[BACK]Return to reclaim.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gc

Diff for /OpenXM_contrib/gc/Attic/reclaim.c between version 1.1.1.1 and 1.1.1.2

version 1.1.1.1, 1999/11/27 10:58:33 version 1.1.1.2, 2000/04/14 11:07:57
Line 1 
Line 1 
 /*  /*
  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers   * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
  * Copyright (c) 1991-1994 by Xerox Corporation.  All rights reserved.   * Copyright (c) 1991-1996 by Xerox Corporation.  All rights reserved.
    * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
    * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
  *   *
  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED   * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.   * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
Line 11 
Line 13 
  * provided the above notices are retained, and a notice that the code was   * provided the above notices are retained, and a notice that the code was
  * modified is included with the above copyright notice.   * modified is included with the above copyright notice.
  */   */
 /* Boehm, February 15, 1996 2:41 pm PST */  
   
 #include <stdio.h>  #include <stdio.h>
 #include "gc_priv.h"  #include "gc_priv.h"
Line 19 
Line 20 
 signed_word GC_mem_found = 0;  signed_word GC_mem_found = 0;
                         /* Number of words of memory reclaimed     */                          /* Number of words of memory reclaimed     */
   
 # ifdef FIND_LEAK  
 static void report_leak(p, sz)  static void report_leak(p, sz)
 ptr_t p;  ptr_t p;
 word sz;  word sz;
Line 39  word sz;
Line 39  word sz;
 }  }
   
 #   define FOUND_FREE(hblk, word_no) \  #   define FOUND_FREE(hblk, word_no) \
       if (abort_if_found) { \        { \
          report_leak((ptr_t)hblk + WORDS_TO_BYTES(word_no), \           report_leak((ptr_t)hblk + WORDS_TO_BYTES(word_no), \
                      HDR(hblk) -> hb_sz); \                       HDR(hblk) -> hb_sz); \
       }        }
 # else  
 #   define FOUND_FREE(hblk, word_no)  
 # endif  
   
 /*  /*
  * reclaim phase   * reclaim phase
Line 71  register hdr * hhdr;
Line 68  register hdr * hhdr;
     return(TRUE);      return(TRUE);
 }  }
   
   /* The following functions sometimes return a DONT_KNOW value. */
   #define DONT_KNOW  2
   
   #ifdef SMALL_CONFIG
   # define GC_block_nearly_full1(hhdr, pat1) DONT_KNOW
   # define GC_block_nearly_full3(hhdr, pat1, pat2) DONT_KNOW
   # define GC_block_nearly_full(hhdr) DONT_KNOW
   #else
   
   /*
    * Test whether nearly all of the mark words consist of the same
    * repeating pattern.
    */
   #define FULL_THRESHOLD (MARK_BITS_SZ/16)
   
   GC_bool GC_block_nearly_full1(hhdr, pat1)
   hdr *hhdr;
   word pat1;
   {
       unsigned i;
       unsigned misses = 0;
       GC_ASSERT((MARK_BITS_SZ & 1) == 0);
       for (i = 0; i < MARK_BITS_SZ; ++i) {
           if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
               if (++misses > FULL_THRESHOLD) return FALSE;
           }
       }
       return TRUE;
   }
   
   /*
    * Test whether the same repeating 3 word pattern occurs in nearly
    * all the mark bit slots.
    * This is used as a heuristic, so we're a bit sloppy and ignore
    * the last one or two words.
    */
   GC_bool GC_block_nearly_full3(hhdr, pat1, pat2, pat3)
   hdr *hhdr;
   word pat1, pat2, pat3;
   {
       unsigned i;
       unsigned misses = 0;
   
       if (MARK_BITS_SZ < 4) {
         return DONT_KNOW;
       }
       for (i = 0; i < MARK_BITS_SZ - 2; i += 3) {
           if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
               if (++misses > FULL_THRESHOLD) return FALSE;
           }
           if ((hhdr -> hb_marks[i+1] | ~pat2) != ONES) {
               if (++misses > FULL_THRESHOLD) return FALSE;
           }
           if ((hhdr -> hb_marks[i+2] | ~pat3) != ONES) {
               if (++misses > FULL_THRESHOLD) return FALSE;
           }
       }
       return TRUE;
   }
   
