[BACK]Return to gmp.info-3 CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp

Diff for /OpenXM_contrib/gmp/Attic/gmp.info-3 between version 1.1.1.1 and 1.1.1.4

version 1.1.1.1, 2000/01/10 15:35:21 version 1.1.1.4, 2003/08/25 16:06:02
Line 1 
Line 1 
 This is Info file gmp.info, produced by Makeinfo-1.64 from the input  This is gmp.info, produced by makeinfo version 4.2 from gmp.texi.
 file gmp.texi.  
   
   This manual describes how to install and use the GNU multiple precision
   arithmetic library, version 4.1.2.
   
      Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002 Free Software Foundation, Inc.
   
      Permission is granted to copy, distribute and/or modify this
   document under the terms of the GNU Free Documentation License, Version
   1.1 or any later version published by the Free Software Foundation;
   with no Invariant Sections, with the Front-Cover Texts being "A GNU
   Manual", and with the Back-Cover Texts being "You have freedom to copy
   and modify this GNU Manual, like GNU software".  A copy of the license
   is included in *Note GNU Free Documentation License::.
   INFO-DIR-SECTION GNU libraries
 START-INFO-DIR-ENTRY  START-INFO-DIR-ENTRY
 * gmp: (gmp.info).               GNU Multiple Precision Arithmetic Library.  * gmp: (gmp).                   GNU Multiple Precision Arithmetic Library.
 END-INFO-DIR-ENTRY  END-INFO-DIR-ENTRY
   
    This file documents GNU MP, a library for arbitrary-precision  
 arithmetic.  File: gmp.info,  Node: Number Theoretic Functions,  Next: Integer Comparisons,  Prev: Integer Roots,  Up: Integer Functions
   
    Copyright (C) 1991, 1993, 1994, 1995, 1996 Free Software Foundation,  Number Theoretic Functions
 Inc.  ==========================
   
    Permission is granted to make and distribute verbatim copies of this   - Function: int mpz_probab_prime_p (mpz_t N, int REPS)
 manual provided the copyright notice and this permission notice are       Determine whether N is prime.  Return 2 if N is definitely prime,
 preserved on all copies.       return 1 if N is probably prime (without being certain), or return
        0 if N is definitely composite.
   
    Permission is granted to copy and distribute modified versions of       This function does some trial divisions, then some Miller-Rabin
 this manual under the conditions for verbatim copying, provided that       probabilistic primality tests.  REPS controls how many such tests
 the entire resulting derived work is distributed under the terms of a       are done, 5 to 10 is a reasonable number, more will reduce the
 permission notice identical to this one.       chances of a composite being returned as "probably prime".
   
    Permission is granted to copy and distribute translations of this       Miller-Rabin and similar tests can be more properly called
 manual into another language, under the above conditions for modified       compositeness tests.  Numbers which fail are known to be composite
 versions, except that this permission notice may be stated in a       but those which pass might be prime or might be composite.  Only a
 translation approved by the Foundation.       few composites pass, hence those which pass are considered
        probably prime.
   
    - Function: void mpz_nextprime (mpz_t ROP, mpz_t OP)
        Set ROP to the next prime greater than OP.
   
        This function uses a probabilistic algorithm to identify primes.
        For practical purposes it's adequate, the chance of a composite
        passing will be extremely small.
   
    - Function: void mpz_gcd (mpz_t ROP, mpz_t OP1, mpz_t OP2)
        Set ROP to the greatest common divisor of OP1 and OP2.  The result
        is always positive even if one or both input operands are negative.
   
    - Function: unsigned long int mpz_gcd_ui (mpz_t ROP, mpz_t OP1,
             unsigned long int OP2)
        Compute the greatest common divisor of OP1 and OP2.  If ROP is not
        `NULL', store the result there.
   
        If the result is small enough to fit in an `unsigned long int', it
        is returned.  If the result does not fit, 0 is returned, and the
        result is equal to the argument OP1.  Note that the result will
        always fit if OP2 is non-zero.
   
    - Function: void mpz_gcdext (mpz_t G, mpz_t S, mpz_t T, mpz_t A, mpz_t
             B)
        Set G to the greatest common divisor of A and B, and in addition
        set S and T to coefficients satisfying A*S + B*T = G.  G is always
        positive, even if one or both of A and B are negative.
   
        If T is `NULL' then that value is not computed.
   
    - Function: void mpz_lcm (mpz_t ROP, mpz_t OP1, mpz_t OP2)
    - Function: void mpz_lcm_ui (mpz_t ROP, mpz_t OP1, unsigned long OP2)
        Set ROP to the least common multiple of OP1 and OP2.  ROP is
        always positive, irrespective of the signs of OP1 and OP2.  ROP
        will be zero if either OP1 or OP2 is zero.
   
    - Function: int mpz_invert (mpz_t ROP, mpz_t OP1, mpz_t OP2)
        Compute the inverse of OP1 modulo OP2 and put the result in ROP.
        If the inverse exists, the return value is non-zero and ROP will
        satisfy 0 <= ROP < OP2.  If an inverse doesn't exist the return
        value is zero and ROP is undefined.
   
    - Function: int mpz_jacobi (mpz_t A, mpz_t B)
        Calculate the Jacobi symbol (A/B).  This is defined only for B odd.
   
    - Function: int mpz_legendre (mpz_t A, mpz_t P)
        Calculate the Legendre symbol (A/P).  This is defined only for P
        an odd positive prime, and for such P it's identical to the Jacobi
        symbol.
   
    - Function: int mpz_kronecker (mpz_t A, mpz_t B)
    - Function: int mpz_kronecker_si (mpz_t A, long B)
    - Function: int mpz_kronecker_ui (mpz_t A, unsigned long B)
    - Function: int mpz_si_kronecker (long A, mpz_t B)
    - Function: int mpz_ui_kronecker (unsigned long A, mpz_t B)
        Calculate the Jacobi symbol (A/B) with the Kronecker extension
        (a/2)=(2/a) when a odd, or (a/2)=0 when a even.
   
        When B is odd the Jacobi symbol and Kronecker symbol are
        identical, so `mpz_kronecker_ui' etc can be used for mixed
        precision Jacobi symbols too.
   
        For more information see Henri Cohen section 1.4.2 (*note
        References::), or any number theory textbook.  See also the
        example program `demos/qcn.c' which uses `mpz_kronecker_ui'.
   
    - Function: unsigned long int mpz_remove (mpz_t ROP, mpz_t OP, mpz_t F)
        Remove all occurrences of the factor F from OP and store the
        result in ROP.  The return value is how many such occurrences were
        removed.
   
    - Function: void mpz_fac_ui (mpz_t ROP, unsigned long int OP)
        Set ROP to OP!, the factorial of OP.
   
    - Function: void mpz_bin_ui (mpz_t ROP, mpz_t N, unsigned long int K)
    - Function: void mpz_bin_uiui (mpz_t ROP, unsigned long int N,
             unsigned long int K)
        Compute the binomial coefficient N over K and store the result in
        ROP.  Negative values of N are supported by `mpz_bin_ui', using
        the identity bin(-n,k) = (-1)^k * bin(n+k-1,k), see Knuth volume 1
        section 1.2.6 part G.
   
    - Function: void mpz_fib_ui (mpz_t FN, unsigned long int N)
    - Function: void mpz_fib2_ui (mpz_t FN, mpz_t FNSUB1, unsigned long
             int N)
        `mpz_fib_ui' sets FN to to F[n], the N'th Fibonacci number.
        `mpz_fib2_ui' sets FN to F[n], and FNSUB1 to F[n-1].
   
        These functions are designed for calculating isolated Fibonacci
        numbers.  When a sequence of values is wanted it's best to start
        with `mpz_fib2_ui' and iterate the defining F[n+1]=F[n]+F[n-1] or
        similar.
   
    - Function: void mpz_lucnum_ui (mpz_t LN, unsigned long int N)
    - Function: void mpz_lucnum2_ui (mpz_t LN, mpz_t LNSUB1, unsigned long
             int N)
        `mpz_lucnum_ui' sets LN to to L[n], the N'th Lucas number.
        `mpz_lucnum2_ui' sets LN to L[n], and LNSUB1 to L[n-1].
   
        These functions are designed for calculating isolated Lucas
        numbers.  When a sequence of values is wanted it's best to start
        with `mpz_lucnum2_ui' and iterate the defining L[n+1]=L[n]+L[n-1]
        or similar.
   
