and end on page boundaries */
1882: SIG_PF old_handler;
1883:
1884: if (sig == SIGSEGV) {
1885: old_handler = GC_old_segv_handler;
1886: } else {
1887: old_handler = GC_old_bus_handler;
1888: }
1889: if (old_handler == SIG_DFL) {
1890: # ifndef MSWIN32
1891: GC_err_printf1("Segfault at 0x%lx\n", addr);
1892: ABORT("Unexpected bus error or segmentation fault");
1893: # else
1894: return(EXCEPTION_CONTINUE_SEARCH);
1895: # endif
1896: } else {
1897: # if defined (SUNOS4) || defined(FREEBSD)
1898: (*old_handler) (sig, code, scp, addr);
1899: return;
1900: # endif
1901: # if defined (SUNOS5SIGS)
1902: (*(REAL_SIG_PF)old_handler) (sig, scp, context);
1903: return;
1904: # endif
1905: # if defined (LINUX)
1.1.1.2 maekawa 1906: # if defined(ALPHA) || defined(M68K)
1.1 maekawa 1907: (*(REAL_SIG_PF)old_handler) (sig, code, sc);
1908: # else
1.1.1.2 maekawa 1909: # if defined(IA64)
1910: (*(REAL_SIG_PF)old_handler) (sig, si, scp);
1911: # else
1.1 maekawa 1912: (*(REAL_SIG_PF)old_handler) (sig, sc);
1.1.1.2 maekawa 1913: # endif
1.1 maekawa 1914: # endif
1915: return;
1916: # endif
1917: # if defined (IRIX5) || defined(OSF1)
1918: (*(REAL_SIG_PF)old_handler) (sig, code, scp);
1919: return;
1920: # endif
1921: # ifdef MSWIN32
1922: return((*old_handler)(exc_info));
1923: # endif
1924: }
1925: }
1926: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1927: register int index = PHT_HASH(h+i);
1928:
1929: set_pht_entry_from_index(GC_dirty_pages, index);
1930: }
1931: UNPROTECT(h, GC_page_size);
1932: # if defined(OSF1) || defined(LINUX)
1933: /* These reset the signal handler each time by default. */
1934: signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
1935: # endif
1936: /* The write may not take place before dirty bits are read. */
1937: /* But then we'll fault again ... */
1938: # ifdef MSWIN32
1939: return(EXCEPTION_CONTINUE_EXECUTION);
1940: # else
1941: return;
1942: # endif
1943: }
1944: #ifdef MSWIN32
1945: return EXCEPTION_CONTINUE_SEARCH;
1946: #else
1947: GC_err_printf1("Segfault at 0x%lx\n", addr);
1948: ABORT("Unexpected bus error or segmentation fault");
1949: #endif
1950: }
1951:
1952: /*
1953: * We hold the allocation lock. We expect block h to be written
1954: * shortly.
1955: */
1956: void GC_write_hint(h)
1957: struct hblk *h;
1958: {
1959: register struct hblk * h_trunc;
1960: register unsigned i;
1961: register GC_bool found_clean;
1962:
1963: if (!GC_dirty_maintained) return;
1964: h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
1965: found_clean = FALSE;
1966: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1967: register int index = PHT_HASH(h_trunc+i);
1968:
1969: if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
1970: found_clean = TRUE;
1971: set_pht_entry_from_index(GC_dirty_pages, index);
1972: }
1973: }
1974: if (found_clean) {
1975: UNPROTECT(h_trunc, GC_page_size);
1976: }
1977: }
1978:
1979: void GC_dirty_init()
1980: {
1.1.1.2 maekawa 1981: #if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */
1.1 maekawa 1982: struct sigaction act, oldact;
1983: # ifdef IRIX5
1984: act.sa_flags = SA_RESTART;
1985: act.sa_handler = GC_write_fault_handler;
1986: # else
1987: act.sa_flags = SA_RESTART | SA_SIGINFO;
1988: act.sa_sigaction = GC_write_fault_handler;
1989: # endif
1990: (void)sigemptyset(&act.sa_mask);
1991: #endif
1992: # ifdef PRINTSTATS
1993: GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
1994: # endif
1995: GC_dirty_maintained = TRUE;
1996: if (GC_page_size % HBLKSIZE != 0) {
1997: GC_err_printf0("Page size not multiple of HBLKSIZE\n");
1998: ABORT("Page size not multiple of HBLKSIZE");