   /* Check whether a small object block is nearly full by looking at only */
   /* the mark bits.                                                       */
   /* We manually precomputed the mark bit patterns that need to be        */
   /* checked for, and we give up on the ones that are unlikely to occur,  */
   /* or have period > 3.                                                  */
   /* This would be a lot easier with a mark bit per object instead of per */
   /* word, but that would rewuire computing object numbers in the mark    */
   /* loop, which would require different data structures ...              */
   GC_bool GC_block_nearly_full(hhdr)
   hdr *hhdr;
   {
       int sz = hhdr -> hb_sz;
   
   #   if CPP_WORDSZ != 32 && CPP_WORDSZ != 64
         return DONT_KNOW; /* Shouldn't be used in any standard config.    */
   #   endif
       if (0 != HDR_WORDS) return DONT_KNOW;
           /* Also shouldn't happen */
   #   if CPP_WORDSZ == 32
         switch(sz) {
           case 1:
             return GC_block_nearly_full1(hhdr, 0xffffffffl);
           case 2:
             return GC_block_nearly_full1(hhdr, 0x55555555l);
           case 4:
             return GC_block_nearly_full1(hhdr, 0x11111111l);
           case 6:
             return GC_block_nearly_full3(hhdr, 0x41041041l,
                                                 0x10410410l,
                                                  0x04104104l);
           case 8:
             return GC_block_nearly_full1(hhdr, 0x01010101l);
           case 12:
             return GC_block_nearly_full3(hhdr, 0x01001001l,
                                                 0x10010010l,
                                                  0x00100100l);
           case 16:
             return GC_block_nearly_full1(hhdr, 0x00010001l);
           case 32:
             return GC_block_nearly_full1(hhdr, 0x00000001l);
           default:
             return DONT_KNOW;
         }
   #   endif
   #   if CPP_WORDSZ == 64
         switch(sz) {
           case 1:
             return GC_block_nearly_full1(hhdr, 0xffffffffffffffffl);
           case 2:
             return GC_block_nearly_full1(hhdr, 0x5555555555555555l);
           case 4:
             return GC_block_nearly_full1(hhdr, 0x1111111111111111l);
           case 6:
             return GC_block_nearly_full3(hhdr, 0x1041041041041041l,
                                                  0x4104104104104104l,
                                                    0x0410410410410410l);
           case 8:
             return GC_block_nearly_full1(hhdr, 0x0101010101010101l);
           case 12:
             return GC_block_nearly_full3(hhdr, 0x1001001001001001l,
                                                  0x0100100100100100l,
                                                    0x0010010010010010l);
           case 16:
             return GC_block_nearly_full1(hhdr, 0x0001000100010001l);
           case 32:
             return GC_block_nearly_full1(hhdr, 0x0000000100000001l);
           default:
             return DONT_KNOW;
         }
   #   endif
   }
   #endif /* !SMALL_CONFIG */
   
 # ifdef GATHERSTATS  # ifdef GATHERSTATS
 #   define INCR_WORDS(sz) n_words_found += (sz)  #   define INCR_WORDS(sz) n_words_found += (sz)
 # else  # else
Line 82  register hdr * hhdr;
Line 212  register hdr * hhdr;
  * Clears unmarked objects.   * Clears unmarked objects.
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_clear(hbp, hhdr, sz, list, abort_if_found)  ptr_t GC_reclaim_clear(hbp, hhdr, sz, list)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 register hdr * hhdr;  register hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 register word sz;  register word sz;
 {  {
Line 105  register word sz;
Line 234  register word sz;
             if( mark_bit_from_hdr(hhdr, word_no) ) {              if( mark_bit_from_hdr(hhdr, word_no) ) {
                 p += sz;                  p += sz;
             } else {              } else {
                 FOUND_FREE(hbp, word_no);  
                 INCR_WORDS(sz);                  INCR_WORDS(sz);
                 /* object is available - put on list */                  /* object is available - put on list */
                     obj_link(p) = list;                      obj_link(p) = list;
Line 131  register word sz;
Line 259  register word sz;
  * A special case for 2 word composite objects (e.g. cons cells):   * A special case for 2 word composite objects (e.g. cons cells):
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_clear2(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim_clear2(hbp, hhdr, list)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);
Line 146  register ptr_t list;
Line 273  register ptr_t list;
     register int i;      register int i;
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             p[start_displ+1] = 0; \              p[start_displ+1] = 0; \
Line 179  register ptr_t list;
Line 305  register ptr_t list;
  * Another special case for 4 word composite objects:   * Another special case for 4 word composite objects:
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_clear4(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim_clear4(hbp, hhdr, list)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);
Line 193  register ptr_t list;
Line 318  register ptr_t list;
     register word mark_word;      register word mark_word;
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             p[start_displ+1] = 0; \              p[start_displ+1] = 0; \
Line 239  register ptr_t list;
Line 363  register ptr_t list;
   
