[BACK]Return to gmp.info-7 CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp

File: [local] / OpenXM_contrib / gmp / Attic / gmp.info-7 (download)

Revision 1.1, Mon Aug 25 16:06:03 2003 UTC (20 years, 8 months ago) by ohara
Branch: MAIN

Initial revision

This is gmp.info, produced by makeinfo version 4.2 from gmp.texi.

This manual describes how to install and use the GNU multiple precision
arithmetic library, version 4.1.2.

   Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002 Free Software Foundation, Inc.

   Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version
1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, with the Front-Cover Texts being "A GNU
Manual", and with the Back-Cover Texts being "You have freedom to copy
and modify this GNU Manual, like GNU software".  A copy of the license
is included in *Note GNU Free Documentation License::.
INFO-DIR-SECTION GNU libraries
START-INFO-DIR-ENTRY
* gmp: (gmp).                   GNU Multiple Precision Arithmetic Library.
END-INFO-DIR-ENTRY


File: gmp.info,  Node: Assembler Cache Handling,  Next: Assembler Floating Point,  Prev: Assembler Carry Propagation,  Up: Assembler Coding

Cache Handling
--------------

   GMP aims to perform well both on operands that fit entirely in L1
cache and those which don't.

   Basic routines like `mpn_add_n' or `mpn_lshift' are often used on
large operands, so L2 and main memory performance is important for them.
`mpn_mul_1' and `mpn_addmul_1' are mostly used for multiply and square
basecases, so L1 performance matters most for them, unless assembler
versions of `mpn_mul_basecase' and `mpn_sqr_basecase' exist, in which
case the remaining uses are mostly for larger operands.

   For L2 or main memory operands, memory access times will almost
certainly be more than the calculation time.  The aim therefore is to
maximize memory throughput, by starting a load of the next cache line
which processing the contents of the previous one.  Clearly this is
only possible if the chip has a lock-up free cache or some sort of
prefetch instruction.  Most current chips have both these features.

   Prefetching sources combines well with loop unrolling, since a
prefetch can be initiated once per unrolled loop (or more than once if
the loop covers more than one cache line).

   On CPUs without write-allocate caches, prefetching destinations will
ensure individual stores don't go further down the cache hierarchy,
limiting bandwidth.  Of course for calculations which are slow anyway,
like `mpn_divrem_1', write-throughs might be fine.

   The distance ahead to prefetch will be determined by memory latency
versus throughput.  The aim of course is to have data arriving
continuously, at peak throughput.  Some CPUs have limits on the number
of fetches or prefetches in progress.

   If a special prefetch instruction doesn't exist then a plain load
can be used, but in that case care must be taken not to attempt to read
past the end of an operand, since that might produce a segmentation
violation.

   Some CPUs or systems have hardware that detects sequential memory
accesses and initiates suitable cache movements automatically, making
life easy.


File: gmp.info,  Node: Assembler Floating Point,  Next: Assembler SIMD Instructions,  Prev: Assembler Cache Handling,  Up: Assembler Coding

Floating Point
--------------

   Floating point arithmetic is used in GMP for multiplications on CPUs
with poor integer multipliers.  It's mostly useful for `mpn_mul_1',
`mpn_addmul_1' and `mpn_submul_1' on 64-bit machines, and
`mpn_mul_basecase' on both 32-bit and 64-bit machines.

   With IEEE 53-bit double precision floats, integer multiplications
producing up to 53 bits will give exact results.  Breaking a 64x64
multiplication into eight 16x32->48 bit pieces is convenient.  With
some care though six 21x32->53 bit products can be used, if one of the
lower two 21-bit pieces also uses the sign bit.

   For the `mpn_mul_1' family of functions on a 64-bit machine, the
invariant single limb is split at the start, into 3 or 4 pieces.
Inside the loop, the bignum operand is split into 32-bit pieces.  Fast
conversion of these unsigned 32-bit pieces to floating point is highly
machine-dependent.  In some cases, reading the data into the integer
unit, zero-extending to 64-bits, then transferring to the floating
point unit back via memory is the only option.