        The Fibonacci numbers and Lucas numbers are related sequences, so
        it's never necessary to call both `mpz_fib2_ui' and
        `mpz_lucnum2_ui'.  The formulas for going from Fibonacci to Lucas
        can be found in *Note Lucas Numbers Algorithm::, the reverse is
        straightforward too.
   
   
 File: gmp.info,  Node: Function Index,  Up: Top  File: gmp.info,  Node: Integer Comparisons,  Next: Integer Logic and Bit Fiddling,  Prev: Number Theoretic Functions,  Up: Integer Functions
   
 Function and Type Index  Comparison Functions
 ***********************  ====================
   
    - Function: int mpz_cmp (mpz_t OP1, mpz_t OP2)
    - Function: int mpz_cmp_d (mpz_t OP1, double OP2)
    - Macro: int mpz_cmp_si (mpz_t OP1, signed long int OP2)
    - Macro: int mpz_cmp_ui (mpz_t OP1, unsigned long int OP2)
        Compare OP1 and OP2.  Return a positive value if OP1 > OP2, zero
        if OP1 = OP2, or a negative value if OP1 < OP2.
   
        Note that `mpz_cmp_ui' and `mpz_cmp_si' are macros and will
        evaluate their arguments more than once.
   
    - Function: int mpz_cmpabs (mpz_t OP1, mpz_t OP2)
    - Function: int mpz_cmpabs_d (mpz_t OP1, double OP2)
    - Function: int mpz_cmpabs_ui (mpz_t OP1, unsigned long int OP2)
        Compare the absolute values of OP1 and OP2.  Return a positive
        value if abs(OP1) > abs(OP2), zero if abs(OP1) = abs(OP2), or a
        negative value if abs(OP1) < abs(OP2).
   
        Note that `mpz_cmpabs_si' is a macro and will evaluate its
        arguments more than once.
   
    - Macro: int mpz_sgn (mpz_t OP)
        Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0.
   
        This function is actually implemented as a macro.  It evaluates
        its argument multiple times.
   
   
   File: gmp.info,  Node: Integer Logic and Bit Fiddling,  Next: I/O of Integers,  Prev: Integer Comparisons,  Up: Integer Functions
   
   Logical and Bit Manipulation Functions
   ======================================
   
      These functions behave as if twos complement arithmetic were used
   (although sign-magnitude is the actual implementation).  The least
   significant bit is number 0.
   
    - Function: void mpz_and (mpz_t ROP, mpz_t OP1, mpz_t OP2)
        Set ROP to OP1 logical-and OP2.
   
    - Function: void mpz_ior (mpz_t ROP, mpz_t OP1, mpz_t OP2)
        Set ROP to OP1 inclusive-or OP2.
   
    - Function: void mpz_xor (mpz_t ROP, mpz_t OP1, mpz_t OP2)
        Set ROP to OP1 exclusive-or OP2.
   
    - Function: void mpz_com (mpz_t ROP, mpz_t OP)
        Set ROP to the one's complement of OP.
   
    - Function: unsigned long int mpz_popcount (mpz_t OP)
        If OP>=0, return the population count of OP, which is the number
        of 1 bits in the binary representation.  If OP<0, the number of 1s
        is infinite, and the return value is MAX_ULONG, the largest
        possible `unsigned long'.
   
    - Function: unsigned long int mpz_hamdist (mpz_t OP1, mpz_t OP2)
        If OP1 and OP2 are both >=0 or both <0, return the hamming
        distance between the two operands, which is the number of bit
        positions where OP1 and OP2 have different bit values.  If one
        operand is >=0 and the other <0 then the number of bits different
        is infinite, and the return value is MAX_ULONG, the largest
        possible `unsigned long'.
   
    - Function: unsigned long int mpz_scan0 (mpz_t OP, unsigned long int
             STARTING_BIT)
    - Function: unsigned long int mpz_scan1 (mpz_t OP, unsigned long int
             STARTING_BIT)
        Scan OP, starting from bit STARTING_BIT, towards more significant
        bits, until the first 0 or 1 bit (respectively) is found.  Return
        the index of the found bit.
   
        If the bit at STARTING_BIT is already what's sought, then
        STARTING_BIT is returned.
   
        If there's no bit found, then MAX_ULONG is returned.  This will
        happen in `mpz_scan0' past the end of a positive number, or
        `mpz_scan1' past the end of a negative.
   
    - Function: void mpz_setbit (mpz_t ROP, unsigned long int BIT_INDEX)
        Set bit BIT_INDEX in ROP.
   
    - Function: void mpz_clrbit (mpz_t ROP, unsigned long int BIT_INDEX)
        Clear bit BIT_INDEX in ROP.
   
    - Function: int mpz_tstbit (mpz_t OP, unsigned long int BIT_INDEX)
        Test bit BIT_INDEX in OP and return 0 or 1 accordingly.
   
   
   File: gmp.info,  Node: I/O of Integers,  Next: Integer Random Numbers,  Prev: Integer Logic and Bit Fiddling,  Up: Integer Functions
   
   Input and Output Functions
   ==========================
   
      Functions that perform input from a stdio stream, and functions that
   output to a stdio stream.  Passing a `NULL' pointer for a STREAM
   argument to any of these functions will make them read from `stdin' and
   write to `stdout', respectively.
   
      When using any of these functions, it is a good idea to include
   `stdio.h' before `gmp.h', since that will allow `gmp.h' to define
   prototypes for these functions.
   
    - Function: size_t mpz_out_str (FILE *STREAM, int BASE, mpz_t OP)
        Output OP on stdio stream STREAM, as a string of digits in base
        BASE.  The base may vary from 2 to 36.
   
        Return the number of bytes written, or if an error occurred,
        return 0.
   
    - Function: size_t mpz_inp_str (mpz_t ROP, FILE *STREAM, int BASE)
        Input a possibly white-space preceded string in base BASE from
        stdio stream STREAM, and put the read integer in ROP.  The base
        may vary from 2 to 36.  If BASE is 0, the actual base is
        determined from the leading characters: if the first two
        characters are `0x' or `0X', hexadecimal is assumed, otherwise if
        the first character is `0', octal is assumed, otherwise decimal is
        assumed.
   
        Return the number of bytes read, or if an error occurred, return 0.
   
    - Function: size_t mpz_out_raw (FILE *STREAM, mpz_t OP)
        Output OP on stdio stream STREAM, in raw binary format.  The
        integer is written in a portable format, with 4 bytes of size
        information, and that many bytes of limbs.  Both the size and the
        limbs are written in decreasing significance order (i.e., in
        big-endian).
   
        The output can be read with `mpz_inp_raw'.
   
        Return the number of bytes written, or if an error occurred,
        return 0.
   
        The output of this can not be read by `mpz_inp_raw' from GMP 1,
        because of changes necessary for compatibility between 32-bit and
        64-bit machines.
   
    - Function: size_t mpz_inp_raw (mpz_t ROP, FILE *STREAM)
        Input from stdio stream STREAM in the format written by
        `mpz_out_raw', and put the result in ROP.  Return the number of
        bytes read, or if an error occurred, return 0.
   
        This routine can read the output from `mpz_out_raw' also from GMP
        1, in spite of changes necessary for compatibility between 32-bit
        and 64-bit machines.
   
   
   File: gmp.info,  Node: Integer Random Numbers,  Next: Integer Import and Export,  Prev: I/O of Integers,  Up: Integer Functions
   
   Random Number Functions
   =======================
   
      The random number functions of GMP come in two groups; older function
   that rely on a global state, and newer functions that accept a state
   parameter that is read and modified.  Please see the *Note Random
   Number Functions:: for more information on how to use and not to use
   random number functions.
   
    - Function: void mpz_urandomb (mpz_t ROP, gmp_randstate_t STATE,
             unsigned long int N)
        Generate a uniformly distributed random integer in the range 0 to
        2^N-1, inclusive.
   
        The variable STATE must be initialized by calling one of the
        `gmp_randinit' functions (*Note Random State Initialization::)
        before invoking this function.
   
    - Function: void mpz_urandomm (mpz_t ROP, gmp_randstate_t STATE, mpz_t
             N)
        Generate a uniform random integer in the range 0 to N-1, inclusive.
   
        The variable STATE must be initialized by calling one of the
        `gmp_randinit' functions (*Note Random State Initialization::)
        before invoking this function.
   
