version 1.1, 2000/01/10 15:35:21 |
version 1.1.1.3, 2000/12/01 05:44:45 |
|
|
/* Include file for internal GNU MP types and definitions. |
/* Include file for internal GNU MP types and definitions. |
|
|
Copyright (C) 1991, 1993, 1994, 1995, 1996 Free Software Foundation, Inc. |
THE CONTENTS OF THIS FILE ARE FOR INTERNAL USE AND ARE ALMOST CERTAIN TO |
|
BE SUBJECT TO INCOMPATIBLE CHANGES IN FUTURE GNU MP RELEASES. |
|
|
|
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1999, 2000 Free Software |
|
Foundation, Inc. |
|
|
This file is part of the GNU MP Library. |
This file is part of the GNU MP Library. |
|
|
The GNU MP Library is free software; you can redistribute it and/or modify |
The GNU MP Library is free software; you can redistribute it and/or modify |
it under the terms of the GNU Library General Public License as published by |
it under the terms of the GNU Lesser General Public License as published by |
the Free Software Foundation; either version 2 of the License, or (at your |
the Free Software Foundation; either version 2.1 of the License, or (at your |
option) any later version. |
option) any later version. |
|
|
The GNU MP Library is distributed in the hope that it will be useful, but |
The GNU MP Library is distributed in the hope that it will be useful, but |
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public |
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
License for more details. |
License for more details. |
|
|
You should have received a copy of the GNU Library General Public License |
You should have received a copy of the GNU Lesser General Public License |
along with the GNU MP Library; see the file COPYING.LIB. If not, write to |
along with the GNU MP Library; see the file COPYING.LIB. If not, write to |
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, |
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, |
MA 02111-1307, USA. */ |
MA 02111-1307, USA. */ |
|
|
|
#include "config.h" |
|
#include "gmp-mparam.h" |
|
/* #include "longlong.h" */ |
|
|
/* When using gcc, make sure to use its builtin alloca. */ |
/* When using gcc, make sure to use its builtin alloca. */ |
#if ! defined (alloca) && defined (__GNUC__) |
#if ! defined (alloca) && defined (__GNUC__) |
#define alloca __builtin_alloca |
#define alloca __builtin_alloca |
Line 48 MA 02111-1307, USA. */ |
|
Line 56 MA 02111-1307, USA. */ |
|
#endif |
#endif |
#endif |
#endif |
|
|
|
#if defined (alloca) |
|
#define HAVE_ALLOCA |
|
#endif |
|
|
#if ! defined (HAVE_ALLOCA) || USE_STACK_ALLOC |
#if ! defined (HAVE_ALLOCA) || USE_STACK_ALLOC |
#include "stack-alloc.h" |
#include "stack-alloc.h" |
#else |
#else |
Line 57 MA 02111-1307, USA. */ |
|
Line 69 MA 02111-1307, USA. */ |
|
#define TMP_FREE(m) |
#define TMP_FREE(m) |
#endif |
#endif |
|
|
#ifndef NULL |
/* Allocating various types. */ |
#define NULL ((void *) 0) |
#define TMP_ALLOC_TYPE(n,type) ((type *) TMP_ALLOC ((n) * sizeof (type))) |
#endif |
#define TMP_ALLOC_LIMBS(n) TMP_ALLOC_TYPE(n,mp_limb_t) |
|
#define TMP_ALLOC_MP_PTRS(n) TMP_ALLOC_TYPE(n,mp_ptr) |
|
|
#if ! defined (__GNUC__) |
|
|
#if ! defined (__GNUC__) /* FIXME: Test for C++ compilers here, |
|
__DECC understands __inline */ |
#define inline /* Empty */ |
#define inline /* Empty */ |
#endif |
#endif |
|
|
#define ABS(x) (x >= 0 ? x : -x) |
#define ABS(x) (x >= 0 ? x : -x) |
#define MIN(l,o) ((l) < (o) ? (l) : (o)) |
#define MIN(l,o) ((l) < (o) ? (l) : (o)) |
#define MAX(h,i) ((h) > (i) ? (h) : (i)) |
#define MAX(h,i) ((h) > (i) ? (h) : (i)) |
|
#define numberof(x) (sizeof (x) / sizeof ((x)[0])) |
|
|
/* Field access macros. */ |
/* Field access macros. */ |
#define SIZ(x) ((x)->_mp_size) |
#define SIZ(x) ((x)->_mp_size) |
#define ABSIZ(x) ABS (SIZ (x)) |
#define ABSIZ(x) ABS (SIZ (x)) |
#define PTR(x) ((x)->_mp_d) |
#define PTR(x) ((x)->_mp_d) |
|
#define LIMBS(x) ((x)->_mp_d) |
#define EXP(x) ((x)->_mp_exp) |
#define EXP(x) ((x)->_mp_exp) |
#define PREC(x) ((x)->_mp_prec) |
#define PREC(x) ((x)->_mp_prec) |
#define ALLOC(x) ((x)->_mp_alloc) |
#define ALLOC(x) ((x)->_mp_alloc) |
|
|
#include "gmp-mparam.h" |
/* Extra casts because shorts are promoted to ints by "~" and "<<". "-1" |
/* #include "longlong.h" */ |
rather than "1" in SIGNED_TYPE_MIN avoids warnings from some compilers |
|
about arithmetic overflow. */ |
|
#define UNSIGNED_TYPE_MAX(type) ((type) ~ (type) 0) |
|
#define UNSIGNED_TYPE_HIGHBIT(type) ((type) ~ (UNSIGNED_TYPE_MAX(type) >> 1)) |
|
#define SIGNED_TYPE_MIN(type) (((type) -1) << (8*sizeof(type)-1)) |
|
#define SIGNED_TYPE_MAX(type) ((type) ~ SIGNED_TYPE_MIN(type)) |
|
#define SIGNED_TYPE_HIGHBIT(type) SIGNED_TYPE_MIN(type) |
|
|
#if defined (__STDC__) || defined (__cplusplus) |
#define MP_LIMB_T_MAX UNSIGNED_TYPE_MAX (mp_limb_t) |
void *malloc (size_t); |
#define MP_LIMB_T_HIGHBIT UNSIGNED_TYPE_HIGHBIT (mp_limb_t) |
void *realloc (void *, size_t); |
|
void free (void *); |
|
|
|
extern void * (*_mp_allocate_func) (size_t); |
#define MP_SIZE_T_MAX SIGNED_TYPE_MAX (mp_size_t) |
extern void * (*_mp_reallocate_func) (void *, size_t, size_t); |