 /* The same thing, but don't clear objects: */  /* The same thing, but don't clear objects: */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_uninit(hbp, hhdr, sz, list, abort_if_found)  ptr_t GC_reclaim_uninit(hbp, hhdr, sz, list)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 register hdr * hhdr;  register hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 register word sz;  register word sz;
 {  {
Line 260  register word sz;
Line 383  register word sz;
     /* go through all words in block */      /* go through all words in block */
         while( p <= plim )  {          while( p <= plim )  {
             if( !mark_bit_from_hdr(hhdr, word_no) ) {              if( !mark_bit_from_hdr(hhdr, word_no) ) {
                 FOUND_FREE(hbp, word_no);  
                 INCR_WORDS(sz);                  INCR_WORDS(sz);
                 /* object is available - put on list */                  /* object is available - put on list */
                     obj_link(p) = list;                      obj_link(p) = list;
Line 275  register word sz;
Line 397  register word sz;
     return(list);      return(list);
 }  }
   
   /* Don't really reclaim objects, just check for unmarked ones: */
   /*ARGSUSED*/
   void GC_reclaim_check(hbp, hhdr, sz)
   register struct hblk *hbp;      /* ptr to current heap block            */
   register hdr * hhdr;
   register word sz;
   {
       register int word_no;
       register word *p, *plim;
   #   ifdef GATHERSTATS
           register int n_words_found = 0;
   #   endif
   
       p = (word *)(hbp->hb_body);
       word_no = HDR_WORDS;
       plim = (word *)((((word)hbp) + HBLKSIZE)
                      - WORDS_TO_BYTES(sz));
   
       /* go through all words in block */
           while( p <= plim )  {
               if( !mark_bit_from_hdr(hhdr, word_no) ) {
                   FOUND_FREE(hbp, word_no);
               }
               p += sz;
               word_no += sz;
           }
   }
   
 #ifndef SMALL_CONFIG  #ifndef SMALL_CONFIG
 /*  /*
  * Another special case for 2 word atomic objects:   * Another special case for 2 word atomic objects:
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_uninit2(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim_uninit2(hbp, hhdr, list)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);
Line 295  register ptr_t list;
Line 444  register ptr_t list;
     register int i;      register int i;
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             INCR_WORDS(2); \              INCR_WORDS(2); \
Line 327  register ptr_t list;
Line 475  register ptr_t list;
  * Another special case for 4 word atomic objects:   * Another special case for 4 word atomic objects:
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_uninit4(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim_uninit4(hbp, hhdr, list)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);
Line 341  register ptr_t list;
Line 488  register ptr_t list;
     register word mark_word;      register word mark_word;
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             INCR_WORDS(4); \              INCR_WORDS(4); \
Line 382  register ptr_t list;
Line 528  register ptr_t list;
   
 /* Finally the one word case, which never requires any clearing: */  /* Finally the one word case, which never requires any clearing: */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim1(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim1(hbp, hhdr, list)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);
Line 397  register ptr_t list;
Line 542  register ptr_t list;
     register int i;      register int i;
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             INCR_WORDS(1); \              INCR_WORDS(1); \
Line 433  register ptr_t list;
Line 577  register ptr_t list;
  * If entirely empty blocks are to be completely deallocated, then   * If entirely empty blocks are to be completely deallocated, then
  * caller should perform that check.   * caller should perform that check.
  */   */
 void GC_reclaim_small_nonempty_block(hbp, abort_if_found)  void GC_reclaim_small_nonempty_block(hbp, report_if_found)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 int abort_if_found;             /* Abort if a reclaimable object is found */  int report_if_found;            /* Abort if a reclaimable object is found */
 {  {
     hdr * hhdr;      hdr * hhdr;
     register word sz;           /* size of objects in current block     */      word sz;            /* size of objects in current block     */
     register struct obj_kind * ok;      struct obj_kind * ok;
     register ptr_t * flh;      ptr_t * flh;
     register int kind;      int kind;
       GC_bool full;
   