    - Function: void mpz_rrandomb (mpz_t ROP, gmp_randstate_t STATE,
             unsigned long int N)
        Generate a random integer with long strings of zeros and ones in
        the binary representation.  Useful for testing functions and
        algorithms, since this kind of random numbers have proven to be
        more likely to trigger corner-case bugs.  The random number will
        be in the range 0 to 2^N-1, inclusive.
   
        The variable STATE must be initialized by calling one of the
        `gmp_randinit' functions (*Note Random State Initialization::)
        before invoking this function.
   
    - Function: void mpz_random (mpz_t ROP, mp_size_t MAX_SIZE)
        Generate a random integer of at most MAX_SIZE limbs.  The generated
        random number doesn't satisfy any particular requirements of
        randomness.  Negative random numbers are generated when MAX_SIZE
        is negative.
   
        This function is obsolete.  Use `mpz_urandomb' or `mpz_urandomm'
        instead.
   
    - Function: void mpz_random2 (mpz_t ROP, mp_size_t MAX_SIZE)
        Generate a random integer of at most MAX_SIZE limbs, with long
        strings of zeros and ones in the binary representation.  Useful
        for testing functions and algorithms, since this kind of random
        numbers have proven to be more likely to trigger corner-case bugs.
        Negative random numbers are generated when MAX_SIZE is negative.
   
        This function is obsolete.  Use `mpz_rrandomb' instead.
   
   
   File: gmp.info,  Node: Integer Import and Export,  Next: Miscellaneous Integer Functions,  Prev: Integer Random Numbers,  Up: Integer Functions
   
   Integer Import and Export
   =========================
   
      `mpz_t' variables can be converted to and from arbitrary words of
   binary data with the following functions.
   
    - Function: void mpz_import (mpz_t ROP, size_t COUNT, int ORDER, int
             SIZE, int ENDIAN, size_t NAILS, const void *OP)
        Set ROP from an array of word data at OP.
   
        The parameters specify the format of the data.  COUNT many words
        are read, each SIZE bytes.  ORDER can be 1 for most significant
        word first or -1 for least significant first.  Within each word
        ENDIAN can be 1 for most significant byte first, -1 for least
        significant first, or 0 for the native endianness of the host CPU.
        The most significant NAILS bits of each word are skipped, this
        can be 0 to use the full words.
   
        There are no data alignment restrictions on OP, any address is
        allowed.
   
        Here's an example converting an array of `unsigned long' data, most
        significant element first and host byte order within each value.
   
             unsigned long  a[20];
             mpz_t          z;
             mpz_import (z, 20, 1, sizeof(a[0]), 0, 0, a);
   
        This example assumes the full `sizeof' bytes are used for data in
        the given type, which is usually true, and certainly true for
        `unsigned long' everywhere we know of.  However on Cray vector
        systems it may be noted that `short' and `int' are always stored
        in 8 bytes (and with `sizeof' indicating that) but use only 32 or
        46 bits.  The NAILS feature can account for this, by passing for
        instance `8*sizeof(int)-INT_BIT'.
   
    - Function: void *mpz_export (void *ROP, size_t *COUNT, int ORDER, int
             SIZE, int ENDIAN, size_t NAILS, mpz_t OP)
        Fill ROP with word data from OP.
   
        The parameters specify the format of the data produced.  Each word
        will be SIZE bytes and ORDER can be 1 for most significant word
        first or -1 for least significant first.  Within each word ENDIAN
        can be 1 for most significant byte first, -1 for least significant
        first, or 0 for the native endianness of the host CPU.  The most
        significant NAILS bits of each word are unused and set to zero,
        this can be 0 to produce full words.
   
        The number of words produced is written to `*COUNT'.  ROP must
        have enough space for the data, or if ROP is `NULL' then a result
        array of the necessary size is allocated using the current GMP
        allocation function (*note Custom Allocation::).  In either case
        the return value is the destination used, ROP or the allocated
        block.
   
        If OP is non-zero then the most significant word produced will be
        non-zero.  If OP is zero then the count returned will be zero and
        nothing written to ROP.  If ROP is `NULL' in this case, no block
        is allocated, just `NULL' is returned.
   
        There are no data alignment restrictions on ROP, any address is
        allowed.  The sign of OP is ignored, just the absolute value is
        used.
   
        When an application is allocating space itself the required size
        can be determined with a calculation like the following.  Since
        `mpz_sizeinbase' always returns at least 1, `count' here will be
        at least one, which avoids any portability problems with
        `malloc(0)', though if `z' is zero no space at all is actually
        needed.
   
             numb = 8*size - nail;
             count = (mpz_sizeinbase (z, 2) + numb-1) / numb;
             p = malloc (count * size);
   
   
   File: gmp.info,  Node: Miscellaneous Integer Functions,  Prev: Integer Import and Export,  Up: Integer Functions
   
   Miscellaneous Functions
   =======================
   
    - Function: int mpz_fits_ulong_p (mpz_t OP)
    - Function: int mpz_fits_slong_p (mpz_t OP)
    - Function: int mpz_fits_uint_p (mpz_t OP)
    - Function: int mpz_fits_sint_p (mpz_t OP)
    - Function: int mpz_fits_ushort_p (mpz_t OP)
    - Function: int mpz_fits_sshort_p (mpz_t OP)
        Return non-zero iff the value of OP fits in an `unsigned long int',
        `signed long int', `unsigned int', `signed int', `unsigned short
        int', or `signed short int', respectively.  Otherwise, return zero.
   
    - Macro: int mpz_odd_p (mpz_t OP)
    - Macro: int mpz_even_p (mpz_t OP)
        Determine whether OP is odd or even, respectively.  Return
        non-zero if yes, zero if no.  These macros evaluate their argument
        more than once.
   
    - Function: size_t mpz_size (mpz_t OP)
        Return the size of OP measured in number of limbs.  If OP is zero,
        the returned value will be zero.
   
    - Function: size_t mpz_sizeinbase (mpz_t OP, int BASE)
        Return the size of OP measured in number of digits in base BASE.
        The base may vary from 2 to 36.  The sign of OP is ignored, just
        the absolute value is used.  The result will be exact or 1 too
        big.  If BASE is a power of 2, the result will always be exact.
        If OP is zero the return value is always 1.
   
        This function is useful in order to allocate the right amount of
        space before converting OP to a string.  The right amount of
        allocation is normally two more than the value returned by
        `mpz_sizeinbase' (one extra for a minus sign and one for the
        null-terminator).
   
   
   File: gmp.info,  Node: Rational Number Functions,  Next: Floating-point Functions,  Prev: Integer Functions,  Up: Top
   
   Rational Number Functions
   *************************
   
      This chapter describes the GMP functions for performing arithmetic
   on rational numbers.  These functions start with the prefix `mpq_'.
   
      Rational numbers are stored in objects of type `mpq_t'.
   
      All rational arithmetic functions assume operands have a canonical
   form, and canonicalize their result.  The canonical from means that the
   denominator and the numerator have no common factors, and that the
   denominator is positive.  Zero has the unique representation 0/1.
   
      Pure assignment functions do not canonicalize the assigned variable.
   It is the responsibility of the user to canonicalize the assigned
   variable before any arithmetic operations are performed on that
   variable.
   
    - Function: void mpq_canonicalize (mpq_t OP)
        Remove any factors that are common to the numerator and
        denominator of OP, and make the denominator positive.
   