|
extern void (*_mp_free_func) (void *, size_t); |
|
|
|
void *_mp_default_allocate (size_t); |
#ifndef ULONG_MAX |
void *_mp_default_reallocate (void *, size_t, size_t); |
#define ULONG_MAX UNSIGNED_TYPE_MAX (unsigned long) |
void _mp_default_free (void *, size_t); |
#endif |
|
#define ULONG_HIGHBIT UNSIGNED_TYPE_HIGHBIT (unsigned long) |
|
#define LONG_HIGHBIT SIGNED_TYPE_HIGHBIT (long) |
|
#ifndef LONG_MAX |
|
#define LONG_MAX SIGNED_TYPE_MAX (long) |
|
#endif |
|
|
|
#ifndef USHORT_MAX |
|
#define USHORT_MAX UNSIGNED_TYPE_MAX (unsigned short) |
|
#endif |
|
#define USHORT_HIGHBIT UNSIGNED_TYPE_HIGHBIT (unsigned short) |
|
#define SHORT_HIGHBIT SIGNED_TYPE_HIGHBIT (short) |
|
#ifndef SHORT_MAX |
|
#define SHORT_MAX SIGNED_TYPE_MAX (short) |
|
#endif |
|
|
|
|
|
/* Swap macros. */ |
|
|
|
#define MP_LIMB_T_SWAP(x, y) \ |
|
do { \ |
|
mp_limb_t __mp_limb_t_swap__tmp = (x); \ |
|
(x) = (y); \ |
|
(y) = __mp_limb_t_swap__tmp; \ |
|
} while (0) |
|
#define MP_SIZE_T_SWAP(x, y) \ |
|
do { \ |
|
mp_size_t __mp_size_t_swap__tmp = (x); \ |
|
(x) = (y); \ |
|
(y) = __mp_size_t_swap__tmp; \ |
|
} while (0) |
|
|
|
#define MP_PTR_SWAP(x, y) \ |
|
do { \ |
|
mp_ptr __mp_ptr_swap__tmp = (x); \ |
|
(x) = (y); \ |
|
(y) = __mp_ptr_swap__tmp; \ |
|
} while (0) |
|
#define MP_SRCPTR_SWAP(x, y) \ |
|
do { \ |
|
mp_srcptr __mp_srcptr_swap__tmp = (x); \ |
|
(x) = (y); \ |
|
(y) = __mp_srcptr_swap__tmp; \ |
|
} while (0) |
|
|
|
#define MPN_PTR_SWAP(xp,xs, yp,ys) \ |
|
do { \ |
|
MP_PTR_SWAP (xp, yp); \ |
|
MP_SIZE_T_SWAP (xs, ys); \ |
|
} while(0) |
|
#define MPN_SRCPTR_SWAP(xp,xs, yp,ys) \ |
|
do { \ |
|
MP_SRCPTR_SWAP (xp, yp); \ |
|
MP_SIZE_T_SWAP (xs, ys); \ |
|
} while(0) |
|
|
|
#define MPZ_PTR_SWAP(x, y) \ |
|
do { \ |
|
mpz_ptr __mpz_ptr_swap__tmp = (x); \ |
|
(x) = (y); \ |
|
(y) = __mpz_ptr_swap__tmp; \ |
|
} while (0) |
|
#define MPZ_SRCPTR_SWAP(x, y) \ |
|
do { \ |
|
mpz_srcptr __mpz_srcptr_swap__tmp = (x); \ |
|
(x) = (y); \ |
|
(y) = __mpz_srcptr_swap__tmp; \ |
|
} while (0) |
|
|
|
|
|
#if defined (__cplusplus) |
|
extern "C" { |
|
#endif |
|
|
|
/* FIXME: These are purely internal, so do a search and replace to change |
|
them to __gmp forms, rather than using these macros. */ |
|
#define _mp_allocate_func __gmp_allocate_func |
|
#define _mp_reallocate_func __gmp_reallocate_func |
|
#define _mp_free_func __gmp_free_func |
|
#define _mp_default_allocate __gmp_default_allocate |
|
#define _mp_default_reallocate __gmp_default_reallocate |
|
#define _mp_default_free __gmp_default_free |
|
|
|
extern void * (*_mp_allocate_func) _PROTO ((size_t)); |
|
extern void * (*_mp_reallocate_func) _PROTO ((void *, size_t, size_t)); |
|
extern void (*_mp_free_func) _PROTO ((void *, size_t)); |
|
|
|
void *_mp_default_allocate _PROTO ((size_t)); |
|
void *_mp_default_reallocate _PROTO ((void *, size_t, size_t)); |
|
void _mp_default_free _PROTO ((void *, size_t)); |
|
|
|
#define _MP_ALLOCATE_FUNC_TYPE(n,type) \ |
|
((type *) (*_mp_allocate_func) ((n) * sizeof (type))) |
|
#define _MP_ALLOCATE_FUNC_LIMBS(n) _MP_ALLOCATE_FUNC_TYPE(n,mp_limb_t) |
|
|
|
#define _MP_FREE_FUNC_TYPE(p,n,type) (*_mp_free_func) (p, (n) * sizeof (type)) |
|
#define _MP_FREE_FUNC_LIMBS(p,n) _MP_FREE_FUNC_TYPE(p,n,mp_limb_t) |
|
|
|
|
|
#if (__STDC__-0) || defined (__cplusplus) |
|
|
#else |
#else |
|
|
#define const /* Empty */ |
#define const /* Empty */ |
#define signed /* Empty */ |
#define signed /* Empty */ |
|
|
void *malloc (); |
#endif |
void *realloc (); |
|
void free (); |
|
|
|
extern void * (*_mp_allocate_func) (); |
#if defined (__GNUC__) && defined (__i386__) |
extern void * (*_mp_reallocate_func) (); |
#if 0 /* check that these actually improve things */ |
extern void (*_mp_free_func) (); |
#define MPN_COPY_INCR(DST, SRC, N) \ |
|
__asm__ ("cld\n\trep\n\tmovsl" : : \ |
|
"D" (DST), "S" (SRC), "c" (N) : \ |
|
"cx", "di", "si", "memory") |
|
#define MPN_COPY_DECR(DST, SRC, N) \ |
|
__asm__ ("std\n\trep\n\tmovsl" : : \ |
|
"D" ((DST) + (N) - 1), "S" ((SRC) + (N) - 1), "c" (N) : \ |
|
"cx", "di", "si", "memory") |
|
#define MPN_NORMALIZE_NOT_ZERO(P, N) \ |
|
do { \ |
|
__asm__ ("std\n\trepe\n\tscasl" : "=c" (N) : \ |
|
"a" (0), "D" ((P) + (N) - 1), "0" (N) : \ |
|
"cx", "di"); \ |
|
(N)++; \ |
|
} while (0) |
|
#endif |
|
#endif |
|
|
void *_mp_default_allocate (); |
#if HAVE_NATIVE_mpn_copyi |
void *_mp_default_reallocate (); |
#define mpn_copyi __MPN(copyi) |
void _mp_default_free (); |
void mpn_copyi _PROTO ((mp_ptr, mp_srcptr, mp_size_t)); |
#endif |
#endif |
|
|
/* Copy NLIMBS *limbs* from SRC to DST. */ |
/* Remap names of internal mpn functions. */ |
|
#define __clz_tab __MPN(clz_tab) |
|
#define mpn_udiv_w_sdiv __MPN(udiv_w_sdiv) |
|
#define mpn_reciprocal __MPN(reciprocal) |
|
|
|
#define mpn_sb_divrem_mn __MPN(sb_divrem_mn) |
|
#define mpn_bz_divrem_n __MPN(bz_divrem_n) |
|
/* #define mpn_tdiv_q __MPN(tdiv_q) */ |
|
|
|
#define mpn_kara_mul_n __MPN(kara_mul_n) |
|
void mpn_kara_mul_n _PROTO((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_ptr)); |
|
|
|