   Converting partial products back to 64-bit limbs is usually best
done as a signed conversion.  Since all values are smaller than 2^53,
signed and unsigned are the same, but most processors lack unsigned
conversions.



   Here is a diagram showing 16x32 bit products for an `mpn_mul_1' or
`mpn_addmul_1' with a 64-bit limb.  The single limb operand V is split
into four 16-bit parts.  The multi-limb operand U is split in the loop
into two 32-bit parts.

                     +---+---+---+---+
                     |v48|v32|v16|v00|    V operand
                     +---+---+---+---+
     
                     +-------+---+---+
                 x   |  u32  |  u00  |    U operand (one limb)
                     +---------------+
     
     ---------------------------------
     
                         +-----------+
                         | u00 x v00 |    p00    48-bit products
                         +-----------+
                     +-----------+
                     | u00 x v16 |        p16
                     +-----------+
                 +-----------+
                 | u00 x v32 |            p32
                 +-----------+
             +-----------+
             | u00 x v48 |                p48
             +-----------+
                 +-----------+
                 | u32 x v00 |            r32
                 +-----------+
             +-----------+
             | u32 x v16 |                r48
             +-----------+
         +-----------+
         | u32 x v32 |                    r64
         +-----------+
     +-----------+
     | u32 x v48 |                        r80
     +-----------+

   p32 and r32 can be summed using floating-point addition, and
likewise p48 and r48.  p00 and p16 can be summed with r64 and r80 from
the previous iteration.

   For each loop then, four 49-bit quantities are transfered to the
integer unit, aligned as follows,

     |-----64bits----|-----64bits----|
                        +------------+
                        | p00 + r64' |    i00
                        +------------+
                    +------------+
                    | p16 + r80' |        i16
                    +------------+
                +------------+
                | p32 + r32  |            i32
                +------------+
            +------------+
            | p48 + r48  |                i48
            +------------+

   The challenge then is to sum these efficiently and add in a carry
limb, generating a low 64-bit result limb and a high 33-bit carry limb
(i48 extends 33 bits into the high half).


File: gmp.info,  Node: Assembler SIMD Instructions,  Next: Assembler Software Pipelining,  Prev: Assembler Floating Point,  Up: Assembler Coding

SIMD Instructions
-----------------

   The single-instruction multiple-data support in current
microprocessors is aimed at signal processing algorithms where each
data point can be treated more or less independently.  There's
generally not much support for propagating the sort of carries that
arise in GMP.

   SIMD multiplications of say four 16x16 bit multiplies only do as much
work as one 32x32 from GMP's point of view, and need some shifts and
adds besides.  But of course if say the SIMD form is fully pipelined
and uses less instruction decoding then it may still be worthwhile.

   On the 80x86 chips, MMX has so far found a use in `mpn_rshift' and
`mpn_lshift' since it allows 64-bit operations, and is used in a special
case for 16-bit multipliers in the P55 `mpn_mul_1'.  3DNow and SSE
haven't found a use so far.


File: gmp.info,  Node: Assembler Software Pipelining,  Next: Assembler Loop Unrolling,  Prev: Assembler SIMD Instructions,  Up: Assembler Coding

Software Pipelining
-------------------

   Software pipelining consists of scheduling instructions around the
branch point in a loop.  For example a loop taking a checksum of an
array of limbs might have a load and an add, but the load wouldn't be
for that add, rather for the one next time around the loop.  Each load
then is effectively scheduled back in the previous iteration, allowing
latency to be hidden.

   Naturally this is wanted only when doing things like loads or
multiplies that take a few cycles to complete, and only where a CPU has
multiple functional units so that other work can be done while waiting.

   A pipeline with several stages will have a data value in progress at
each stage and each loop iteration moves them along one stage.  This is
like juggling.

   Within the loop some moves between registers may be necessary to
have the right values in the right places for each iteration.  Loop
unrolling can help this, with each unrolled block able to use different
registers for different values, even if some shuffling is still needed
just before going back to the top of the loop.