 * Menu:  * Menu:
   
 * mp_limb_t:                            MP Basics.  * Initializing Rationals::
 * mpf_t:                                MP Basics.  * Rational Conversions::
 * mpq_t:                                MP Basics.  * Rational Arithmetic::
 * mpz_t:                                MP Basics.  * Comparing Rationals::
 * __GNU_MP_VERSION:                     MP Basics.  * Applying Integer Functions::
 * __GNU_MP_VERSION_MINOR:               MP Basics.  * I/O of Rationals::
 * _mpz_realloc:                         Initializing Integers.  
 * allocate_function:                    Custom Allocation.  
 * deallocate_function:                  Custom Allocation.  
 * gcd:                                  BSD Compatible Functions.  
 * itom:                                 BSD Compatible Functions.  
 * madd:                                 BSD Compatible Functions.  
 * mcmp:                                 BSD Compatible Functions.  
 * mdiv:                                 BSD Compatible Functions.  
 * mfree:                                BSD Compatible Functions.  
 * min:                                  BSD Compatible Functions.  
 * mout:                                 BSD Compatible Functions.  
 * move:                                 BSD Compatible Functions.  
 * mp_set_memory_functions:              Custom Allocation.  
 * mpf_abs:                              Float Arithmetic.  
 * mpf_add:                              Float Arithmetic.  
 * mpf_add_ui:                           Float Arithmetic.  
 * mpf_clear:                            Initializing Floats.  
 * mpf_cmp:                              Float Comparison.  
 * mpf_cmp_si:                           Float Comparison.  
 * mpf_cmp_ui:                           Float Comparison.  
 * mpf_div:                              Float Arithmetic.  
 * mpf_div_2exp:                         Float Arithmetic.  
 * mpf_div_ui:                           Float Arithmetic.  
 * mpf_eq:                               Float Comparison.  
 * mpf_get_d:                            Converting Floats.  
 * mpf_get_prec:                         Initializing Floats.  
 * mpf_get_str:                          Converting Floats.  
 * mpf_init:                             Initializing Floats.  
 * mpf_init2:                            Initializing Floats.  
 * mpf_init_set:                         Simultaneous Float Init & Assign.  
 * mpf_init_set_d:                       Simultaneous Float Init & Assign.  
 * mpf_init_set_si:                      Simultaneous Float Init & Assign.  
 * mpf_init_set_str:                     Simultaneous Float Init & Assign.  
 * mpf_init_set_ui:                      Simultaneous Float Init & Assign.  
 * mpf_inp_str:                          I/O of Floats.  
 * mpf_mul:                              Float Arithmetic.  
 * mpf_mul_2exp:                         Float Arithmetic.  
 * mpf_mul_ui:                           Float Arithmetic.  
 * mpf_neg:                              Float Arithmetic.  
 * mpf_out_str:                          I/O of Floats.  
 * mpf_random2:                          Miscellaneous Float Functions.  
 * mpf_reldiff:                          Float Comparison.  
 * mpf_set:                              Assigning Floats.  
 * mpf_set_d:                            Assigning Floats.  
 * mpf_set_default_prec:                 Initializing Floats.  
 * mpf_set_prec:                         Initializing Floats.  
 * mpf_set_prec_raw:                     Initializing Floats.  
 * mpf_set_q:                            Assigning Floats.  
 * mpf_set_si:                           Assigning Floats.  
 * mpf_set_str:                          Assigning Floats.  
 * mpf_set_ui:                           Assigning Floats.  
 * mpf_set_z:                            Assigning Floats.  
 * mpf_sgn:                              Float Comparison.  
 * mpf_sqrt:                             Float Arithmetic.  
 * mpf_sqrt_ui:                          Float Arithmetic.  
 * mpf_sub:                              Float Arithmetic.  
 * mpf_sub_ui:                           Float Arithmetic.  
 * mpf_ui_div:                           Float Arithmetic.  
 * mpf_ui_sub:                           Float Arithmetic.  
 * mpn_add:                              Low-level Functions.  
 * mpn_add_1:                            Low-level Functions.  
 * mpn_add_n:                            Low-level Functions.  
 * mpn_addmul_1:                         Low-level Functions.  
 * mpn_bdivmod:                          Low-level Functions.  
 * mpn_cmp:                              Low-level Functions.  
 * mpn_divmod:                           Low-level Functions.  
 * mpn_divmod_1:                         Low-level Functions.  
 * mpn_divrem:                           Low-level Functions.  
 * mpn_divrem_1:                         Low-level Functions.  
 * mpn_gcd:                              Low-level Functions.  
 * mpn_gcd_1:                            Low-level Functions.  
 * mpn_gcdext:                           Low-level Functions.  
 * mpn_get_str:                          Low-level Functions.  
 * mpn_hamdist:                          Low-level Functions.  
 * mpn_lshift:                           Low-level Functions.  
 * mpn_mod_1:                            Low-level Functions.  
 * mpn_mul:                              Low-level Functions.  
 * mpn_mul_1:                            Low-level Functions.  
 * mpn_mul_n:                            Low-level Functions.  
 * mpn_perfect_square_p:                 Low-level Functions.  
 * mpn_popcount:                         Low-level Functions.  
 * mpn_preinv_mod_1:                     Low-level Functions.  
 * mpn_random2:                          Low-level Functions.  
 * mpn_rshift:                           Low-level Functions.  
 * mpn_scan0:                            Low-level Functions.  
 * mpn_scan1:                            Low-level Functions.  
 * mpn_set_str:                          Low-level Functions.  
 * mpn_sqrtrem:                          Low-level Functions.  
 * mpn_sub:                              Low-level Functions.  
 * mpn_sub_1:                            Low-level Functions.  
 * mpn_sub_n:                            Low-level Functions.  
 * mpn_submul_1:                         Low-level Functions.  
 * mpq_add:                              Assigning Rationals.  
 * mpq_canonicalize:                     Rational Number Functions.  
 * mpq_clear:                            Initializing Rationals.  
 * mpq_cmp:                              Comparing Rationals.  
 * mpq_cmp_ui:                           Comparing Rationals.  
 * mpq_denref:                           Applying Integer Functions.  
 * mpq_div:                              Assigning Rationals.  
 * mpq_equal:                            Comparing Rationals.  
 * mpq_get_d:                            Miscellaneous Rational Functions.  
 * mpq_get_den:                          Miscellaneous Rational Functions.  
 * mpq_get_num:                          Miscellaneous Rational Functions.  
 * mpq_init:                             Initializing Rationals.  
 * mpq_inv:                              Assigning Rationals.  
 * mpq_mul:                              Assigning Rationals.  
 * mpq_neg:                              Assigning Rationals.  
 * mpq_numref:                           Applying Integer Functions.  
 * mpq_set:                              Initializing Rationals.  
 * mpq_set_den:                          Miscellaneous Rational Functions.  
 * mpq_set_num:                          Miscellaneous Rational Functions.  
 * mpq_set_si:                           Initializing Rationals.  
 * mpq_set_ui:                           Initializing Rationals.  
 * mpq_set_z:                            Initializing Rationals.  
 * mpq_sgn:                              Comparing Rationals.  
 * mpq_sub:                              Assigning Rationals.  
 * mpz_abs:                              Integer Arithmetic.  
 * mpz_add:                              Integer Arithmetic.  
 * mpz_add_ui:                           Integer Arithmetic.  
 * mpz_and:                              Integer Logic and Bit Fiddling.  
 * mpz_array_init:                       Initializing Integers.  
 * mpz_cdiv_q:                           Integer Arithmetic.  
 * mpz_cdiv_q_ui:                        Integer Arithmetic.  
 * mpz_cdiv_qr:                          Integer Arithmetic.  
 * mpz_cdiv_qr_ui:                       Integer Arithmetic.  
 * mpz_cdiv_r:                           Integer Arithmetic.  
 * mpz_cdiv_r_ui:                        Integer Arithmetic.  
 * mpz_cdiv_ui:                          Integer Arithmetic.  
 * mpz_clear:                            Initializing Integers.  
 * mpz_clrbit:                           Integer Logic and Bit Fiddling.  
 * mpz_cmp:                              Comparison Functions.  
 * mpz_cmp_si:                           Comparison Functions.  
 * mpz_cmp_ui:                           Comparison Functions.  
 * mpz_com:                              Integer Logic and Bit Fiddling.  
 * mpz_divexact:                         Integer Arithmetic.  
 * mpz_fac_ui:                           Integer Arithmetic.  
 * mpz_fdiv_q:                           Integer Arithmetic.  
 * mpz_fdiv_q_2exp:                      Integer Arithmetic.  
 * mpz_fdiv_q_ui:                        Integer Arithmetic.  
 * mpz_fdiv_qr:                          Integer Arithmetic.  
 * mpz_fdiv_qr_ui:                       Integer Arithmetic.  
 * mpz_fdiv_r:                           Integer Arithmetic.  
 * mpz_fdiv_r_2exp:                      Integer Arithmetic.  
 * mpz_fdiv_r_ui:                        Integer Arithmetic.  
 * mpz_fdiv_ui:                          Integer Arithmetic.  
 * mpz_gcd:                              Integer Arithmetic.  
 * mpz_gcd_ui:                           Integer Arithmetic.  
 * mpz_gcdext:                           Integer Arithmetic.  
 * mpz_get_d:                            Converting Integers.  
 * mpz_get_si:                           Converting Integers.  
 * mpz_get_str:                          Converting Integers.  
 * mpz_get_ui:                           Converting Integers.  
 * mpz_hamdist:                          Integer Logic and Bit Fiddling.  
 * mpz_init:                             Initializing Integers.  
 * mpz_init_set:                         Simultaneous Integer Init & Assign.  
 * mpz_init_set_d:                       Simultaneous Integer Init & Assign.  
 * mpz_init_set_si:                      Simultaneous Integer Init & Assign.  
 * mpz_init_set_str:                     Simultaneous Integer Init & Assign.  
 * mpz_init_set_ui:                      Simultaneous Integer Init & Assign.  
 * mpz_inp_raw:                          I/O of Integers.  
 * mpz_inp_str:                          I/O of Integers.  
 * mpz_invert:                           Integer Arithmetic.  
 * mpz_ior:                              Integer Logic and Bit Fiddling.  
 * mpz_jacobi:                           Integer Arithmetic.  
 * mpz_legendre:                         Integer Arithmetic.  
 * mpz_mod:                              Integer Arithmetic.  
 * mpz_mod_ui:                           Integer Arithmetic.  
 * mpz_mul:                              Integer Arithmetic.  
 * mpz_mul_2exp:                         Integer Arithmetic.  
 * mpz_mul_ui:                           Integer Arithmetic.  
 * mpz_neg:                              Integer Arithmetic.  
 * mpz_out_raw:                          I/O of Integers.  
 * mpz_out_str:                          I/O of Integers.  
 * mpz_perfect_square_p:                 Integer Arithmetic.  
 * mpz_popcount:                         Integer Logic and Bit Fiddling.  
 * mpz_pow_ui:                           Integer Arithmetic.  
 * mpz_powm:                             Integer Arithmetic.  
 * mpz_powm_ui:                          Integer Arithmetic.  
 * mpz_probab_prime_p:                   Integer Arithmetic.  
 * mpz_random:                           Miscellaneous Integer Functions.  
 * mpz_random2:                          Miscellaneous Integer Functions.  
 * mpz_scan0:                            Integer Logic and Bit Fiddling.  
 * mpz_scan1:                            Integer Logic and Bit Fiddling.  
 * mpz_set:                              Assigning Integers.  
 * mpz_set_d:                            Assigning Integers.  
 * mpz_set_f:                            Assigning Integers.  
 * mpz_set_q:                            Assigning Integers.  
 * mpz_set_si:                           Assigning Integers.  
 * mpz_set_str:                          Assigning Integers.  
 * mpz_set_ui:                           Assigning Integers.  
 * mpz_setbit:                           Integer Logic and Bit Fiddling.  
 * mpz_sgn:                              Comparison Functions.  
 * mpz_size:                             Miscellaneous Integer Functions.  
 * mpz_sizeinbase:                       Miscellaneous Integer Functions.  
 * mpz_sqrt:                             Integer Arithmetic.  
 * mpz_sqrtrem:                          Integer Arithmetic.  
 * mpz_sub:                              Integer Arithmetic.  
 * mpz_sub_ui:                           Integer Arithmetic.  
 * mpz_tdiv_q:                           Integer Arithmetic.  
 * mpz_tdiv_q_2exp:                      Integer Arithmetic.  
 * mpz_tdiv_q_ui:                        Integer Arithmetic.  
 * mpz_tdiv_qr:                          Integer Arithmetic.  
 * mpz_tdiv_qr_ui:                       Integer Arithmetic.  
 * mpz_tdiv_r:                           Integer Arithmetic.  
 * mpz_tdiv_r_2exp:                      Integer Arithmetic.  
 * mpz_tdiv_r_ui:                        Integer Arithmetic.  
 * mpz_ui_pow_ui:                        Integer Arithmetic.  
 * msqrt:                                BSD Compatible Functions.  
 * msub:                                 BSD Compatible Functions.  
 * mtox:                                 BSD Compatible Functions.  
 * mult:                                 BSD Compatible Functions.  
 * pow:                                  BSD Compatible Functions.  
 * reallocate_function:                  Custom Allocation.  
 * rpow:                                 BSD Compatible Functions.  
 * sdiv:                                 BSD Compatible Functions.  
 * xtom:                                 BSD Compatible Functions.  
   