#define mpn_kara_sqr_n __MPN(kara_sqr_n) |
|
void mpn_kara_sqr_n _PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); |
|
|
|
#define mpn_toom3_mul_n __MPN(toom3_mul_n) |
|
void mpn_toom3_mul_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t,mp_ptr)); |
|
|
|
#define mpn_toom3_sqr_n __MPN(toom3_sqr_n) |
|
void mpn_toom3_sqr_n _PROTO((mp_ptr, mp_srcptr, mp_size_t, mp_ptr)); |
|
|
|
#define mpn_fft_best_k __MPN(fft_best_k) |
|
int mpn_fft_best_k _PROTO ((mp_size_t n, int sqr)); |
|
|
|
#define mpn_mul_fft __MPN(mul_fft) |
|
void mpn_mul_fft _PROTO ((mp_ptr op, mp_size_t pl, |
|
mp_srcptr n, mp_size_t nl, |
|
mp_srcptr m, mp_size_t ml, |
|
int k)); |
|
|
|
#define mpn_mul_fft_full __MPN(mul_fft_full) |
|
void mpn_mul_fft_full _PROTO ((mp_ptr op, |
|
mp_srcptr n, mp_size_t nl, |
|
mp_srcptr m, mp_size_t ml)); |
|
|
|
#define mpn_fft_next_size __MPN(fft_next_size) |
|
mp_size_t mpn_fft_next_size _PROTO ((mp_size_t pl, int k)); |
|
|
|
mp_limb_t mpn_sb_divrem_mn _PROTO ((mp_ptr, mp_ptr, mp_size_t, mp_srcptr, mp_size_t)); |
|
mp_limb_t mpn_bz_divrem_n _PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t)); |
|
/* void mpn_tdiv_q _PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)); */ |
|
|
|
/* Copy NLIMBS *limbs* from SRC to DST, NLIMBS==0 allowed. */ |
|
#ifndef MPN_COPY_INCR |
|
#if HAVE_NATIVE_mpn_copyi |
|
#define MPN_COPY_INCR(DST, SRC, NLIMBS) mpn_copyi (DST, SRC, NLIMBS) |
|
#else |
#define MPN_COPY_INCR(DST, SRC, NLIMBS) \ |
#define MPN_COPY_INCR(DST, SRC, NLIMBS) \ |
do { \ |
do { \ |
mp_size_t __i; \ |
mp_size_t __i; \ |
for (__i = 0; __i < (NLIMBS); __i++) \ |
for (__i = 0; __i < (NLIMBS); __i++) \ |
(DST)[__i] = (SRC)[__i]; \ |
(DST)[__i] = (SRC)[__i]; \ |
} while (0) |
} while (0) |
|
#endif |
|
#endif |
|
|
|
#if HAVE_NATIVE_mpn_copyd |
|
#define mpn_copyd __MPN(copyd) |
|
void mpn_copyd _PROTO ((mp_ptr, mp_srcptr, mp_size_t)); |
|
#endif |
|
|
|
/* NLIMBS==0 allowed */ |
|
#ifndef MPN_COPY_DECR |
|
#if HAVE_NATIVE_mpn_copyd |
|
#define MPN_COPY_DECR(DST, SRC, NLIMBS) mpn_copyd (DST, SRC, NLIMBS) |
|
#else |
#define MPN_COPY_DECR(DST, SRC, NLIMBS) \ |
#define MPN_COPY_DECR(DST, SRC, NLIMBS) \ |
do { \ |
do { \ |
mp_size_t __i; \ |
mp_size_t __i; \ |
for (__i = (NLIMBS) - 1; __i >= 0; __i--) \ |
for (__i = (NLIMBS) - 1; __i >= 0; __i--) \ |
(DST)[__i] = (SRC)[__i]; \ |
(DST)[__i] = (SRC)[__i]; \ |
} while (0) |
} while (0) |
|
#endif |
|
#endif |
|
|
|
/* Define MPN_COPY for vector computers. Since #pragma cannot be in a macro, |
|
rely on function inlining. */ |
|
#if defined (_CRAY) || defined (__uxp__) |
|
static inline void |
|
_MPN_COPY (d, s, n) mp_ptr d; mp_srcptr s; mp_size_t n; |
|
{ |
|
int i; /* Faster for Cray with plain int */ |
|
#pragma _CRI ivdep /* Cray PVP systems */ |
|
#pragma loop noalias d,s /* Fujitsu VPP systems */ |
|
for (i = 0; i < n; i++) |
|
d[i] = s[i]; |
|
} |
|
#define MPN_COPY _MPN_COPY |
|
#endif |
|
|
|
#ifndef MPN_COPY |
#define MPN_COPY MPN_COPY_INCR |
#define MPN_COPY MPN_COPY_INCR |
|
#endif |
|
|
/* Zero NLIMBS *limbs* AT DST. */ |
/* Zero NLIMBS *limbs* AT DST. */ |
|
#ifndef MPN_ZERO |
#define MPN_ZERO(DST, NLIMBS) \ |
#define MPN_ZERO(DST, NLIMBS) \ |
do { \ |
do { \ |
mp_size_t __i; \ |
mp_size_t __i; \ |
for (__i = 0; __i < (NLIMBS); __i++) \ |
for (__i = 0; __i < (NLIMBS); __i++) \ |
(DST)[__i] = 0; \ |
(DST)[__i] = 0; \ |
} while (0) |
} while (0) |
|
#endif |
|
|
|
#ifndef MPN_NORMALIZE |
#define MPN_NORMALIZE(DST, NLIMBS) \ |
#define MPN_NORMALIZE(DST, NLIMBS) \ |
do { \ |
do { \ |
while (NLIMBS > 0) \ |
while (NLIMBS > 0) \ |
Line 143 void _mp_default_free (); |
|
Line 357 void _mp_default_free (); |
|
NLIMBS--; \ |
NLIMBS--; \ |
} \ |
} \ |
} while (0) |
} while (0) |
|
#endif |
|
#ifndef MPN_NORMALIZE_NOT_ZERO |
#define MPN_NORMALIZE_NOT_ZERO(DST, NLIMBS) \ |
#define MPN_NORMALIZE_NOT_ZERO(DST, NLIMBS) \ |
do { \ |
do { \ |
while (1) \ |
while (1) \ |
Line 152 void _mp_default_free (); |
|
Line 368 void _mp_default_free (); |
|
NLIMBS--; \ |
NLIMBS--; \ |
} \ |
} \ |
} while (0) |
} while (0) |
|
#endif |
|
|
/* Initialize the MP_INT X with space for NLIMBS limbs. |
/* Strip least significant zero limbs from ptr,size by incrementing ptr and |
X should be a temporary variable, and it will be automatically |
decrementing size. The number in ptr,size must be non-zero, ie. size!=0 |
cleared out when the running function returns. |
and somewhere a non-zero limb. */ |
We use __x here to make it possible to accept both mpz_ptr and mpz_t |
#define MPN_STRIP_LOW_ZEROS_NOT_ZERO(ptr, size) \ |
arguments. */ |
do \ |
|
{ \ |
|
ASSERT ((size) != 0); \ |
|
while ((ptr)[0] == 0) \ |
|
{ \ |
|
(ptr)++; \ |
|
(size)--; \ |
|
ASSERT (size >= 0); \ |
|
} \ |
|
} \ |
|
while (0) |
|
|
|
/* Initialize X of type mpz_t with space for NLIMBS limbs. X should be a |
|
temporary variable; it will be automatically cleared out at function |
|
return. We use __x here to make it possible to accept both mpz_ptr and |
|
mpz_t arguments. */ |
#define MPZ_TMP_INIT(X, NLIMBS) \ |
#define MPZ_TMP_INIT(X, NLIMBS) \ |
do { \ |