1999: }
2000: # if defined(SUNOS4) || defined(FREEBSD)
2001: GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2002: if (GC_old_bus_handler == SIG_IGN) {
2003: GC_err_printf0("Previously ignored bus error!?");
2004: GC_old_bus_handler = SIG_DFL;
2005: }
2006: if (GC_old_bus_handler != SIG_DFL) {
2007: # ifdef PRINTSTATS
2008: GC_err_printf0("Replaced other SIGBUS handler\n");
2009: # endif
2010: }
2011: # endif
2012: # if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
2013: GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2014: if (GC_old_segv_handler == SIG_IGN) {
2015: GC_err_printf0("Previously ignored segmentation violation!?");
2016: GC_old_segv_handler = SIG_DFL;
2017: }
2018: if (GC_old_segv_handler != SIG_DFL) {
2019: # ifdef PRINTSTATS
2020: GC_err_printf0("Replaced other SIGSEGV handler\n");
2021: # endif
2022: }
2023: # endif
2024: # if defined(SUNOS5SIGS) || defined(IRIX5)
1.1.1.2 maekawa 2025: # if defined(IRIX_THREADS) || defined(IRIX_JDK_THREADS)
1.1 maekawa 2026: sigaction(SIGSEGV, 0, &oldact);
2027: sigaction(SIGSEGV, &act, 0);
2028: # else
2029: sigaction(SIGSEGV, &act, &oldact);
2030: # endif
2031: # if defined(_sigargs)
2032: /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2033: /* sa_sigaction. */
2034: GC_old_segv_handler = oldact.sa_handler;
2035: # else /* Irix 6.x or SUNOS5SIGS */
2036: if (oldact.sa_flags & SA_SIGINFO) {
2037: GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2038: } else {
2039: GC_old_segv_handler = oldact.sa_handler;
2040: }
2041: # endif
2042: if (GC_old_segv_handler == SIG_IGN) {
2043: GC_err_printf0("Previously ignored segmentation violation!?");
2044: GC_old_segv_handler = SIG_DFL;
2045: }
2046: if (GC_old_segv_handler != SIG_DFL) {
2047: # ifdef PRINTSTATS
2048: GC_err_printf0("Replaced other SIGSEGV handler\n");
2049: # endif
2050: }
1.1.1.2 maekawa 2051: # ifdef HPUX
2052: sigaction(SIGBUS, &act, &oldact);
2053: GC_old_bus_handler = oldact.sa_handler;
2054: if (GC_old_segv_handler != SIG_DFL) {
2055: # ifdef PRINTSTATS
2056: GC_err_printf0("Replaced other SIGBUS handler\n");
2057: # endif
2058: }
2059: # endif
1.1 maekawa 2060: # endif
2061: # if defined(MSWIN32)
2062: GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2063: if (GC_old_segv_handler != NULL) {
2064: # ifdef PRINTSTATS
2065: GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2066: # endif
2067: } else {
2068: GC_old_segv_handler = SIG_DFL;
2069: }
2070: # endif
2071: }
2072:
2073:
2074:
2075: void GC_protect_heap()
2076: {
2077: ptr_t start;
2078: word len;
2079: unsigned i;
2080:
2081: for (i = 0; i < GC_n_heap_sects; i++) {
2082: start = GC_heap_sects[i].hs_start;
2083: len = GC_heap_sects[i].hs_bytes;
2084: PROTECT(start, len);
2085: }
2086: }
2087:
2088: /* We assume that either the world is stopped or its OK to lose dirty */
2089: /* bits while this is happenning (as in GC_enable_incremental). */
2090: void GC_read_dirty()
2091: {
2092: BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2093: (sizeof GC_dirty_pages));
2094: BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2095: GC_protect_heap();
2096: }
2097:
2098: GC_bool GC_page_was_dirty(h)
2099: struct hblk * h;
2100: {
2101: register word index = PHT_HASH(h);
2102:
2103: return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2104: }
2105:
2106: /*
2107: * Acquiring the allocation lock here is dangerous, since this
2108: * can be called from within GC_call_with_alloc_lock, and the cord
2109: * package does so. On systems that allow nested lock acquisition, this
2110: * happens to work.