     hhdr = HDR(hbp);      hhdr = HDR(hbp);
     sz = hhdr -> hb_sz;      sz = hhdr -> hb_sz;
Line 449  int abort_if_found;  /* Abort if a reclaimable object 
Line 594  int abort_if_found;  /* Abort if a reclaimable object 
     kind = hhdr -> hb_obj_kind;      kind = hhdr -> hb_obj_kind;
     ok = &GC_obj_kinds[kind];      ok = &GC_obj_kinds[kind];
     flh = &(ok -> ok_freelist[sz]);      flh = &(ok -> ok_freelist[sz]);
     GC_write_hint(hbp);  
   
     if (ok -> ok_init) {      if (report_if_found) {
           GC_reclaim_check(hbp, hhdr, sz);
       } else if (ok -> ok_init) {
       switch(sz) {        switch(sz) {
 #      ifndef SMALL_CONFIG  #      ifndef SMALL_CONFIG
         case 1:          case 1:
             *flh = GC_reclaim1(hbp, hhdr, *flh, abort_if_found);              full = GC_block_nearly_full1(hhdr, 0xffffffffl);
               if (TRUE == full) goto out;
               if (FALSE == full) GC_write_hint(hbp);
               /* In the DONT_KNOW case, we let reclaim fault.     */
               *flh = GC_reclaim1(hbp, hhdr, *flh);
             break;              break;
         case 2:          case 2:
             *flh = GC_reclaim_clear2(hbp, hhdr, *flh, abort_if_found);              full = GC_block_nearly_full1(hhdr, 0x55555555l);
               if (TRUE == full) goto out;
               if (FALSE == full) GC_write_hint(hbp);
               *flh = GC_reclaim_clear2(hbp, hhdr, *flh);
             break;              break;
         case 4:          case 4:
             *flh = GC_reclaim_clear4(hbp, hhdr, *flh, abort_if_found);              full = GC_block_nearly_full1(hhdr, 0x11111111l);
               if (TRUE == full) goto out;
               if (FALSE == full) GC_write_hint(hbp);
               *flh = GC_reclaim_clear4(hbp, hhdr, *flh);
             break;              break;
 #      endif  #      endif
         default:          default:
             *flh = GC_reclaim_clear(hbp, hhdr, sz, *flh, abort_if_found);              full = GC_block_nearly_full(hhdr);
               if (TRUE == full) goto out;
               if (FALSE == full) GC_write_hint(hbp);
               *flh = GC_reclaim_clear(hbp, hhdr, sz, *flh);
             break;              break;
       }        }
     } else {      } else {
       switch(sz) {        switch(sz) {
 #      ifndef SMALL_CONFIG  #      ifndef SMALL_CONFIG
         case 1:          case 1:
             *flh = GC_reclaim1(hbp, hhdr, *flh, abort_if_found);              full = GC_block_nearly_full1(hhdr, 0xffffffffl);
               if (TRUE == full) goto out;
               if (FALSE == full) GC_write_hint(hbp);
               *flh = GC_reclaim1(hbp, hhdr, *flh);
             break;              break;
         case 2:          case 2:
             *flh = GC_reclaim_uninit2(hbp, hhdr, *flh, abort_if_found);              full = GC_block_nearly_full1(hhdr, 0x55555555l);
               if (TRUE == full) goto out;
               if (FALSE == full) GC_write_hint(hbp);
               *flh = GC_reclaim_uninit2(hbp, hhdr, *flh);
             break;              break;
         case 4:          case 4:
             *flh = GC_reclaim_uninit4(hbp, hhdr, *flh, abort_if_found);              full = GC_block_nearly_full1(hhdr, 0x11111111l);
               if (TRUE == full) goto out;
               if (FALSE == full) GC_write_hint(hbp);
               *flh = GC_reclaim_uninit4(hbp, hhdr, *flh);
             break;              break;
 #      endif  #      endif
         default:          default:
             *flh = GC_reclaim_uninit(hbp, hhdr, sz, *flh, abort_if_found);              full = GC_block_nearly_full(hhdr);
               if (TRUE == full) goto out;
               if (FALSE == full) GC_write_hint(hbp);
               *flh = GC_reclaim_uninit(hbp, hhdr, sz, *flh);
             break;              break;
       }        }
     }      }
   out:
     if (IS_UNCOLLECTABLE(kind)) GC_set_hdr_marks(hhdr);      if (IS_UNCOLLECTABLE(kind)) GC_set_hdr_marks(hhdr);
 }  }
   