do { \ |
mpz_ptr __x = (X); \ |
mpz_ptr __x = (X); \ |
Line 165 void _mp_default_free (); |
|
Line 397 void _mp_default_free (); |
|
__x->_mp_d = (mp_ptr) TMP_ALLOC ((NLIMBS) * BYTES_PER_MP_LIMB); \ |
__x->_mp_d = (mp_ptr) TMP_ALLOC ((NLIMBS) * BYTES_PER_MP_LIMB); \ |
} while (0) |
} while (0) |
|
|
#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \ |
/* Realloc for an mpz_t WHAT if it has less thann NEEDED limbs. */ |
do { \ |
#define MPZ_REALLOC(what,needed) \ |
if ((size) < KARATSUBA_THRESHOLD) \ |
do { \ |
impn_mul_n_basecase (prodp, up, vp, size); \ |
if ((needed) > ALLOC (what)) \ |
else \ |
_mpz_realloc (what, needed); \ |
impn_mul_n (prodp, up, vp, size, tspace); \ |
} while (0) |
} while (0); |
|
#define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \ |
|
do { \ |
|
if ((size) < KARATSUBA_THRESHOLD) \ |
|
impn_sqr_n_basecase (prodp, up, size); \ |
|
else \ |
|
impn_sqr_n (prodp, up, size, tspace); \ |
|
} while (0); |
|
|
|
|
/* If KARATSUBA_MUL_THRESHOLD is not already defined, define it to a |
|
value which is good on most machines. */ |
|
#ifndef KARATSUBA_MUL_THRESHOLD |
|
#define KARATSUBA_MUL_THRESHOLD 32 |
|
#endif |
|
|
|
/* If TOOM3_MUL_THRESHOLD is not already defined, define it to a |
|
value which is good on most machines. */ |
|
#ifndef TOOM3_MUL_THRESHOLD |
|
#define TOOM3_MUL_THRESHOLD 256 |
|
#endif |
|
|
|
#ifndef KARATSUBA_SQR_THRESHOLD |
|
#define KARATSUBA_SQR_THRESHOLD (2*KARATSUBA_MUL_THRESHOLD) |
|
#endif |
|
|
|
#ifndef TOOM3_SQR_THRESHOLD |
|
#define TOOM3_SQR_THRESHOLD (2*TOOM3_MUL_THRESHOLD) |
|
#endif |
|
|
|
/* First k to use for an FFT modF multiply. A modF FFT is an order |
|
log(2^k)/log(2^(k-1)) algorithm, so k=3 is merely 1.5 like karatsuba, |
|
whereas k=4 is 1.33 which is faster than toom3 at 1.485. */ |
|
#define FFT_FIRST_K 4 |
|
|
|
/* Threshold at which FFT should be used to do a modF NxN -> N multiply. */ |
|
#ifndef FFT_MODF_MUL_THRESHOLD |
|
#define FFT_MODF_MUL_THRESHOLD (TOOM3_MUL_THRESHOLD * 3) |
|
#endif |
|
#ifndef FFT_MODF_SQR_THRESHOLD |
|
#define FFT_MODF_SQR_THRESHOLD (TOOM3_SQR_THRESHOLD * 3) |
|
#endif |
|
|
|
/* Threshold at which FFT should be used to do an NxN -> 2N multiply. This |
|
will be a size where FFT is using k=7 or k=8, since an FFT-k used for an |
|
NxN->2N multiply and not recursing into itself is an order |
|
log(2^k)/log(2^(k-2)) algorithm, so it'll be at least k=7 at 1.39 which |
|
is the first better than toom3. */ |
|
#ifndef FFT_MUL_THRESHOLD |
|
#define FFT_MUL_THRESHOLD (FFT_MODF_MUL_THRESHOLD * 10) |
|
#endif |
|
#ifndef FFT_SQR_THRESHOLD |
|
#define FFT_SQR_THRESHOLD (FFT_MODF_SQR_THRESHOLD * 10) |
|
#endif |
|
|
|
/* Table of thresholds for successive modF FFT "k"s. The first entry is |
|
where FFT_FIRST_K+1 should be used, the second FFT_FIRST_K+2, |
|
etc. See mpn_fft_best_k(). */ |
|
#ifndef FFT_MUL_TABLE |
|
#define FFT_MUL_TABLE \ |
|
{ TOOM3_MUL_THRESHOLD * 4, /* k=5 */ \ |
|
TOOM3_MUL_THRESHOLD * 8, /* k=6 */ \ |
|
TOOM3_MUL_THRESHOLD * 16, /* k=7 */ \ |
|
TOOM3_MUL_THRESHOLD * 32, /* k=8 */ \ |
|
TOOM3_MUL_THRESHOLD * 96, /* k=9 */ \ |
|
TOOM3_MUL_THRESHOLD * 288, /* k=10 */ \ |
|
0 } |
|
#endif |
|
#ifndef FFT_SQR_TABLE |
|
#define FFT_SQR_TABLE \ |
|
{ TOOM3_SQR_THRESHOLD * 4, /* k=5 */ \ |
|
TOOM3_SQR_THRESHOLD * 8, /* k=6 */ \ |
|
TOOM3_SQR_THRESHOLD * 16, /* k=7 */ \ |
|
TOOM3_SQR_THRESHOLD * 32, /* k=8 */ \ |
|
TOOM3_SQR_THRESHOLD * 96, /* k=9 */ \ |
|
TOOM3_SQR_THRESHOLD * 288, /* k=10 */ \ |
|
0 } |
|
#endif |
|
|
|
#ifndef FFT_TABLE_ATTRS |
|
#define FFT_TABLE_ATTRS static const |
|
#endif |
|
|
|
#define MPN_FFT_TABLE_SIZE 16 |
|
|
|
|
|
/* Return non-zero if xp,xsize and yp,ysize overlap. |
|
If xp+xsize<=yp there's no overlap, or if yp+ysize<=xp there's no |
|
overlap. If both these are false, there's an overlap. */ |
|
#define MPN_OVERLAP_P(xp, xsize, yp, ysize) \ |
|
((xp) + (xsize) > (yp) && (yp) + (ysize) > (xp)) |
|
|
|
|
|
/* ASSERT() is a private assertion checking scheme, similar to <assert.h>. |
|
ASSERT() does the check only if WANT_ASSERT is selected, ASSERT_ALWAYS() |
|
does it always. Generally assertions are meant for development, but |
|
might help when looking for a problem later too. |
|
|
|
ASSERT_NOCARRY() uses ASSERT() to check the expression is zero, but if |
|
assertion checking is disabled, the expression is still evaluated. This |
|
is meant for use with routines like mpn_add_n() where the return value |
|
represents a carry or whatever that shouldn't occur. For example, |
|
ASSERT_NOCARRY (mpn_add_n (rp, s1p, s2p, size)); */ |
|
|
|
#ifdef __LINE__ |
|
#define ASSERT_LINE __LINE__ |
|
#else |
|
#define ASSERT_LINE -1 |
|
#endif |
|
|
|
#ifdef __FILE__ |
|
#define ASSERT_FILE __FILE__ |
|
#else |
|
#define ASSERT_FILE "" |
|
#endif |
|
|
|
int __gmp_assert_fail _PROTO((const char *filename, int linenum, |
|
const char *expr)); |
|
|
|
#if HAVE_STRINGIZE |
|
#define ASSERT_FAIL(expr) __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, #expr) |
|
#else |
|
#define ASSERT_FAIL(expr) __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, "expr") |