   
   File: gmp.info,  Node: Initializing Rationals,  Next: Rational Conversions,  Prev: Rational Number Functions,  Up: Rational Number Functions
   
   Initialization and Assignment Functions
   =======================================
   
    - Function: void mpq_init (mpq_t DEST_RATIONAL)
        Initialize DEST_RATIONAL and set it to 0/1.  Each variable should
        normally only be initialized once, or at least cleared out (using
        the function `mpq_clear') between each initialization.
   
    - Function: void mpq_clear (mpq_t RATIONAL_NUMBER)
        Free the space occupied by RATIONAL_NUMBER.  Make sure to call this
        function for all `mpq_t' variables when you are done with them.
   
    - Function: void mpq_set (mpq_t ROP, mpq_t OP)
    - Function: void mpq_set_z (mpq_t ROP, mpz_t OP)
        Assign ROP from OP.
   
    - Function: void mpq_set_ui (mpq_t ROP, unsigned long int OP1,
             unsigned long int OP2)
    - Function: void mpq_set_si (mpq_t ROP, signed long int OP1, unsigned
             long int OP2)
        Set the value of ROP to OP1/OP2.  Note that if OP1 and OP2 have
        common factors, ROP has to be passed to `mpq_canonicalize' before
        any operations are performed on ROP.
   
    - Function: int mpq_set_str (mpq_t ROP, char *STR, int BASE)
        Set ROP from a null-terminated string STR in the given BASE.
   
        The string can be an integer like "41" or a fraction like
        "41/152".  The fraction must be in canonical form (*note Rational
        Number Functions::), or if not then `mpq_canonicalize' must be
        called.
   
        The numerator and optional denominator are parsed the same as in
        `mpz_set_str' (*note Assigning Integers::).  White space is
        allowed in the string, and is simply ignored.  The BASE can vary
        from 2 to 36, or if BASE is 0 then the leading characters are
        used: `0x' for hex, `0' for octal, or decimal otherwise.  Note
        that this is done separately for the numerator and denominator, so
        for instance `0xEF/100' is 239/100, whereas `0xEF/0x100' is
        239/256.
   
        The return value is 0 if the entire string is a valid number, or
        -1 if not.
   
    - Function: void mpq_swap (mpq_t ROP1, mpq_t ROP2)
        Swap the values ROP1 and ROP2 efficiently.
   
   
   File: gmp.info,  Node: Rational Conversions,  Next: Rational Arithmetic,  Prev: Initializing Rationals,  Up: Rational Number Functions
   
   Conversion Functions
   ====================
   
    - Function: double mpq_get_d (mpq_t OP)
        Convert OP to a `double'.
   
    - Function: void mpq_set_d (mpq_t ROP, double OP)
    - Function: void mpq_set_f (mpq_t ROP, mpf_t OP)
        Set ROP to the value of OP, without rounding.
   
    - Function: char * mpq_get_str (char *STR, int BASE, mpq_t OP)
        Convert OP to a string of digits in base BASE.  The base may vary
        from 2 to 36.  The string will be of the form `num/den', or if the
        denominator is 1 then just `num'.
   
        If STR is `NULL', the result string is allocated using the current
        allocation function (*note Custom Allocation::).  The block will be
        `strlen(str)+1' bytes, that being exactly enough for the string and
        null-terminator.
   
        If STR is not `NULL', it should point to a block of storage large
        enough for the result, that being
   
             mpz_sizeinbase (mpq_numref(OP), BASE)
             + mpz_sizeinbase (mpq_denref(OP), BASE) + 3
   
        The three extra bytes are for a possible minus sign, possible
        slash, and the null-terminator.
   
        A pointer to the result string is returned, being either the
        allocated block, or the given STR.
   
   
   File: gmp.info,  Node: Rational Arithmetic,  Next: Comparing Rationals,  Prev: Rational Conversions,  Up: Rational Number Functions
   
   Arithmetic Functions
   ====================
   
    - Function: void mpq_add (mpq_t SUM, mpq_t ADDEND1, mpq_t ADDEND2)
        Set SUM to ADDEND1 + ADDEND2.
   