File: gmp.info,  Node: Assembler Loop Unrolling,  Prev: Assembler Software Pipelining,  Up: Assembler Coding

Loop Unrolling
--------------

   Loop unrolling consists of replicating code so that several limbs are
processed in each loop.  At a minimum this reduces loop overheads by a
corresponding factor, but it can also allow better register usage, for
example alternately using one register combination and then another.
Judicious use of `m4' macros can help avoid lots of duplication in the
source code.

   Unrolling is commonly done to a power of 2 multiple so the number of
unrolled loops and the number of remaining limbs can be calculated with
a shift and mask.  But other multiples can be used too, just by
subtracting each N limbs processed from a counter and waiting for less
than N remaining (or offsetting the counter by N so it goes negative
when there's less than N remaining).

   The limbs not a multiple of the unrolling can be handled in various
ways, for example

   * A simple loop at the end (or the start) to process the excess.
     Care will be wanted that it isn't too much slower than the
     unrolled part.

   * A set of binary tests, for example after an 8-limb unrolling, test
     for 4 more limbs to process, then a further 2 more or not, and
     finally 1 more or not.  This will probably take more code space
     than a simple loop.

   * A `switch' statement, providing separate code for each possible
     excess, for example an 8-limb unrolling would have separate code
     for 0 remaining, 1 remaining, etc, up to 7 remaining.  This might
     take a lot of code, but may be the best way to optimize all cases
     in combination with a deep pipelined loop.

   * A computed jump into the middle of the loop, thus making the first
     iteration handle the excess.  This should make times smoothly
     increase with size, which is attractive, but setups for the jump
     and adjustments for pointers can be tricky and could become quite
     difficult in combination with deep pipelining.

   One way to write the setups and finishups for a pipelined unrolled
loop is simply to duplicate the loop at the start and the end, then
delete instructions at the start which have no valid antecedents, and
delete instructions at the end whose results are unwanted.  Sizes not a
multiple of the unrolling can then be handled as desired.


File: gmp.info,  Node: Internals,  Next: Contributors,  Prev: Algorithms,  Up: Top

Internals
*********

   *This chapter is provided only for informational purposes and the
various internals described here may change in future GMP releases.
Applications expecting to be compatible with future releases should use
only the documented interfaces described in previous chapters.*

* Menu:

* Integer Internals::
* Rational Internals::
* Float Internals::
* Raw Output Internals::
* C++ Interface Internals::


File: gmp.info,  Node: Integer Internals,  Next: Rational Internals,  Prev: Internals,  Up: Internals

Integer Internals
=================

   `mpz_t' variables represent integers using sign and magnitude, in
space dynamically allocated and reallocated.  The fields are as follows.

`_mp_size'
     The number of limbs, or the negative of that when representing a
     negative integer.  Zero is represented by `_mp_size' set to zero,
     in which case the `_mp_d' data is unused.

`_mp_d'
     A pointer to an array of limbs which is the magnitude.  These are
     stored "little endian" as per the `mpn' functions, so `_mp_d[0]'
     is the least significant limb and `_mp_d[ABS(_mp_size)-1]' is the
     most significant.  Whenever `_mp_size' is non-zero, the most
     significant limb is non-zero.

     Currently there's always at least one limb allocated, so for
     instance `mpz_set_ui' never needs to reallocate, and `mpz_get_ui'
     can fetch `_mp_d[0]' unconditionally (though its value is then
     only wanted if `_mp_size' is non-zero).

`_mp_alloc'
     `_mp_alloc' is the number of limbs currently allocated at `_mp_d',
     and naturally `_mp_alloc >= ABS(_mp_size)'.  When an `mpz' routine
     is about to (or might be about to) increase `_mp_size', it checks
     `_mp_alloc' to see whether there's enough space, and reallocates
     if not.  `MPZ_REALLOC' is generally used for this.

   The various bitwise logical functions like `mpz_and' behave as if
negative values were twos complement.  But sign and magnitude is always
used internally, and necessary adjustments are made during the
calculations.  Sometimes this isn't pretty, but sign and magnitude are
best for other routines.