|
#endif |
|
|
|
#if HAVE_VOID |
|
#define CAST_TO_VOID (void) |
|
#else |
|
#define CAST_TO_VOID |
|
#endif |
|
|
|
#define ASSERT_ALWAYS(expr) ((expr) ? 0 : ASSERT_FAIL (expr)) |
|
|
|
#if WANT_ASSERT |
|
#define ASSERT(expr) ASSERT_ALWAYS (expr) |
|
#define ASSERT_NOCARRY(expr) ASSERT_ALWAYS ((expr) == 0) |
|
|
|
#else |
|
#define ASSERT(expr) (CAST_TO_VOID 0) |
|
#define ASSERT_NOCARRY(expr) (expr) |
|
#endif |
|
|
|
|
|
#if HAVE_NATIVE_mpn_com_n |
|
#define mpn_com_n __MPN(com_n) |
|
void mpn_com_n _PROTO ((mp_ptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_com_n(d,s,n) \ |
|
do \ |
|
{ \ |
|
mp_ptr __d = (d); \ |
|
mp_srcptr __s = (s); \ |
|
mp_size_t __n = (n); \ |
|
do \ |
|
*__d++ = ~ *__s++; \ |
|
while (--__n); \ |
|
} \ |
|
while (0) |
|
#endif |
|
|
|
#define MPN_LOGOPS_N_INLINE(d,s1,s2,n,dop,op,s2op) \ |
|
do \ |
|
{ \ |
|
mp_ptr __d = (d); \ |
|
mp_srcptr __s1 = (s1); \ |
|
mp_srcptr __s2 = (s2); \ |
|
mp_size_t __n = (n); \ |
|
do \ |
|
*__d++ = dop (*__s1++ op s2op *__s2++); \ |
|
while (--__n); \ |
|
} \ |
|
while (0) |
|
|
|
#if HAVE_NATIVE_mpn_and_n |
|
#define mpn_and_n __MPN(and_n) |
|
void mpn_and_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_and_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,&, ) |
|
#endif |
|
|
|
#if HAVE_NATIVE_mpn_andn_n |
|
#define mpn_andn_n __MPN(andn_n) |
|
void mpn_andn_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_andn_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,&,~) |
|
#endif |
|
|
|
#if HAVE_NATIVE_mpn_nand_n |
|
#define mpn_nand_n __MPN(nand_n) |
|
void mpn_nand_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_nand_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,&, ) |
|
#endif |
|
|
|
#if HAVE_NATIVE_mpn_ior_n |
|
#define mpn_ior_n __MPN(ior_n) |
|
void mpn_ior_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_ior_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,|, ) |
|
#endif |
|
|
|
#if HAVE_NATIVE_mpn_iorn_n |
|
#define mpn_iorn_n __MPN(iorn_n) |
|
void mpn_iorn_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_iorn_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,|,~) |
|
#endif |
|
|
|
#if HAVE_NATIVE_mpn_nior_n |
|
#define mpn_nior_n __MPN(nior_n) |
|
void mpn_nior_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_nior_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,|, ) |
|
#endif |
|
|
|
#if HAVE_NATIVE_mpn_xor_n |
|
#define mpn_xor_n __MPN(xor_n) |
|
void mpn_xor_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_xor_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,^, ) |
|
#endif |
|
|
|
#if HAVE_NATIVE_mpn_xnor_n |
|
#define mpn_xnor_n __MPN(xnor_n) |
|
void mpn_xnor_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t)); |
|
#else |
|
#define mpn_xnor_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,^, ) |
|
#endif |
|
|
/* Structure for conversion between internal binary format and |
/* Structure for conversion between internal binary format and |
strings in base 2..36. */ |
strings in base 2..36. */ |
struct bases |
struct bases |
|
|
int chars_per_limb; |
int chars_per_limb; |
|
|
/* log(2)/log(conversion_base) */ |
/* log(2)/log(conversion_base) */ |
float chars_per_bit_exactly; |
double chars_per_bit_exactly; |
|
|
/* base**chars_per_limb, i.e. the biggest number that fits a word, built by |
/* base**chars_per_limb, i.e. the biggest number that fits a word, built by |
factors of base. Exception: For 2, 4, 8, etc, big_base is log2(base), |
factors of base. Exception: For 2, 4, 8, etc, big_base is log2(base), |
|
|
mp_limb_t big_base_inverted; |
mp_limb_t big_base_inverted; |
}; |
}; |
|
|
|
#define __mp_bases __MPN(mp_bases) |
extern const struct bases __mp_bases[]; |
extern const struct bases __mp_bases[]; |
extern mp_size_t __gmp_default_fp_limb_precision; |
extern mp_size_t __gmp_default_fp_limb_precision; |
|
|
|
#if defined (__i386__) |
|
#define TARGET_REGISTER_STARVED 1 |
|
#else |
|
#define TARGET_REGISTER_STARVED 0 |
|
#endif |
|
|
|
/* Use a library function for invert_limb, if available. */ |
|
#if ! defined (invert_limb) && HAVE_NATIVE_mpn_invert_limb |
|
#define mpn_invert_limb __MPN(invert_limb) |
|
mp_limb_t mpn_invert_limb _PROTO ((mp_limb_t)); |
|
#define invert_limb(invxl,xl) (invxl = __MPN(invert_limb) (xl)) |
|
#endif |
|
|
|
#ifndef invert_limb |
|
#define invert_limb(invxl,xl) \ |
|
do { \ |
|
mp_limb_t dummy; \ |
|
if (xl << 1 == 0) \ |
|
invxl = ~(mp_limb_t) 0; \ |
|
else \ |
|
udiv_qrnnd (invxl, dummy, -xl, 0, xl); \ |
|
} while (0) |
|
#endif |
|
|
/* Divide the two-limb number in (NH,,NL) by D, with DI being the largest |
/* Divide the two-limb number in (NH,,NL) by D, with DI being the largest |
limb not larger than (2**(2*BITS_PER_MP_LIMB))/D - (2**BITS_PER_MP_LIMB). |
limb not larger than (2**(2*BITS_PER_MP_LIMB))/D - (2**BITS_PER_MP_LIMB). |
If this would yield overflow, DI should be the largest possible number |
If this would yield overflow, DI should be the largest possible number |
Line 241 extern mp_size_t __gmp_default_fp_limb_precision; |