2111: * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2112: */
2113:
2114: void GC_begin_syscall()
2115: {
2116: if (!I_HOLD_LOCK()) LOCK();
2117: }
2118:
2119: void GC_end_syscall()
2120: {
2121: if (!I_HOLD_LOCK()) UNLOCK();
2122: }
2123:
2124: void GC_unprotect_range(addr, len)
2125: ptr_t addr;
2126: word len;
2127: {
2128: struct hblk * start_block;
2129: struct hblk * end_block;
2130: register struct hblk *h;
2131: ptr_t obj_start;
2132:
2133: if (!GC_incremental) return;
2134: obj_start = GC_base(addr);
2135: if (obj_start == 0) return;
2136: if (GC_base(addr + len - 1) != obj_start) {
2137: ABORT("GC_unprotect_range(range bigger than object)");
2138: }
2139: start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2140: end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2141: end_block += GC_page_size/HBLKSIZE - 1;
2142: for (h = start_block; h <= end_block; h++) {
2143: register word index = PHT_HASH(h);
2144:
2145: set_pht_entry_from_index(GC_dirty_pages, index);
2146: }
2147: UNPROTECT(start_block,
2148: ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2149: }
2150:
1.1.1.3 ! maekawa 2151: #if !defined(MSWIN32) && !defined(LINUX_THREADS)
1.1 maekawa 2152: /* Replacement for UNIX system call. */
2153: /* Other calls that write to the heap */
2154: /* should be handled similarly. */
2155: # if defined(__STDC__) && !defined(SUNOS4)
2156: # include <unistd.h>
1.1.1.3 ! maekawa 2157: # include <sys/uio.h>
1.1 maekawa 2158: ssize_t read(int fd, void *buf, size_t nbyte)
2159: # else
2160: # ifndef LINT
2161: int read(fd, buf, nbyte)
2162: # else
2163: int GC_read(fd, buf, nbyte)
2164: # endif
2165: int fd;
2166: char *buf;
2167: int nbyte;
2168: # endif
2169: {
2170: int result;
2171:
2172: GC_begin_syscall();
2173: GC_unprotect_range(buf, (word)nbyte);
1.1.1.3 ! maekawa 2174: # if defined(IRIX5) || defined(LINUX_THREADS)
1.1 maekawa 2175: /* Indirect system call may not always be easily available. */
2176: /* We could call _read, but that would interfere with the */
2177: /* libpthread interception of read. */
1.1.1.3 ! maekawa 2178: /* On Linux, we have to be careful with the linuxthreads */
! 2179: /* read interception. */
1.1 maekawa 2180: {
2181: struct iovec iov;
2182:
2183: iov.iov_base = buf;
2184: iov.iov_len = nbyte;
2185: result = readv(fd, &iov, 1);
2186: }
2187: # else
2188: result = syscall(SYS_read, fd, buf, nbyte);
2189: # endif
2190: GC_end_syscall();
2191: return(result);
2192: }
1.1.1.3 ! maekawa 2193: #endif /* !MSWIN32 && !LINUX */
! 2194:
! 2195: #ifdef USE_LD_WRAP
! 2196: /* We use the GNU ld call wrapping facility. */
! 2197: /* This requires that the linker be invoked with "--wrap read". */
! 2198: /* This can be done by passing -Wl,"--wrap read" to gcc. */
! 2199: /* I'm not sure that this actually wraps whatever version of read */
! 2200: /* is called by stdio. That code also mentions __read. */
! 2201: # include <unistd.h>
! 2202: ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
! 2203: {
! 2204: int result;
! 2205:
! 2206: GC_begin_syscall();
! 2207: GC_unprotect_range(buf, (word)nbyte);
! 2208: result = __real_read(fd, buf, nbyte);
! 2209: GC_end_syscall();
! 2210: return(result);
! 2211: }
! 2212:
! 2213: /* We should probably also do this for __read, or whatever stdio */
! 2214: /* actually calls. */
! 2215: #endif
1.1 maekawa 2216:
2217: /*ARGSUSED*/
2218: GC_bool GC_page_was_ever_dirty(h)
2219: struct hblk *h;
2220: {
2221: return(TRUE);
2222: }
2223:
2224: /* Reset the n pages starting at h to "was never dirty" status. */
2225: /*ARGSUSED*/
2226: void GC_is_fresh(h, n)
2227: struct hblk *h;
2228: word n;
2229: {
2230: }
2231:
2232: # endif /* MPROTECT_VDB */
2233:
2234: # ifdef PROC_VDB
2235:
2236: /*
2237: * See DEFAULT_VDB for interface descriptions.