   Some internal temporary variables are setup with `MPZ_TMP_INIT' and
these have `_mp_d' space obtained from `TMP_ALLOC' rather than the
memory allocation functions.  Care is taken to ensure that these are
big enough that no reallocation is necessary (since it would have
unpredictable consequences).


File: gmp.info,  Node: Rational Internals,  Next: Float Internals,  Prev: Integer Internals,  Up: Internals

Rational Internals
==================

   `mpq_t' variables represent rationals using an `mpz_t' numerator and
denominator (*note Integer Internals::).

   The canonical form adopted is denominator positive (and non-zero),
no common factors between numerator and denominator, and zero uniquely
represented as 0/1.

   It's believed that casting out common factors at each stage of a
calculation is best in general.  A GCD is an O(N^2) operation so it's
better to do a few small ones immediately than to delay and have to do
a big one later.  Knowing the numerator and denominator have no common
factors can be used for example in `mpq_mul' to make only two cross
GCDs necessary, not four.

   This general approach to common factors is badly sub-optimal in the
presence of simple factorizations or little prospect for cancellation,
but GMP has no way to know when this will occur.  As per *Note
Efficiency::, that's left to applications.  The `mpq_t' framework might
still suit, with `mpq_numref' and `mpq_denref' for direct access to the
numerator and denominator, or of course `mpz_t' variables can be used
directly.


File: gmp.info,  Node: Float Internals,  Next: Raw Output Internals,  Prev: Rational Internals,  Up: Internals

Float Internals
===============

   Efficient calculation is the primary aim of GMP floats and the use
of whole limbs and simple rounding facilitates this.

   `mpf_t' floats have a variable precision mantissa and a single
machine word signed exponent.  The mantissa is represented using sign
and magnitude.

        most                   least
     significant            significant
        limb                   limb
     
                                 _mp_d
      |---- _mp_exp --->           |
       _____ _____ _____ _____ _____
      |_____|_____|_____|_____|_____|
                        . <------------ radix point
     
       <-------- _mp_size --------->

The fields are as follows.

`_mp_size'
     The number of limbs currently in use, or the negative of that when
     representing a negative value.  Zero is represented by `_mp_size'
     and `_mp_exp' both set to zero, and in that case the `_mp_d' data
     is unused.  (In the future `_mp_exp' might be undefined when
     representing zero.)

`_mp_prec'
     The precision of the mantissa, in limbs.  In any calculation the
     aim is to produce `_mp_prec' limbs of result (the most significant
     being non-zero).

`_mp_d'
     A pointer to the array of limbs which is the absolute value of the
     mantissa.  These are stored "little endian" as per the `mpn'
     functions, so `_mp_d[0]' is the least significant limb and
     `_mp_d[ABS(_mp_size)-1]' the most significant.

     The most significant limb is always non-zero, but there are no
     other restrictions on its value, in particular the highest 1 bit
     can be anywhere within the limb.

     `_mp_prec+1' limbs are allocated to `_mp_d', the extra limb being
     for convenience (see below).  There are no reallocations during a
     calculation, only in a change of precision with `mpf_set_prec'.

`_mp_exp'
     The exponent, in limbs, determining the location of the implied
     radix point.  Zero means the radix point is just above the most
     significant limb.  Positive values mean a radix point offset
     towards the lower limbs and hence a value >= 1, as for example in
     the diagram above.  Negative exponents mean a radix point further
     above the highest limb.

     Naturally the exponent can be any value, it doesn't have to fall
     within the limbs as the diagram shows, it can be a long way above
     or a long way below.  Limbs other than those included in the
     `{_mp_d,_mp_size}' data are treated as zero.


The following various points should be noted.

Low Zeros
     The least significant limbs `_mp_d[0]' etc can be zero, though
     such low zeros can always be ignored.  Routines likely to produce
     low zeros check and avoid them to save time in subsequent
     calculations, but for most routines they're quite unlikely and
     aren't checked.