|
Line 709 extern mp_size_t __gmp_default_fp_limb_precision; |
|
so that its most significant bit is set. LGUP is ceil(log2(D)). */ |
so that its most significant bit is set. LGUP is ceil(log2(D)). */ |
#define udiv_qrnnd_preinv2gen(q, r, nh, nl, d, di, dnorm, lgup) \ |
#define udiv_qrnnd_preinv2gen(q, r, nh, nl, d, di, dnorm, lgup) \ |
do { \ |
do { \ |
mp_limb_t n2, n10, n1, nadj, q1; \ |
mp_limb_t _n2, _n10, _n1, _nadj, _q1; \ |
mp_limb_t _xh, _xl; \ |
mp_limb_t _xh, _xl; \ |
n2 = ((nh) << (BITS_PER_MP_LIMB - (lgup))) + ((nl) >> 1 >> (l - 1));\ |
_n2 = ((nh) << (BITS_PER_MP_LIMB - (lgup))) + ((nl) >> 1 >> (l - 1));\ |
n10 = (nl) << (BITS_PER_MP_LIMB - (lgup)); \ |
_n10 = (nl) << (BITS_PER_MP_LIMB - (lgup)); \ |
n1 = ((mp_limb_signed_t) n10 >> (BITS_PER_MP_LIMB - 1)); \ |
_n1 = ((mp_limb_signed_t) _n10 >> (BITS_PER_MP_LIMB - 1)); \ |
nadj = n10 + (n1 & (dnorm)); \ |
_nadj = _n10 + (_n1 & (dnorm)); \ |
umul_ppmm (_xh, _xl, di, n2 - n1); \ |
umul_ppmm (_xh, _xl, di, _n2 - _n1); \ |
add_ssaaaa (_xh, _xl, _xh, _xl, 0, nadj); \ |
add_ssaaaa (_xh, _xl, _xh, _xl, 0, _nadj); \ |
q1 = ~(n2 + _xh); \ |
_q1 = ~(_n2 + _xh); \ |
umul_ppmm (_xh, _xl, q1, d); \ |
umul_ppmm (_xh, _xl, _q1, d); \ |
add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \ |
add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \ |
_xh -= (d); \ |
_xh -= (d); \ |
(r) = _xl + ((d) & _xh); \ |
(r) = _xl + ((d) & _xh); \ |
(q) = _xh - q1; \ |
(q) = _xh - _q1; \ |
} while (0) |
} while (0) |
/* Exactly like udiv_qrnnd_preinv, but branch-free. It is not clear which |
/* Exactly like udiv_qrnnd_preinv, but branch-free. It is not clear which |
version to use. */ |
version to use. */ |
#define udiv_qrnnd_preinv2norm(q, r, nh, nl, d, di) \ |
#define udiv_qrnnd_preinv2norm(q, r, nh, nl, d, di) \ |
do { \ |
do { \ |
mp_limb_t n2, n10, n1, nadj, q1; \ |
mp_limb_t _n2, _n10, _n1, _nadj, _q1; \ |
mp_limb_t _xh, _xl; \ |
mp_limb_t _xh, _xl; \ |
n2 = (nh); \ |
_n2 = (nh); \ |
n10 = (nl); \ |
_n10 = (nl); \ |
n1 = ((mp_limb_signed_t) n10 >> (BITS_PER_MP_LIMB - 1)); \ |
_n1 = ((mp_limb_signed_t) _n10 >> (BITS_PER_MP_LIMB - 1)); \ |
nadj = n10 + (n1 & (d)); \ |
_nadj = _n10 + (_n1 & (d)); \ |
umul_ppmm (_xh, _xl, di, n2 - n1); \ |
umul_ppmm (_xh, _xl, di, _n2 - _n1); \ |
add_ssaaaa (_xh, _xl, _xh, _xl, 0, nadj); \ |
add_ssaaaa (_xh, _xl, _xh, _xl, 0, _nadj); \ |
q1 = ~(n2 + _xh); \ |
_q1 = ~(_n2 + _xh); \ |
umul_ppmm (_xh, _xl, q1, d); \ |
umul_ppmm (_xh, _xl, _q1, d); \ |
add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \ |
add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \ |
_xh -= (d); \ |
_xh -= (d); \ |
(r) = _xl + ((d) & _xh); \ |
(r) = _xl + ((d) & _xh); \ |
(q) = _xh - q1; \ |
(q) = _xh - _q1; \ |
} while (0) |
} while (0) |
|
|
#if defined (__GNUC__) |
|
|
/* modlimb_invert() sets "inv" to the multiplicative inverse of "n" modulo |
|
2^BITS_PER_MP_LIMB, ie. so that inv*n == 1 mod 2^BITS_PER_MP_LIMB. |
|
"n" must be odd (otherwise such an inverse doesn't exist). |
|
|
|
This is not to be confused with invert_limb(), which is completely |
|
different. |
|
|
|
The table lookup gives an inverse with the low 8 bits valid, and each |
|
multiply step doubles the number of bits. See Jebelean's exact division |
|
paper, end of section 4 (reference in gmp.texi). */ |
|
|
|
#define modlimb_invert_table __gmp_modlimb_invert_table |
|
extern const unsigned char modlimb_invert_table[128]; |
|
|
|
#if BITS_PER_MP_LIMB <= 32 |
|
#define modlimb_invert(inv,n) \ |
|
do { \ |
|
mp_limb_t __n = (n); \ |
|
mp_limb_t __inv; \ |
|
ASSERT ((__n & 1) == 1); \ |
|
__inv = modlimb_invert_table[(__n&0xFF)/2]; /* 8 */ \ |
|
__inv = 2 * __inv - __inv * __inv * __n; /* 16 */ \ |
|
__inv = 2 * __inv - __inv * __inv * __n; /* 32 */ \ |
|
ASSERT (__inv * __n == 1); \ |
|
(inv) = __inv; \ |
|
} while (0) |
|
#endif |
|
|
|
#if BITS_PER_MP_LIMB > 32 && BITS_PER_MP_LIMB <= 64 |
|
#define modlimb_invert(inv,n) \ |
|
do { \ |
|
mp_limb_t __n = (n); \ |
|
mp_limb_t __inv; \ |
|
ASSERT ((__n & 1) == 1); \ |
|
__inv = modlimb_invert_table[(__n&0xFF)/2]; /* 8 */ \ |
|
__inv = 2 * __inv - __inv * __inv * __n; /* 16 */ \ |
|
__inv = 2 * __inv - __inv * __inv * __n; /* 32 */ \ |
|
__inv = 2 * __inv - __inv * __inv * __n; /* 64 */ \ |
|
ASSERT (__inv * __n == 1); \ |
|
(inv) = __inv; \ |
|
} while (0) |
|
#endif |
|
|
|
|
|
/* The `mode' attribute was introduced in GCC 2.2, but we can only distinguish |
|
between GCC 2 releases from 2.5, since __GNUC_MINOR__ wasn't introduced |
|
until then. */ |
|
#if (__GNUC__ - 0 > 2 || defined (__GNUC_MINOR__)) && ! defined (__APPLE_CC__) |
/* Define stuff for longlong.h. */ |
/* Define stuff for longlong.h. */ |
typedef unsigned int UQItype __attribute__ ((mode (QI))); |
typedef unsigned int UQItype __attribute__ ((mode (QI))); |
typedef int SItype __attribute__ ((mode (SI))); |
typedef int SItype __attribute__ ((mode (SI))); |
typedef unsigned int USItype __attribute__ ((mode (SI))); |
typedef unsigned int USItype __attribute__ ((mode (SI))); |
typedef int DItype __attribute__ ((mode (DI))); |