Line 494  int abort_if_found;  /* Abort if a reclaimable object 
Line 666  int abort_if_found;  /* Abort if a reclaimable object 
  * to the heap block free list.   * to the heap block free list.
  * Otherwise enqueue the block for later processing   * Otherwise enqueue the block for later processing
  * by GC_reclaim_small_nonempty_block.   * by GC_reclaim_small_nonempty_block.
  * If abort_if_found is TRUE, then process any block immediately.   * If report_if_found is TRUE, then process any block immediately, and
    * simply report free objects; do not actually reclaim them.
  */   */
 void GC_reclaim_block(hbp, abort_if_found)  void GC_reclaim_block(hbp, report_if_found)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 word abort_if_found;            /* Abort if a reclaimable object is found */  word report_if_found;           /* Abort if a reclaimable object is found */
 {  {
     register hdr * hhdr;      register hdr * hhdr;
     register word sz;           /* size of objects in current block     */      register word sz;           /* size of objects in current block     */
Line 511  word abort_if_found;  /* Abort if a reclaimable object
Line 684  word abort_if_found;  /* Abort if a reclaimable object
   
     if( sz > MAXOBJSZ ) {  /* 1 big object */      if( sz > MAXOBJSZ ) {  /* 1 big object */
         if( !mark_bit_from_hdr(hhdr, HDR_WORDS) ) {          if( !mark_bit_from_hdr(hhdr, HDR_WORDS) ) {
             FOUND_FREE(hbp, HDR_WORDS);              if (report_if_found) {
 #           ifdef GATHERSTATS                FOUND_FREE(hbp, HDR_WORDS);
               } else {
   #             ifdef GATHERSTATS
                 GC_mem_found += sz;                  GC_mem_found += sz;
 #           endif  #             endif
             GC_freehblk(hbp);                GC_freehblk(hbp);
               }
         }          }
     } else {      } else {
         GC_bool empty = GC_block_empty(hhdr);          GC_bool empty = GC_block_empty(hhdr);
         if (abort_if_found) {          if (report_if_found) {
           GC_reclaim_small_nonempty_block(hbp, (int)abort_if_found);            GC_reclaim_small_nonempty_block(hbp, (int)report_if_found);
         } else if (empty) {          } else if (empty) {
 #         ifdef GATHERSTATS  #         ifdef GATHERSTATS
             GC_mem_found += BYTES_TO_WORDS(HBLKSIZE);              GC_mem_found += BYTES_TO_WORDS(HBLKSIZE);
Line 600  void GC_print_block_list()
Line 776  void GC_print_block_list()
 #endif /* NO_DEBUGGING */  #endif /* NO_DEBUGGING */
   
 /*  /*
  * Do the same thing on the entire heap, after first clearing small object   * Perform GC_reclaim_block on the entire heap, after first clearing
  * free lists (if we are not just looking for leaks).   * small object free lists (if we are not just looking for leaks).
  */   */
 void GC_start_reclaim(abort_if_found)  void GC_start_reclaim(report_if_found)
 int abort_if_found;             /* Abort if a GC_reclaimable object is found */  int report_if_found;            /* Abort if a GC_reclaimable object is found */
 {  {
     int kind;      int kind;
   
Line 617  int abort_if_found;  /* Abort if a GC_reclaimable obje
Line 793  int abort_if_found;  /* Abort if a GC_reclaimable obje
         register struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;          register struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
   
         if (rlist == 0) continue;       /* This kind not used.  */          if (rlist == 0) continue;       /* This kind not used.  */
         if (!abort_if_found) {          if (!report_if_found) {
             lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);              lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);
             for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {              for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {
               *fop = 0;                *fop = 0;
Line 637  int abort_if_found;  /* Abort if a GC_reclaimable obje
Line 813  int abort_if_found;  /* Abort if a GC_reclaimable obje
   
   /* Go through all heap blocks (in hblklist) and reclaim unmarked objects */    /* Go through all heap blocks (in hblklist) and reclaim unmarked objects */
   /* or enqueue the block for later processing.                            */    /* or enqueue the block for later processing.                            */
     GC_apply_to_all_blocks(GC_reclaim_block, (word)abort_if_found);      GC_apply_to_all_blocks(GC_reclaim_block, (word)report_if_found);
   
 }  }
   

Legend:
Removed from v.1.1.1.1  
changed lines
  Added in v.1.1.1.2

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>