Mantissa Size Range
     The `_mp_size' count of limbs in use can be less than `_mp_prec' if
     the value can be represented in less.  This means low precision
     values or small integers stored in a high precision `mpf_t' can
     still be operated on efficiently.

     `_mp_size' can also be greater than `_mp_prec'.  Firstly a value is
     allowed to use all of the `_mp_prec+1' limbs available at `_mp_d',
     and secondly when `mpf_set_prec_raw' lowers `_mp_prec' it leaves
     `_mp_size' unchanged and so the size can be arbitrarily bigger than
     `_mp_prec'.

Rounding
     All rounding is done on limb boundaries.  Calculating `_mp_prec'
     limbs with the high non-zero will ensure the application requested
     minimum precision is obtained.

     The use of simple "trunc" rounding towards zero is efficient,
     since there's no need to examine extra limbs and increment or
     decrement.

Bit Shifts
     Since the exponent is in limbs, there are no bit shifts in basic
     operations like `mpf_add' and `mpf_mul'.  When differing exponents
     are encountered all that's needed is to adjust pointers to line up
     the relevant limbs.

     Of course `mpf_mul_2exp' and `mpf_div_2exp' will require bit
     shifts, but the choice is between an exponent in limbs which
     requires shifts there, or one in bits which requires them almost
     everywhere else.

Use of `_mp_prec+1' Limbs
     The extra limb on `_mp_d' (`_mp_prec+1' rather than just
     `_mp_prec') helps when an `mpf' routine might get a carry from its
     operation.  `mpf_add' for instance will do an `mpn_add' of
     `_mp_prec' limbs.  If there's no carry then that's the result, but
     if there is a carry then it's stored in the extra limb of space and
     `_mp_size' becomes `_mp_prec+1'.

     Whenever `_mp_prec+1' limbs are held in a variable, the low limb
     is not needed for the intended precision, only the `_mp_prec' high
     limbs.  But zeroing it out or moving the rest down is unnecessary.
     Subsequent routines reading the value will simply take the high
     limbs they need, and this will be `_mp_prec' if their target has
     that same precision.  This is no more than a pointer adjustment,
     and must be checked anyway since the destination precision can be
     different from the sources.

     Copy functions like `mpf_set' will retain a full `_mp_prec+1' limbs
     if available.  This ensures that a variable which has `_mp_size'
     equal to `_mp_prec+1' will get its full exact value copied.
     Strictly speaking this is unnecessary since only `_mp_prec' limbs
     are needed for the application's requested precision, but it's
     considered that an `mpf_set' from one variable into another of the
     same precision ought to produce an exact copy.

Application Precisions
     `__GMPF_BITS_TO_PREC' converts an application requested precision
     to an `_mp_prec'.  The value in bits is rounded up to a whole limb
     then an extra limb is added since the most significant limb of
     `_mp_d' is only non-zero and therefore might contain only one bit.

     `__GMPF_PREC_TO_BITS' does the reverse conversion, and removes the
     extra limb from `_mp_prec' before converting to bits.  The net
     effect of reading back with `mpf_get_prec' is simply the precision
     rounded up to a multiple of `mp_bits_per_limb'.

     Note that the extra limb added here for the high only being
     non-zero is in addition to the extra limb allocated to `_mp_d'.
     For example with a 32-bit limb, an application request for 250
     bits will be rounded up to 8 limbs, then an extra added for the
     high being only non-zero, giving an `_mp_prec' of 9.  `_mp_d' then
     gets 10 limbs allocated.  Reading back with `mpf_get_prec' will
     take `_mp_prec' subtract 1 limb and multiply by 32, giving 256
     bits.

     Strictly speaking, the fact the high limb has at least one bit
     means that a float with, say, 3 limbs of 32-bits each will be
     holding at least 65 bits, but for the purposes of `mpf_t' it's
     considered simply to be 64 bits, a nice multiple of the limb size.


File: gmp.info,  Node: Raw Output Internals,  Next: C++ Interface Internals,  Prev: Float Internals,  Up: Internals

Raw Output Internals
====================

`mpz_out_raw' uses the following format.