2238: */
2239:
2240: /*
2241: * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2242: * from which we can read page modified bits. This facility is far from
2243: * optimal (e.g. we would like to get the info for only some of the
2244: * address space), but it avoids intercepting system calls.
2245: */
2246:
2247: #include <errno.h>
2248: #include <sys/types.h>
2249: #include <sys/signal.h>
2250: #include <sys/fault.h>
2251: #include <sys/syscall.h>
2252: #include <sys/procfs.h>
2253: #include <sys/stat.h>
2254: #include <fcntl.h>
2255:
2256: #define INITIAL_BUF_SZ 4096
2257: word GC_proc_buf_size = INITIAL_BUF_SZ;
2258: char *GC_proc_buf;
2259:
2260: #ifdef SOLARIS_THREADS
2261: /* We don't have exact sp values for threads. So we count on */
2262: /* occasionally declaring stack pages to be fresh. Thus we */
2263: /* need a real implementation of GC_is_fresh. We can't clear */
2264: /* entries in GC_written_pages, since that would declare all */
2265: /* pages with the given hash address to be fresh. */
2266: # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2267: struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2268: /* Collisions are dropped. */
2269:
2270: # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2271: # define ADD_FRESH_PAGE(h) \
2272: GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2273: # define PAGE_IS_FRESH(h) \
2274: (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2275: #endif
2276:
2277: /* Add all pages in pht2 to pht1 */
2278: void GC_or_pages(pht1, pht2)
2279: page_hash_table pht1, pht2;
2280: {
2281: register int i;
2282:
2283: for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
2284: }
2285:
2286: int GC_proc_fd;
2287:
2288: void GC_dirty_init()
2289: {
2290: int fd;
2291: char buf[30];
2292:
2293: GC_dirty_maintained = TRUE;
2294: if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
2295: register int i;
2296:
2297: for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
2298: # ifdef PRINTSTATS
2299: GC_printf1("Allocated words:%lu:all pages may have been written\n",
2300: (unsigned long)
2301: (GC_words_allocd + GC_words_allocd_before_gc));
2302: # endif
2303: }
2304: sprintf(buf, "/proc/%d", getpid());
2305: fd = open(buf, O_RDONLY);
2306: if (fd < 0) {
2307: ABORT("/proc open failed");
2308: }
2309: GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
2310: close(fd);
2311: if (GC_proc_fd < 0) {
2312: ABORT("/proc ioctl failed");
2313: }
2314: GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
2315: # ifdef SOLARIS_THREADS
2316: GC_fresh_pages = (struct hblk **)
2317: GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
2318: if (GC_fresh_pages == 0) {
2319: GC_err_printf0("No space for fresh pages\n");
2320: EXIT();
2321: }
2322: BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
2323: # endif
2324: }
2325:
2326: /* Ignore write hints. They don't help us here. */
2327: /*ARGSUSED*/
2328: void GC_write_hint(h)
2329: struct hblk *h;
2330: {
2331: }
2332:
2333: #ifdef SOLARIS_THREADS
2334: # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2335: #else
2336: # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2337: #endif
2338:
2339: void GC_read_dirty()
2340: {
2341: unsigned long ps, np;
2342: int nmaps;
2343: ptr_t vaddr;
2344: struct prasmap * map;
2345: char * bufp;
2346: ptr_t current_addr, limit;
2347: int i;
2348: int dummy;
2349:
2350: BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
2351:
2352: bufp = GC_proc_buf;
2353: if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2354: # ifdef PRINTSTATS