typedef int DItype __attribute__ ((mode (DI))); |
typedef unsigned int UDItype __attribute__ ((mode (DI))); |
typedef unsigned int UDItype __attribute__ ((mode (DI))); |
#else |
#else |
typedef unsigned char UQItype; |
typedef unsigned char UQItype; |
typedef long SItype; |
typedef long SItype; |
typedef unsigned long USItype; |
typedef unsigned long USItype; |
|
#if defined _LONGLONG || defined _LONG_LONG_LIMB |
|
typedef long long int DItype; |
|
typedef unsigned long long int UDItype; |
|
#else /* Assume `long' gives us a wide enough type. Needed for hppa2.0w. */ |
|
typedef long int DItype; |
|
typedef unsigned long int UDItype; |
#endif |
#endif |
|
#endif |
|
|
typedef mp_limb_t UWtype; |
typedef mp_limb_t UWtype; |
typedef unsigned int UHWtype; |
typedef unsigned int UHWtype; |
#define W_TYPE_SIZE BITS_PER_MP_LIMB |
#define W_TYPE_SIZE BITS_PER_MP_LIMB |
|
|
/* Internal mpn calls */ |
|
#define impn_mul_n_basecase __MPN(impn_mul_n_basecase) |
|
#define impn_mul_n __MPN(impn_mul_n) |
|
#define impn_sqr_n_basecase __MPN(impn_sqr_n_basecase) |
|
#define impn_sqr_n __MPN(impn_sqr_n) |
|
|
|
/* Define ieee_double_extract and _GMP_IEEE_FLOATS. */ |
/* Define ieee_double_extract and _GMP_IEEE_FLOATS. */ |
|
|
|
#if (defined (__arm__) && (defined (__ARMWEL__) || defined (__linux__))) |
|
/* Special case for little endian ARM since floats remain in big-endian. */ |
|
#define _GMP_IEEE_FLOATS 1 |
|
union ieee_double_extract |
|
{ |
|
struct |
|
{ |
|
unsigned int manh:20; |
|
unsigned int exp:11; |
|
unsigned int sig:1; |
|
unsigned int manl:32; |
|
} s; |
|
double d; |
|
}; |
|
#else |
#if defined (_LITTLE_ENDIAN) || defined (__LITTLE_ENDIAN__) \ |
#if defined (_LITTLE_ENDIAN) || defined (__LITTLE_ENDIAN__) \ |
|| defined (__alpha) \ |
|| defined (__alpha) \ |
|| (defined (__arm__) && defined (__ARMWEL__)) \ |
|
|| defined (__clipper__) \ |
|| defined (__clipper__) \ |
|| defined (__cris) \ |
|| defined (__cris) \ |
|| defined (__i386__) \ |
|| defined (__i386__) \ |
Line 325 union ieee_double_extract |
|
Line 856 union ieee_double_extract |
|
double d; |
double d; |
}; |
}; |
#else /* Need this as an #else since the tests aren't made exclusive. */ |
#else /* Need this as an #else since the tests aren't made exclusive. */ |
#if defined (_BIG_ENDIAN) \ |
#if defined (_BIG_ENDIAN) || defined (__BIG_ENDIAN__) \ |
|| defined (__a29k__) || defined (_AM29K) \ |
|| defined (__a29k__) || defined (_AM29K) \ |
|| defined (__arm__) \ |
|| defined (__arm__) \ |
|| (defined (__convex__) && defined (_IEEE_FLOAT_)) \ |
|| (defined (__convex__) && defined (_IEEE_FLOAT_)) \ |
|
|| defined (_CRAYMPP) \ |
|| defined (__i370__) || defined (__mvs__) \ |
|| defined (__i370__) || defined (__mvs__) \ |
|| defined (__mc68000__) || defined (__mc68020__) || defined (__NeXT__)\ |
|| defined (__mc68000__) || defined (__mc68020__) || defined (__m68k__)\ |
|| defined(mc68020) \ |
|| defined(mc68020) \ |
|| defined (__m88000__) \ |
|| defined (__m88000__) \ |
|| defined (MIPSEB) || defined (_MIPSEB) \ |
|| defined (MIPSEB) || defined (_MIPSEB) \ |
|| defined (__hppa) \ |
|| defined (__hppa) || defined (__hppa__) \ |
|| defined (__pyr__) \ |
|| defined (__pyr__) \ |
|| defined (__ibm032__) \ |
|| defined (__ibm032__) \ |
|| defined (_IBMR2) || defined (_ARCH_PPC) \ |
|| defined (_IBMR2) || defined (_ARCH_PPC) \ |
Line 355 union ieee_double_extract |
|
Line 887 union ieee_double_extract |
|
}; |
}; |
#endif |
#endif |
#endif |
#endif |
|
#endif |
|
|
#define MP_BASE_AS_DOUBLE (2.0 * ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1))) |
/* Using "(2.0 * ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1)))" doesn't work on |
|
SunOS 4.1.4 native /usr/ucb/cc (K&R), it comes out as -4294967296.0, |
|
presumably due to treating the mp_limb_t constant as signed rather than |
|
unsigned. */ |
|
#define MP_BASE_AS_DOUBLE (4.0 * ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 2))) |
#if BITS_PER_MP_LIMB == 64 |
#if BITS_PER_MP_LIMB == 64 |
#define LIMBS_PER_DOUBLE 2 |
#define LIMBS_PER_DOUBLE 2 |
#else |
#else |
Line 364 union ieee_double_extract |
|
Line 901 union ieee_double_extract |
|
#endif |
#endif |
|
|
double __gmp_scale2 _PROTO ((double, int)); |
double __gmp_scale2 _PROTO ((double, int)); |
int __gmp_extract_double _PROTO((mp_ptr, double)); |
int __gmp_extract_double _PROTO ((mp_ptr, double)); |
|
|
|
extern int __gmp_junk; |
|
extern const int __gmp_0; |
|
#define GMP_ERROR(code) (gmp_errno |= (code), __gmp_junk = 10/__gmp_0) |
|
#define DIVIDE_BY_ZERO GMP_ERROR(GMP_ERROR_DIVISION_BY_ZERO) |
|
#define SQRT_OF_NEGATIVE GMP_ERROR(GMP_ERROR_SQRT_OF_NEGATIVE) |
|
|
|
#if defined _LONG_LONG_LIMB |
|
#if defined (__STDC__) |
|
#define CNST_LIMB(C) C##LL |
|
#else |
|
#define CNST_LIMB(C) C/**/LL |
|
#endif |
|
#else /* not _LONG_LONG_LIMB */ |
|
#if defined (__STDC__) |
|
#define CNST_LIMB(C) C##L |
|
#else |
|
#define CNST_LIMB(C) C/**/L |
|
#endif |
|
#endif /* _LONG_LONG_LIMB */ |
|
|
|
/*** Stuff used by mpn/generic/prefsqr.c and mpn/generic/next_prime.c ***/ |
|
#if BITS_PER_MP_LIMB == 32 |