     +------+------------------------+
     | size |       data bytes       |
     +------+------------------------+

   The size is 4 bytes written most significant byte first, being the
number of subsequent data bytes, or the twos complement negative of
that when a negative integer is represented.  The data bytes are the
absolute value of the integer, written most significant byte first.

   The most significant data byte is always non-zero, so the output is
the same on all systems, irrespective of limb size.

   In GMP 1, leading zero bytes were written to pad the data bytes to a
multiple of the limb size.  `mpz_inp_raw' will still accept this, for
compatibility.

   The use of "big endian" for both the size and data fields is
deliberate, it makes the data easy to read in a hex dump of a file.
Unfortunately it also means that the limb data must be reversed when
reading or writing, so neither a big endian nor little endian system
can just read and write `_mp_d'.


File: gmp.info,  Node: C++ Interface Internals,  Prev: Raw Output Internals,  Up: Internals

C++ Interface Internals
=======================

   A system of expression templates is used to ensure something like
`a=b+c' turns into a simple call to `mpz_add' etc.  For `mpf_class' and
`mpfr_class' the scheme also ensures the precision of the final
destination is used for any temporaries within a statement like
`f=w*x+y*z'.  These are important features which a naive implementation
cannot provide.

   A simplified description of the scheme follows.  The true scheme is
complicated by the fact that expressions have different return types.
For detailed information, refer to the source code.

   To perform an operation, say, addition, we first define a "function
object" evaluating it,

     struct __gmp_binary_plus
     {
       static void eval(mpf_t f, mpf_t g, mpf_t h) { mpf_add(f, g, h); }
     };

And an "additive expression" object,

     __gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >
     operator+(const mpf_class &f, const mpf_class &g)
     {
       return __gmp_expr
         <__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >(f, g);
     }

   The seemingly redundant `__gmp_expr<__gmp_binary_expr<...>>' is used
to encapsulate any possible kind of expression into a single template
type.  In fact even `mpf_class' etc are `typedef' specializations of
`__gmp_expr'.

   Next we define assignment of `__gmp_expr' to `mpf_class'.

     template <class T>
     mpf_class & mpf_class::operator=(const __gmp_expr<T> &expr)
     {
       expr.eval(this->get_mpf_t(), this->precision());
       return *this;
     }
     
     template <class Op>
     void __gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, Op> >::eval
     (mpf_t f, unsigned long int precision)
     {
       Op::eval(f, expr.val1.get_mpf_t(), expr.val2.get_mpf_t());
     }

   where `expr.val1' and `expr.val2' are references to the expression's
operands (here `expr' is the `__gmp_binary_expr' stored within the
`__gmp_expr').

   This way, the expression is actually evaluated only at the time of
assignment, when the required precision (that of `f') is known.
Furthermore the target `mpf_t' is now available, thus we can call
`mpf_add' directly with `f' as the output argument.

   Compound expressions are handled by defining operators taking
subexpressions as their arguments, like this:

     template <class T, class U>
     __gmp_expr
     <__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >
     operator+(const __gmp_expr<T> &expr1, const __gmp_expr<U> &expr2)
     {
       return __gmp_expr
         <__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >
         (expr1, expr2);
     }

   And the corresponding specializations of `__gmp_expr::eval':

     template <class T, class U, class Op>
     void __gmp_expr
     <__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, Op> >::eval
     (mpf_t f, unsigned long int precision)
     {
       // declare two temporaries
       mpf_class temp1(expr.val1, precision), temp2(expr.val2, precision);
       Op::eval(f, temp1.get_mpf_t(), temp2.get_mpf_t());
     }

   The expression is thus recursively evaluated to any level of
complexity and all subexpressions are evaluated to the precision of `f'.


File: gmp.info,  Node: Contributors,  Next: References,  Prev: Internals,  Up: Top

Contributors
************

   Torbjorn Granlund wrote the original GMP library and is still
developing and maintaining it.  Several other individuals and
organizations have contributed to GMP in various ways.  Here is a list
in chronological order:

   Gunnar Sjoedin and Hans Riesel helped with mathematical problems in
early versions of the library.