2355: GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2356: GC_proc_buf_size);
2357: # endif
2358: {
2359: /* Retry with larger buffer. */
2360: word new_size = 2 * GC_proc_buf_size;
2361: char * new_buf = GC_scratch_alloc(new_size);
2362:
2363: if (new_buf != 0) {
2364: GC_proc_buf = bufp = new_buf;
2365: GC_proc_buf_size = new_size;
2366: }
2367: if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2368: WARN("Insufficient space for /proc read\n", 0);
2369: /* Punt: */
2370: memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2371: memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2372: # ifdef SOLARIS_THREADS
2373: BZERO(GC_fresh_pages,
2374: MAX_FRESH_PAGES * sizeof (struct hblk *));
2375: # endif
2376: return;
2377: }
2378: }
2379: }
2380: /* Copy dirty bits into GC_grungy_pages */
2381: nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2382: /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2383: nmaps, PG_REFERENCED, PG_MODIFIED); */
2384: bufp = bufp + sizeof(struct prpageheader);
2385: for (i = 0; i < nmaps; i++) {
2386: map = (struct prasmap *)bufp;
2387: vaddr = (ptr_t)(map -> pr_vaddr);
2388: ps = map -> pr_pagesize;
2389: np = map -> pr_npage;
2390: /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2391: limit = vaddr + ps * np;
2392: bufp += sizeof (struct prasmap);
2393: for (current_addr = vaddr;
2394: current_addr < limit; current_addr += ps){
2395: if ((*bufp++) & PG_MODIFIED) {
2396: register struct hblk * h = (struct hblk *) current_addr;
2397:
2398: while ((ptr_t)h < current_addr + ps) {
2399: register word index = PHT_HASH(h);
2400:
2401: set_pht_entry_from_index(GC_grungy_pages, index);
2402: # ifdef SOLARIS_THREADS
2403: {
2404: register int slot = FRESH_PAGE_SLOT(h);
2405:
2406: if (GC_fresh_pages[slot] == h) {
2407: GC_fresh_pages[slot] = 0;
2408: }
2409: }
2410: # endif
2411: h++;
2412: }
2413: }
2414: }
2415: bufp += sizeof(long) - 1;
2416: bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2417: }
2418: /* Update GC_written_pages. */
2419: GC_or_pages(GC_written_pages, GC_grungy_pages);
2420: # ifdef SOLARIS_THREADS
2421: /* Make sure that old stacks are considered completely clean */
2422: /* unless written again. */
2423: GC_old_stacks_are_fresh();
2424: # endif
2425: }
2426:
2427: #undef READ
2428:
2429: GC_bool GC_page_was_dirty(h)
2430: struct hblk *h;
2431: {
2432: register word index = PHT_HASH(h);
2433: register GC_bool result;
2434:
2435: result = get_pht_entry_from_index(GC_grungy_pages, index);
2436: # ifdef SOLARIS_THREADS
2437: if (result && PAGE_IS_FRESH(h)) result = FALSE;
2438: /* This happens only if page was declared fresh since */
2439: /* the read_dirty call, e.g. because it's in an unused */
2440: /* thread stack. It's OK to treat it as clean, in */
2441: /* that case. And it's consistent with */
2442: /* GC_page_was_ever_dirty. */
2443: # endif
2444: return(result);
2445: }
2446:
2447: GC_bool GC_page_was_ever_dirty(h)
2448: struct hblk *h;
2449: {
2450: register word index = PHT_HASH(h);
2451: register GC_bool result;
2452:
2453: result = get_pht_entry_from_index(GC_written_pages, index);
2454: # ifdef SOLARIS_THREADS
2455: if (result && PAGE_IS_FRESH(h)) result = FALSE;
2456: # endif
2457: return(result);
2458: }
2459:
2460: /* Caller holds allocation lock. */
2461: void GC_is_fresh(h, n)
2462: struct hblk *h;
2463: word n;
2464: {
2465:
2466: register word index;
2467:
2468: # ifdef SOLARIS_THREADS
2469: register word i;
2470:
2471: if (GC_fresh_pages != 0) {
2472: for (i = 0; i < n; i++) {