|
#define PP 0xC0CFD797L /* 3 x 5 x 7 x 11 x 13 x ... x 29 */ |
|
#define PP_INVERTED 0x53E5645CL |
|
#define PP_MAXPRIME 29 |
|
#define PP_MASK 0x208A28A8L |
|
#endif |
|
|
|
#if BITS_PER_MP_LIMB == 64 |
|
#define PP CNST_LIMB(0xE221F97C30E94E1D) /* 3 x 5 x 7 x 11 x 13 x ... x 53 */ |
|
#define PP_INVERTED CNST_LIMB(0x21CFE6CFC938B36B) |
|
#define PP_MAXPRIME 53 |
|
#define PP_MASK CNST_LIMB(0x208A20A08A28A8) |
|
#endif |
|
|
|
|
|
/* BIT1 means a result value in bit 1 (second least significant bit), with a |
|
zero bit representing +1 and a one bit representing -1. Bits other than |
|
bit 1 are garbage. |
|
|
|
JACOBI_TWOS_U_BIT1 and JACOBI_RECIP_UU_BIT1 are used in mpn_jacobi_base |
|
and their speed is important. Expressions are used rather than |
|
conditionals to accumulate sign changes, which effectively means XORs |
|
instead of conditional JUMPs. */ |
|
|
|
/* (a/0), with a signed; is 1 if a=+/-1, 0 otherwise */ |
|
#define JACOBI_S0(a) \ |
|
(((a) == 1) | ((a) == -1)) |
|
|
|
/* (a/0), with a unsigned; is 1 if a=+/-1, 0 otherwise */ |
|
#define JACOBI_U0(a) \ |
|
((a) == 1) |
|
|
|
/* (a/0), with a an mpz_t; is 1 if a=+/-1, 0 otherwise |
|
An mpz_t always has at least one limb of allocated space, so the fetch of |
|
the low limb is valid. */ |
|
#define JACOBI_Z0(a) \ |
|
(((SIZ(a) == 1) | (SIZ(a) == -1)) & (PTR(a)[0] == 1)) |
|
|
|
/* Convert a bit1 to +1 or -1. */ |
|
#define JACOBI_BIT1_TO_PN(result_bit1) \ |
|
(1 - ((result_bit1) & 2)) |
|
|
|
/* (2/b), with b unsigned and odd; |
|
is (-1)^((b^2-1)/8) which is 1 if b==1,7mod8 or -1 if b==3,5mod8 and |
|
hence obtained from (b>>1)^b */ |
|
#define JACOBI_TWO_U_BIT1(b) \ |
|
(ASSERT (b & 1), (((b) >> 1) ^ (b))) |
|
|
|
/* (2/b)^twos, with b unsigned and odd */ |
|
#define JACOBI_TWOS_U_BIT1(twos, b) \ |
|
(((twos) << 1) & JACOBI_TWO_U_BIT1 (b)) |
|
|
|
/* (2/b)^twos, with b unsigned and odd */ |
|
#define JACOBI_TWOS_U(twos, b) \ |
|
(JACOBI_BIT1_TO_PN (JACOBI_TWOS_U_BIT1 (twos, b))) |
|
|
|
/* (a/b) effect due to sign of a: signed/unsigned, b odd; |
|
is (-1)^((b-1)/2) if a<0, or +1 if a>=0 */ |
|
#define JACOBI_ASGN_SU_BIT1(a, b) \ |
|
((((a) < 0) << 1) & (b)) |
|
|
|
/* (a/b) effect due to sign of b: signed/mpz; |
|
is -1 if a and b both negative, +1 otherwise */ |
|
#define JACOBI_BSGN_SZ_BIT1(a, b) \ |
|
((((a) < 0) & (SIZ(b) < 0)) << 1) |
|
|
|
/* (a/b) effect due to sign of b: mpz/signed */ |
|
#define JACOBI_BSGN_ZS_BIT1(a, b) \ |
|
JACOBI_BSGN_SZ_BIT1(b, a) |
|
|
|
/* (a/b) reciprocity to switch to (b/a), a,b both unsigned and odd. |
|
Is (-1)^((a-1)*(b-1)/4), which means +1 if either a,b==1mod4 or -1 if |
|
both a,b==3mod4, achieved in bit 1 by a&b. No ASSERT()s about a,b odd |
|
because this is used in a couple of places with only bit 1 of a or b |
|
valid. */ |
|
#define JACOBI_RECIP_UU_BIT1(a, b) \ |
|
((a) & (b)) |
|
|
|
|
|
/* For testing and debugging. */ |
|
#define MPZ_CHECK_FORMAT(z) \ |
|
(ASSERT_ALWAYS (SIZ(z) == 0 || PTR(z)[ABSIZ(z) - 1] != 0), \ |
|
ASSERT_ALWAYS (ALLOC(z) >= ABSIZ(z))) |
|
#define MPZ_PROVOKE_REALLOC(z) \ |
|
do { ALLOC(z) = ABSIZ(z); } while (0) |
|
|
|
|
|
#if TUNE_PROGRAM_BUILD |
|
/* Some extras wanted when recompiling some .c files for use by the tune |
|
program. Not part of a normal build. */ |
|
|
|
extern mp_size_t mul_threshold[]; |
|
extern mp_size_t fft_modf_mul_threshold; |
|
extern mp_size_t sqr_threshold[]; |
|
extern mp_size_t fft_modf_sqr_threshold; |
|
extern mp_size_t bz_threshold[]; |
|
extern mp_size_t fib_threshold[]; |
|
extern mp_size_t powm_threshold[]; |
|
extern mp_size_t gcd_accel_threshold[]; |
|
extern mp_size_t gcdext_threshold[]; |
|
|
|
#undef KARATSUBA_MUL_THRESHOLD |
|
#undef TOOM3_MUL_THRESHOLD |
|
#undef FFT_MUL_TABLE |
|
#undef FFT_MUL_THRESHOLD |
|
#undef FFT_MODF_MUL_THRESHOLD |
|
#undef KARATSUBA_SQR_THRESHOLD |
|
#undef TOOM3_SQR_THRESHOLD |
|
#undef FFT_SQR_TABLE |
|
#undef FFT_SQR_THRESHOLD |
|
#undef FFT_MODF_SQR_THRESHOLD |
|
#undef BZ_THRESHOLD |
|
#undef FIB_THRESHOLD |
|
#undef POWM_THRESHOLD |
|
#undef GCD_ACCEL_THRESHOLD |
|
#undef GCDEXT_THRESHOLD |
|
|
|
#define KARATSUBA_MUL_THRESHOLD mul_threshold[0] |
|
#define TOOM3_MUL_THRESHOLD mul_threshold[1] |
|
#define FFT_MUL_TABLE 0 |
|
#define FFT_MUL_THRESHOLD mul_threshold[2] |
|
#define FFT_MODF_MUL_THRESHOLD fft_modf_mul_threshold |
|
#define KARATSUBA_SQR_THRESHOLD sqr_threshold[0] |
|
#define TOOM3_SQR_THRESHOLD sqr_threshold[1] |
|
#define FFT_SQR_TABLE 0 |
|
#define FFT_SQR_THRESHOLD sqr_threshold[2] |
|
#define FFT_MODF_SQR_THRESHOLD fft_modf_sqr_threshold |
|
#define BZ_THRESHOLD bz_threshold[0] |
|
#define FIB_THRESHOLD fib_threshold[0] |
|
#define POWM_THRESHOLD powm_threshold[0] |
|
#define GCD_ACCEL_THRESHOLD gcd_accel_threshold[0] |
|
#define GCDEXT_THRESHOLD gcdext_threshold[0] |
|
|
|
#define TOOM3_MUL_THRESHOLD_LIMIT 700 |
|
|
|
#undef FFT_TABLE_ATTRS |
|
#define FFT_TABLE_ATTRS |
|
extern mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE]; |
|
|
|
#endif /* TUNE_PROGRAM_BUILD */ |
|
|
|
#if defined (__cplusplus) |
|
} |
|
#endif |