   Richard Stallman contributed to the interface design and revised the
first version of this manual.

   Brian Beuning and Doug Lea helped with testing of early versions of
the library and made creative suggestions.

   John Amanatides of York University in Canada contributed the function
`mpz_probab_prime_p'.

   Paul Zimmermann of Inria sparked the development of GMP 2, with his
comparisons between bignum packages.

   Ken Weber (Kent State University, Universidade Federal do Rio Grande
do Sul) contributed `mpz_gcd', `mpz_divexact', `mpn_gcd', and
`mpn_bdivmod', partially supported by CNPq (Brazil) grant 301314194-2.

   Per Bothner of Cygnus Support helped to set up GMP to use Cygnus'
configure.  He has also made valuable suggestions and tested numerous
intermediary releases.

   Joachim Hollman was involved in the design of the `mpf' interface,
and in the `mpz' design revisions for version 2.

   Bennet Yee contributed the initial versions of `mpz_jacobi' and
`mpz_legendre'.

   Andreas Schwab contributed the files `mpn/m68k/lshift.S' and
`mpn/m68k/rshift.S' (now in `.asm' form).

   The development of floating point functions of GNU MP 2, were
supported in part by the ESPRIT-BRA (Basic Research Activities) 6846
project POSSO (POlynomial System SOlving).

   GNU MP 2 was finished and released by SWOX AB, SWEDEN, in
cooperation with the IDA Center for Computing Sciences, USA.

   Robert Harley of Inria, France and David Seal of ARM, England,
suggested clever improvements for population count.

   Robert Harley also wrote highly optimized Karatsuba and 3-way Toom
multiplication functions for GMP 3.  He also contributed the ARM
assembly code.

   Torsten Ekedahl of the Mathematical department of Stockholm
University provided significant inspiration during several phases of
the GMP development.  His mathematical expertise helped improve several
algorithms.

   Paul Zimmermann wrote the Divide and Conquer division code, the REDC
code, the REDC-based mpz_powm code, the FFT multiply code, and the
Karatsuba square root.  The ECMNET project Paul is organizing was a
driving force behind many of the optimizations in GMP 3.

   Linus Nordberg wrote the new configure system based on autoconf and
implemented the new random functions.

   Kent Boortz made the Macintosh port.

   Kevin Ryde worked on a number of things: optimized x86 code, m4 asm
macros, parameter tuning, speed measuring, the configure system,
function inlining, divisibility tests, bit scanning, Jacobi symbols,
Fibonacci and Lucas number functions, printf and scanf functions, perl
interface, demo expression parser, the algorithms chapter in the
manual, `gmpasm-mode.el', and various miscellaneous improvements
elsewhere.

   Steve Root helped write the optimized alpha 21264 assembly code.

   Gerardo Ballabio wrote the `gmpxx.h' C++ class interface and the C++
`istream' input routines.

   GNU MP 4.0 was finished and released by Torbjorn Granlund and Kevin
Ryde.  Torbjorn's work was partially funded by the IDA Center for
Computing Sciences, USA.

   (This list is chronological, not ordered after significance.  If you
have contributed to GMP but are not listed above, please tell
<tege@swox.com> about the omission!)

   Thanks goes to Hans Thorsen for donating an SGI system for the GMP
test system environment.


File: gmp.info,  Node: References,  Next: GNU Free Documentation License,  Prev: Contributors,  Up: Top

References
**********

Books
=====

   * Jonathan M. Borwein and Peter B. Borwein, "Pi and the AGM: A Study
     in Analytic Number Theory and Computational Complexity", Wiley,
     John & Sons, 1998.