2473: ADD_FRESH_PAGE(h + i);
2474: }
2475: }
2476: # endif
2477: }
2478:
2479: # endif /* PROC_VDB */
2480:
2481:
2482: # ifdef PCR_VDB
2483:
2484: # include "vd/PCR_VD.h"
2485:
2486: # define NPAGES (32*1024) /* 128 MB */
2487:
2488: PCR_VD_DB GC_grungy_bits[NPAGES];
2489:
2490: ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2491: /* HBLKSIZE aligned. */
2492:
2493: void GC_dirty_init()
2494: {
2495: GC_dirty_maintained = TRUE;
2496: /* For the time being, we assume the heap generally grows up */
2497: GC_vd_base = GC_heap_sects[0].hs_start;
2498: if (GC_vd_base == 0) {
2499: ABORT("Bad initial heap segment");
2500: }
2501: if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2502: != PCR_ERes_okay) {
2503: ABORT("dirty bit initialization failed");
2504: }
2505: }
2506:
2507: void GC_read_dirty()
2508: {
2509: /* lazily enable dirty bits on newly added heap sects */
2510: {
2511: static int onhs = 0;
2512: int nhs = GC_n_heap_sects;
2513: for( ; onhs < nhs; onhs++ ) {
2514: PCR_VD_WriteProtectEnable(
2515: GC_heap_sects[onhs].hs_start,
2516: GC_heap_sects[onhs].hs_bytes );
2517: }
2518: }
2519:
2520:
2521: if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2522: != PCR_ERes_okay) {
2523: ABORT("dirty bit read failed");
2524: }
2525: }
2526:
2527: GC_bool GC_page_was_dirty(h)
2528: struct hblk *h;
2529: {
2530: if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2531: return(TRUE);
2532: }
2533: return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2534: }
2535:
2536: /*ARGSUSED*/
2537: void GC_write_hint(h)
2538: struct hblk *h;
2539: {
2540: PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2541: PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2542: }
2543:
2544: # endif /* PCR_VDB */
2545:
2546: /*
2547: * Call stack save code for debugging.
2548: * Should probably be in mach_dep.c, but that requires reorganization.
2549: */
2550: #if defined(SPARC) && !defined(LINUX)
2551: # if defined(SUNOS4)
2552: # include <machine/frame.h>
2553: # else
2554: # if defined (DRSNX)
2555: # include <sys/sparc/frame.h>
2556: # else
1.1.1.2 maekawa 2557: # if defined(OPENBSD)
2558: # include <frame.h>
2559: # else
2560: # include <sys/frame.h>
2561: # endif
1.1 maekawa 2562: # endif
2563: # endif
2564: # if NARGS > 6
2565: --> We only know how to to get the first 6 arguments
2566: # endif
2567:
2568: #ifdef SAVE_CALL_CHAIN
2569: /* Fill in the pc and argument information for up to NFRAMES of my */
2570: /* callers. Ignore my frame and my callers frame. */
1.1.1.2 maekawa 2571:
2572: #ifdef OPENBSD
2573: # define FR_SAVFP fr_fp
2574: # define FR_SAVPC fr_pc
2575: #else
2576: # define FR_SAVFP fr_savfp
2577: # define FR_SAVPC fr_savpc
2578: #endif
2579:
1.1 maekawa 2580: void GC_save_callers (info)
2581: struct callinfo info[NFRAMES];
2582: {
2583: struct frame *frame;
2584: struct frame *fp;
2585: int nframes = 0;
2586: word GC_save_regs_in_stack();
2587:
2588: frame = (struct frame *) GC_save_regs_in_stack ();
2589:
1.1.1.2 maekawa 2590: for (fp = frame -> FR_SAVFP; fp != 0 && nframes < NFRAMES;
2591: fp = fp -> FR_SAVFP, nframes++) {
1.1 maekawa 2592: register int i;
2593:
1.1.1.2 maekawa 2594: info[nframes].ci_pc = fp->FR_SAVPC;
1.1 maekawa 2595: for (i = 0; i < NARGS; i++) {
2596: info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
2597: }
2598: }
2599: if (nframes < NFRAMES) info[nframes].ci_pc = 0;
2600: }
2601:
2602: #endif /* SAVE_CALL_CHAIN */
2603: #endif /* SPARC */
2604:
2605:
2606:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>