    - Function: void mpq_sub (mpq_t DIFFERENCE, mpq_t MINUEND, mpq_t
             SUBTRAHEND)
        Set DIFFERENCE to MINUEND - SUBTRAHEND.
   
    - Function: void mpq_mul (mpq_t PRODUCT, mpq_t MULTIPLIER, mpq_t
             MULTIPLICAND)
        Set PRODUCT to MULTIPLIER times MULTIPLICAND.
   
    - Function: void mpq_mul_2exp (mpq_t ROP, mpq_t OP1, unsigned long int
             OP2)
        Set ROP to OP1 times 2 raised to OP2.
   
    - Function: void mpq_div (mpq_t QUOTIENT, mpq_t DIVIDEND, mpq_t
             DIVISOR)
        Set QUOTIENT to DIVIDEND/DIVISOR.
   
    - Function: void mpq_div_2exp (mpq_t ROP, mpq_t OP1, unsigned long int
             OP2)
        Set ROP to OP1 divided by 2 raised to OP2.
   
    - Function: void mpq_neg (mpq_t NEGATED_OPERAND, mpq_t OPERAND)
        Set NEGATED_OPERAND to -OPERAND.
   
    - Function: void mpq_abs (mpq_t ROP, mpq_t OP)
        Set ROP to the absolute value of OP.
   
    - Function: void mpq_inv (mpq_t INVERTED_NUMBER, mpq_t NUMBER)
        Set INVERTED_NUMBER to 1/NUMBER.  If the new denominator is zero,
        this routine will divide by zero.
   
   
   File: gmp.info,  Node: Comparing Rationals,  Next: Applying Integer Functions,  Prev: Rational Arithmetic,  Up: Rational Number Functions
   
   Comparison Functions
   ====================
   
    - Function: int mpq_cmp (mpq_t OP1, mpq_t OP2)
        Compare OP1 and OP2.  Return a positive value if OP1 > OP2, zero
        if OP1 = OP2, and a negative value if OP1 < OP2.
   
        To determine if two rationals are equal, `mpq_equal' is faster than
        `mpq_cmp'.
   
    - Macro: int mpq_cmp_ui (mpq_t OP1, unsigned long int NUM2, unsigned
             long int DEN2)
    - Macro: int mpq_cmp_si (mpq_t OP1, long int NUM2, unsigned long int
             DEN2)
        Compare OP1 and NUM2/DEN2.  Return a positive value if OP1 >
        NUM2/DEN2, zero if OP1 = NUM2/DEN2, and a negative value if OP1 <
        NUM2/DEN2.
   
        NUM2 and DEN2 are allowed to have common factors.
   
        These functions are implemented as a macros and evaluate their
        arguments multiple times.
   
    - Macro: int mpq_sgn (mpq_t OP)
        Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0.
   
        This function is actually implemented as a macro.  It evaluates its
        arguments multiple times.
   
    - Function: int mpq_equal (mpq_t OP1, mpq_t OP2)
        Return non-zero if OP1 and OP2 are equal, zero if they are
        non-equal.  Although `mpq_cmp' can be used for the same purpose,
        this function is much faster.
   
   
   File: gmp.info,  Node: Applying Integer Functions,  Next: I/O of Rationals,  Prev: Comparing Rationals,  Up: Rational Number Functions
   
   Applying Integer Functions to Rationals
   =======================================
   
      The set of `mpq' functions is quite small.  In particular, there are
   few functions for either input or output.  The following functions give
   direct access to the numerator and denominator of an `mpq_t'.
   
      Note that if an assignment to the numerator and/or denominator could
   take an `mpq_t' out of the canonical form described at the start of
   this chapter (*note Rational Number Functions::) then
   `mpq_canonicalize' must be called before any other `mpq' functions are
   applied to that `mpq_t'.
   
    - Macro: mpz_t mpq_numref (mpq_t OP)
    - Macro: mpz_t mpq_denref (mpq_t OP)
        Return a reference to the numerator and denominator of OP,
        respectively.  The `mpz' functions can be used on the result of
        these macros.
   
    - Function: void mpq_get_num (mpz_t NUMERATOR, mpq_t RATIONAL)
    - Function: void mpq_get_den (mpz_t DENOMINATOR, mpq_t RATIONAL)
    - Function: void mpq_set_num (mpq_t RATIONAL, mpz_t NUMERATOR)
    - Function: void mpq_set_den (mpq_t RATIONAL, mpz_t DENOMINATOR)
        Get or set the numerator or denominator of a rational.  These
        functions are equivalent to calling `mpz_set' with an appropriate
        `mpq_numref' or `mpq_denref'.  Direct use of `mpq_numref' or
        `mpq_denref' is recommended instead of these functions.
   
   
   File: gmp.info,  Node: I/O of Rationals,  Prev: Applying Integer Functions,  Up: Rational Number Functions
   
   Input and Output Functions
   ==========================
   
      When using any of these functions, it's a good idea to include
   `stdio.h' before `gmp.h', since that will allow `gmp.h' to define
   prototypes for these functions.
   
      Passing a `NULL' pointer for a STREAM argument to any of these
   functions will make them read from `stdin' and write to `stdout',
   respectively.
   
    - Function: size_t mpq_out_str (FILE *STREAM, int BASE, mpq_t OP)
        Output OP on stdio stream STREAM, as a string of digits in base
        BASE.  The base may vary from 2 to 36.  Output is in the form
        `num/den' or if the denominator is 1 then just `num'.
   
        Return the number of bytes written, or if an error occurred,
        return 0.
   
    - Function: size_t mpq_inp_str (mpq_t ROP, FILE *STREAM, int BASE)
        Read a string of digits from STREAM and convert them to a rational
        in ROP.  Any initial white-space characters are read and
        discarded.  Return the number of characters read (including white
        space), or 0 if a rational could not be read.
   
        The input can be a fraction like `17/63' or just an integer like
        `123'.  Reading stops at the first character not in this form, and
        white space is not permitted within the string.  If the input
        might not be in canonical form, then `mpq_canonicalize' must be
        called (*note Rational Number Functions::).
   
        The BASE can be between 2 and 36, or can be 0 in which case the
        leading characters of the string determine the base, `0x' or `0X'
        for hexadecimal, `0' for octal, or decimal otherwise.  The leading
        characters are examined separately for the numerator and
        denominator of a fraction, so for instance `0x10/11' is 16/11,
        whereas `0x10/0x11' is 16/17.
   
   
   File: gmp.info,  Node: Floating-point Functions,  Next: Low-level Functions,  Prev: Rational Number Functions,  Up: Top
   
   Floating-point Functions
   ************************
   
      GMP floating point numbers are stored in objects of type `mpf_t' and
   functions operating on them have an `mpf_' prefix.
   
      The mantissa of each float has a user-selectable precision, limited
   only by available memory.  Each variable has its own precision, and
   that can be increased or decreased at any time.
   
      The exponent of each float is a fixed precision, one machine word on
   most systems.  In the current implementation the exponent is a count of
   limbs, so for example on a 32-bit system this means a range of roughly
   2^-68719476768 to 2^68719476736, or on a 64-bit system this will be
   greater.  Note however `mpf_get_str' can only return an exponent which
   fits an `mp_exp_t' and currently `mpf_set_str' doesn't accept exponents
   bigger than a `long'.
   
      Each variable keeps a size for the mantissa data actually in use.
   This means that if a float is exactly represented in only a few bits
   then only those bits will be used in a calculation, even if the
   selected precision is high.
   
      All calculations are performed to the precision of the destination
   variable.  Each function is defined to calculate with "infinite
   precision" followed by a truncation to the destination precision, but
   of course the work done is only what's needed to determine a result
   under that definition.
   
      The precision selected for a variable is a minimum value, GMP may
   increase it a little to facilitate efficient calculation.  Currently
   this means rounding up to a whole limb, and then sometimes having a
   further partial limb, depending on the high limb of the mantissa.  But
   applications shouldn't be concerned by such details.
   
      The mantissa in stored in binary, as might be imagined from the fact
   precisions are expressed in bits.  One consequence of this is that
   decimal fractions like 0.1 cannot be represented exactly.  The same is
   true of plain IEEE `double' floats.  This makes both highly unsuitable
   for calculations involving money or other values that should be exact
   decimal fractions.  (Suitably scaled integers, or perhaps rationals,
   are better choices.)
   