   * Henri Cohen, "A Course in Computational Algebraic Number Theory",
     Graduate Texts in Mathematics number 138, Springer-Verlag, 1993.
     `http://www.math.u-bordeaux.fr/~cohen'

   * Donald E. Knuth, "The Art of Computer Programming", volume 2,
     "Seminumerical Algorithms", 3rd edition, Addison-Wesley, 1998.
     `http://www-cs-faculty.stanford.edu/~knuth/taocp.html'

   * John D. Lipson, "Elements of Algebra and Algebraic Computing", The
     Benjamin Cummings Publishing Company Inc, 1981.

   * Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone,
     "Handbook of Applied Cryptography",
     `http://www.cacr.math.uwaterloo.ca/hac/'

   * Richard M. Stallman, "Using and Porting GCC", Free Software
     Foundation, 1999, available online
     `http://www.gnu.org/software/gcc/onlinedocs/', and in the GCC
     package `ftp://ftp.gnu.org/gnu/gcc/'

Papers
======

   * Christoph Burnikel and Joachim Ziegler, "Fast Recursive Division",
     Max-Planck-Institut fuer Informatik Research Report
     MPI-I-98-1-022,
     `http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-022'

   * Torbjorn Granlund and Peter L. Montgomery, "Division by Invariant
     Integers using Multiplication", in Proceedings of the SIGPLAN
     PLDI'94 Conference, June 1994.  Also available
     `ftp://ftp.cwi.nl/pub/pmontgom/divcnst.psa4.gz' (and .psl.gz).

   * Peter L. Montgomery, "Modular Multiplication Without Trial
     Division", in Mathematics of Computation, volume 44, number 170,
     April 1985.

   * Tudor Jebelean, "An algorithm for exact division", Journal of
     Symbolic Computation, volume 15, 1993, pp. 169-180.  Research
     report version available
     `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-35.ps.gz'

   * Tudor Jebelean, "Exact Division with Karatsuba Complexity -
     Extended Abstract", RISC-Linz technical report 96-31,
     `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-31.ps.gz'

   * Tudor Jebelean, "Practical Integer Division with Karatsuba
     Complexity", ISSAC 97, pp. 339-341.  Technical report available
     `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-29.ps.gz'

   * Tudor Jebelean, "A Generalization of the Binary GCD Algorithm",
     ISSAC 93, pp. 111-116.  Technical report version available
     `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-01.ps.gz'

   * Tudor Jebelean, "A Double-Digit Lehmer-Euclid Algorithm for
     Finding the GCD of Long Integers", Journal of Symbolic
     Computation, volume 19, 1995, pp. 145-157.  Technical report
     version also available
     `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-69.ps.gz'

   * Werner Krandick and Tudor Jebelean, "Bidirectional Exact Integer
     Division", Journal of Symbolic Computation, volume 21, 1996, pp.
     441-455.  Early technical report version also available
     `ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz'

   * R. Moenck and A. Borodin, "Fast Modular Transforms via Division",
     Proceedings of the 13th Annual IEEE Symposium on Switching and
     Automata Theory, October 1972, pp. 90-96.  Reprinted as "Fast
     Modular Transforms", Journal of Computer and System Sciences,
     volume 8, number 3, June 1974, pp. 366-386.

   * Arnold Scho"nhage and Volker Strassen, "Schnelle Multiplikation
     grosser Zahlen", Computing 7, 1971, pp. 281-292.

   * Kenneth Weber, "The accelerated integer GCD algorithm", ACM
     Transactions on Mathematical Software, volume 21, number 1, March
     1995, pp. 111-122.

   * Paul Zimmermann, "Karatsuba Square Root", INRIA Research Report
     3805, November 1999, `http://www.inria.fr/RRRT/RR-3805.html'

   * Paul Zimmermann, "A Proof of GMP Fast Division and Square Root
     Implementations",
     `http://www.loria.fr/~zimmerma/papers/proof-div-sqrt.ps.gz'

   * Dan Zuras, "On Squaring and Multiplying Large Integers", ARITH-11:
     IEEE Symposium on Computer Arithmetic, 1993, pp. 260 to 271.
     Reprinted as "More on Multiplying and Squaring Large Integers",
     IEEE Transactions on Computers, volume 43, number 8, August 1994,
     pp. 899-908.