      `mpf' functions and variables have no special notion of infinity or
   not-a-number, and applications must take care not to overflow the
   exponent or results will be unpredictable.  This might change in a
   future release.
   
      Note that the `mpf' functions are _not_ intended as a smooth
   extension to IEEE P754 arithmetic.  In particular results obtained on
   one computer often differ from the results on a computer with a
   different word size.
   
   * Menu:
   
   * Initializing Floats::
   * Assigning Floats::
   * Simultaneous Float Init & Assign::
   * Converting Floats::
   * Float Arithmetic::
   * Float Comparison::
   * I/O of Floats::
   * Miscellaneous Float Functions::
   
   
   File: gmp.info,  Node: Initializing Floats,  Next: Assigning Floats,  Prev: Floating-point Functions,  Up: Floating-point Functions
   
   Initialization Functions
   ========================
   
    - Function: void mpf_set_default_prec (unsigned long int PREC)
        Set the default precision to be *at least* PREC bits.  All
        subsequent calls to `mpf_init' will use this precision, but
        previously initialized variables are unaffected.
   
    - Function: unsigned long int mpf_get_default_prec (void)
        Return the default default precision actually used.
   
      An `mpf_t' object must be initialized before storing the first value
   in it.  The functions `mpf_init' and `mpf_init2' are used for that
   purpose.
   
    - Function: void mpf_init (mpf_t X)
        Initialize X to 0.  Normally, a variable should be initialized
        once only or at least be cleared, using `mpf_clear', between
        initializations.  The precision of X is undefined unless a default
        precision has already been established by a call to
        `mpf_set_default_prec'.
   
    - Function: void mpf_init2 (mpf_t X, unsigned long int PREC)
        Initialize X to 0 and set its precision to be *at least* PREC
        bits.  Normally, a variable should be initialized once only or at
        least be cleared, using `mpf_clear', between initializations.
   
    - Function: void mpf_clear (mpf_t X)
        Free the space occupied by X.  Make sure to call this function for
        all `mpf_t' variables when you are done with them.
   
      Here is an example on how to initialize floating-point variables:
        {
          mpf_t x, y;
          mpf_init (x);           /* use default precision */
          mpf_init2 (y, 256);     /* precision _at least_ 256 bits */
          ...
          /* Unless the program is about to exit, do ... */
          mpf_clear (x);
          mpf_clear (y);
        }
   
      The following three functions are useful for changing the precision
   during a calculation.  A typical use would be for adjusting the
   precision gradually in iterative algorithms like Newton-Raphson, making
   the computation precision closely match the actual accurate part of the
   numbers.
   
    - Function: unsigned long int mpf_get_prec (mpf_t OP)
        Return the current precision of OP, in bits.
   
    - Function: void mpf_set_prec (mpf_t ROP, unsigned long int PREC)
        Set the precision of ROP to be *at least* PREC bits.  The value in
        ROP will be truncated to the new precision.
   
        This function requires a call to `realloc', and so should not be
        used in a tight loop.
   
    - Function: void mpf_set_prec_raw (mpf_t ROP, unsigned long int PREC)
        Set the precision of ROP to be *at least* PREC bits, without
        changing the memory allocated.
   
        PREC must be no more than the allocated precision for ROP, that
        being the precision when ROP was initialized, or in the most recent
        `mpf_set_prec'.
   
        The value in ROP is unchanged, and in particular if it had a higher
        precision than PREC it will retain that higher precision.  New
        values written to ROP will use the new PREC.
   
        Before calling `mpf_clear' or the full `mpf_set_prec', another
        `mpf_set_prec_raw' call must be made to restore ROP to its original
        allocated precision.  Failing to do so will have unpredictable
        results.
   
        `mpf_get_prec' can be used before `mpf_set_prec_raw' to get the
        original allocated precision.  After `mpf_set_prec_raw' it
        reflects the PREC value set.
   
        `mpf_set_prec_raw' is an efficient way to use an `mpf_t' variable
        at different precisions during a calculation, perhaps to gradually
        increase precision in an iteration, or just to use various
        different precisions for different purposes during a calculation.
   
   
   File: gmp.info,  Node: Assigning Floats,  Next: Simultaneous Float Init & Assign,  Prev: Initializing Floats,  Up: Floating-point Functions
   
   Assignment Functions
   ====================
   
      These functions assign new values to already initialized floats
   (*note Initializing Floats::).
   
    - Function: void mpf_set (mpf_t ROP, mpf_t OP)
    - Function: void mpf_set_ui (mpf_t ROP, unsigned long int OP)
    - Function: void mpf_set_si (mpf_t ROP, signed long int OP)
    - Function: void mpf_set_d (mpf_t ROP, double OP)
    - Function: void mpf_set_z (mpf_t ROP, mpz_t OP)
    - Function: void mpf_set_q (mpf_t ROP, mpq_t OP)
        Set the value of ROP from OP.
   
    - Function: int mpf_set_str (mpf_t ROP, char *STR, int BASE)
        Set the value of ROP from the string in STR.  The string is of the
        form `M@N' or, if the base is 10 or less, alternatively `MeN'.
        `M' is the mantissa and `N' is the exponent.  The mantissa is
        always in the specified base.  The exponent is either in the
        specified base or, if BASE is negative, in decimal.  The decimal
        point expected is taken from the current locale, on systems
        providing `localeconv'.
   
        The argument BASE may be in the ranges 2 to 36, or -36 to -2.
        Negative values are used to specify that the exponent is in
        decimal.
   
        Unlike the corresponding `mpz' function, the base will not be
        determined from the leading characters of the string if BASE is 0.
        This is so that numbers like `0.23' are not interpreted as octal.
   
        White space is allowed in the string, and is simply ignored.
        [This is not really true; white-space is ignored in the beginning
        of the string and within the mantissa, but not in other places,
        such as after a minus sign or in the exponent.  We are considering
        changing the definition of this function, making it fail when
        there is any white-space in the input, since that makes a lot of
        sense.  Please tell us your opinion about this change.  Do you
        really want it to accept "3 14" as meaning 314 as it does now?]
   
        This function returns 0 if the entire string is a valid number in
        base BASE.  Otherwise it returns -1.
   
    - Function: void mpf_swap (mpf_t ROP1, mpf_t ROP2)
        Swap ROP1 and ROP2 efficiently.  Both the values and the
        precisions of the two variables are swapped.
   
   
   File: gmp.info,  Node: Simultaneous Float Init & Assign,  Next: Converting Floats,  Prev: Assigning Floats,  Up: Floating-point Functions
   
   Combined Initialization and Assignment Functions
   ================================================
   
      For convenience, GMP provides a parallel series of
   initialize-and-set functions which initialize the output and then store
   the value there.  These functions' names have the form `mpf_init_set...'
   
      Once the float has been initialized by any of the `mpf_init_set...'
   functions, it can be used as the source or destination operand for the
   ordinary float functions.  Don't use an initialize-and-set function on
   a variable already initialized!
   
    - Function: void mpf_init_set (mpf_t ROP, mpf_t OP)
    - Function: void mpf_init_set_ui (mpf_t ROP, unsigned long int OP)
    - Function: void mpf_init_set_si (mpf_t ROP, signed long int OP)
    - Function: void mpf_init_set_d (mpf_t ROP, double OP)
        Initialize ROP and set its value from OP.
   
        The precision of ROP will be taken from the active default
        precision, as set by `mpf_set_default_prec'.
   
    - Function: int mpf_init_set_str (mpf_t ROP, char *STR, int BASE)
        Initialize ROP and set its value from the string in STR.  See
        `mpf_set_str' above for details on the assignment operation.
   
        Note that ROP is initialized even if an error occurs.  (I.e., you
        have to call `mpf_clear' for it.)
   
        The precision of ROP will be taken from the active default
        precision, as set by `mpf_set_default_prec'.
   
   
   File: gmp.info,  Node: Converting Floats,  Next: Float Arithmetic,  Prev: Simultaneous Float Init & Assign,  Up: Floating-point Functions
   
   Conversion Functions
   ====================
   
    - Function: double mpf_get_d (mpf_t OP)
        Convert OP to a `double'.
   
    - Function: double mpf_get_d_2exp (signed long int *EXP, mpf_t OP)
        Find D and EXP such that D times 2 raised to EXP, with
        0.5<=abs(D)<1, is a good approximation to OP.  This is similar to
        the standard C function `frexp'.
   
    - Function: long mpf_get_si (mpf_t OP)
    - Function: unsigned long mpf_get_ui (mpf_t OP)
        Convert OP to a `long' or `unsigned long', truncating any fraction
        part.  If OP is too big for the return type, the result is
        undefined.
   
        See also `mpf_fits_slong_p' and `mpf_fits_ulong_p' (*note
        Miscellaneous Float Functions::).
   
    - Function: char * mpf_get_str (char *STR, mp_exp_t *EXPPTR, int BASE,
             size_t N_DIGITS, mpf_t OP)
        Convert OP to a string of digits in base BASE.  BASE can be 2 to
        36.  Up to N_DIGITS digits will be generated.  Trailing zeros are
        not returned.  No more digits than can be accurately represented
        by OP are ever generated.  If N_DIGITS is 0 then that accurate
        maximum number of digits are generated.
   
        If STR is `NULL', the result string is allocated using the current
        allocation function (*note Custom Allocation::).  The block will be
        `strlen(str)+1' bytes, that being exactly enough for the string and
        null-terminator.
   
        If STR is not `NULL', it should point to a block of N_DIGITS + 2
        bytes, that being enough for the mantissa, a possible minus sign,
        and a null-terminator.  When N_DIGITS is 0 to get all significant
        digits, an application won't be able to know the space required,
        and STR should be `NULL' in that case.
   
        The generated string is a fraction, with an implicit radix point
        immediately to the left of the first digit.  The applicable
        exponent is written through the EXPPTR pointer.  For example, the
        number 3.1416 would be returned as string "31416" and exponent 1.
   
        When OP is zero, an empty string is produced and the exponent
        returned is 0.
   
        A pointer to the result string is returned, being either the
        allocated block or the given STR.
   
   
   File: gmp.info,  Node: Float Arithmetic,  Next: Float Comparison,  Prev: Converting Floats,  Up: Floating-point Functions
   
   Arithmetic Functions
   ====================
   
    - Function: void mpf_add (mpf_t ROP, mpf_t OP1, mpf_t OP2)
    - Function: void mpf_add_ui (mpf_t ROP, mpf_t OP1, unsigned long int
             OP2)
        Set ROP to OP1 + OP2.
   
    - Function: void mpf_sub (mpf_t ROP, mpf_t OP1, mpf_t OP2)
    - Function: void mpf_ui_sub (mpf_t ROP, unsigned long int OP1, mpf_t
             OP2)
    - Function: void mpf_sub_ui (mpf_t ROP, mpf_t OP1, unsigned long int
             OP2)
        Set ROP to OP1 - OP2.
   
    - Function: void mpf_mul (mpf_t ROP, mpf_t OP1, mpf_t OP2)
    - Function: void mpf_mul_ui (mpf_t ROP, mpf_t OP1, unsigned long int
             OP2)
        Set ROP to OP1 times OP2.
   
      Division is undefined if the divisor is zero, and passing a zero
   divisor to the divide functions will make these functions intentionally
   divide by zero.  This lets the user handle arithmetic exceptions in
   these functions in the same manner as other arithmetic exceptions.
   
    - Function: void mpf_div (mpf_t ROP, mpf_t OP1, mpf_t OP2)
    - Function: void mpf_ui_div (mpf_t ROP, unsigned long int OP1, mpf_t
             OP2)
    - Function: void mpf_div_ui (mpf_t ROP, mpf_t OP1, unsigned long int
             OP2)
        Set ROP to OP1/OP2.
   
    - Function: void mpf_sqrt (mpf_t ROP, mpf_t OP)
    - Function: void mpf_sqrt_ui (mpf_t ROP, unsigned long int OP)
        Set ROP to the square root of OP.
   
    - Function: void mpf_pow_ui (mpf_t ROP, mpf_t OP1, unsigned long int
             OP2)
        Set ROP to OP1 raised to the power OP2.
   
    - Function: void mpf_neg (mpf_t ROP, mpf_t OP)
        Set ROP to -OP.
   
    - Function: void mpf_abs (mpf_t ROP, mpf_t OP)
        Set ROP to the absolute value of OP.
   
    - Function: void mpf_mul_2exp (mpf_t ROP, mpf_t OP1, unsigned long int
             OP2)
        Set ROP to OP1 times 2 raised to OP2.
   
    - Function: void mpf_div_2exp (mpf_t ROP, mpf_t OP1, unsigned long int
             OP2)
        Set ROP to OP1 divided by 2 raised to OP2.
   
   
   File: gmp.info,  Node: Float Comparison,  Next: I/O of Floats,  Prev: Float Arithmetic,  Up: Floating-point Functions
   
   Comparison Functions
   ====================
   
    - Function: int mpf_cmp (mpf_t OP1, mpf_t OP2)
    - Function: int mpf_cmp_d (mpf_t OP1, double OP2)
    - Function: int mpf_cmp_ui (mpf_t OP1, unsigned long int OP2)
    - Function: int mpf_cmp_si (mpf_t OP1, signed long int OP2)
        Compare OP1 and OP2.  Return a positive value if OP1 > OP2, zero
        if OP1 = OP2, and a negative value if OP1 < OP2.
   
    - Function: int mpf_eq (mpf_t OP1, mpf_t OP2, unsigned long int op3)
        Return non-zero if the first OP3 bits of OP1 and OP2 are equal,
        zero otherwise.  I.e., test of OP1 and OP2 are approximately equal.
   
        Caution: Currently only whole limbs are compared, and only in an
        exact fashion.  In the future values like 1000 and 0111 may be
        considered the same to 3 bits (on the basis that their difference
        is that small).
   
    - Function: void mpf_reldiff (mpf_t ROP, mpf_t OP1, mpf_t OP2)
        Compute the relative difference between OP1 and OP2 and store the
        result in ROP.  This is abs(OP1-OP2)/OP1.
   
    - Macro: int mpf_sgn (mpf_t OP)
        Return +1 if OP > 0, 0 if OP = 0, and -1 if OP < 0.
   
        This function is actually implemented as a macro.  It evaluates
        its arguments multiple times.
   
   
   File: gmp.info,  Node: I/O of Floats,  Next: Miscellaneous Float Functions,  Prev: Float Comparison,  Up: Floating-point Functions
   
   Input and Output Functions
   ==========================
   
      Functions that perform input from a stdio stream, and functions that
   output to a stdio stream.  Passing a `NULL' pointer for a STREAM
   argument to any of these functions will make them read from `stdin' and
   write to `stdout', respectively.
   
      When using any of these functions, it is a good idea to include
   `stdio.h' before `gmp.h', since that will allow `gmp.h' to define
   prototypes for these functions.
   
    - Function: size_t mpf_out_str (FILE *STREAM, int BASE, size_t
             N_DIGITS, mpf_t OP)
        Print OP to STREAM, as a string of digits.  Return the number of
        bytes written, or if an error occurred, return 0.
   
        The mantissa is prefixed with an `0.' and is in the given BASE,
        which may vary from 2 to 36.  An exponent then printed, separated
        by an `e', or if BASE is greater than 10 then by an `@'.  The
        exponent is always in decimal.  The decimal point follows the
        current locale, on systems providing `localeconv'.
   
        Up to N_DIGITS will be printed from the mantissa, except that no
        more digits than are accurately representable by OP will be
        printed.  N_DIGITS can be 0 to select that accurate maximum.
   
    - Function: size_t mpf_inp_str (mpf_t ROP, FILE *STREAM, int BASE)
        Read a string in base BASE from STREAM, and put the read float in
        ROP.  The string is of the form `M@N' or, if the base is 10 or
        less, alternatively `MeN'.  `M' is the mantissa and `N' is the
        exponent.  The mantissa is always in the specified base.  The
        exponent is either in the specified base or, if BASE is negative,
        in decimal.  The decimal point expected is taken from the current
        locale, on systems providing `localeconv'.
   
        The argument BASE may be in the ranges 2 to 36, or -36 to -2.
        Negative values are used to specify that the exponent is in
        decimal.
   
        Unlike the corresponding `mpz' function, the base will not be
        determined from the leading characters of the string if BASE is 0.
        This is so that numbers like `0.23' are not interpreted as octal.
   
        Return the number of bytes read, or if an error occurred, return 0.
   

Legend:
Removed from v.1.1.1.1  
changed lines
  Added in v.1.1.1.4

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>