[BACK]Return to get_str.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpf

Diff for /OpenXM_contrib/gmp/mpf/Attic/get_str.c between version 1.1.1.1 and 1.1.1.2

version 1.1.1.1, 2000/01/10 15:35:22 version 1.1.1.2, 2000/09/09 14:13:10
Line 4 
Line 4 
   example, the number 3.1416 would be returned as "31416" in DIGIT_PTR and    example, the number 3.1416 would be returned as "31416" in DIGIT_PTR and
   1 in EXP.    1 in EXP.
   
 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.  Copyright (C) 1993, 1994, 1995, 1996, 1997, 2000 Free Software Foundation,
   Inc.
   
 This file is part of the GNU MP Library.  This file is part of the GNU MP Library.
   
 The GNU MP Library is free software; you can redistribute it and/or modify  The GNU MP Library is free software; you can redistribute it and/or modify
 it under the terms of the GNU Library General Public License as published by  it under the terms of the GNU Lesser General Public License as published by
 the Free Software Foundation; either version 2 of the License, or (at your  the Free Software Foundation; either version 2.1 of the License, or (at your
 option) any later version.  option) any later version.
   
 The GNU MP Library is distributed in the hope that it will be useful, but  The GNU MP Library is distributed in the hope that it will be useful, but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License for more details.  License for more details.
   
 You should have received a copy of the GNU Library General Public License  You should have received a copy of the GNU Lesser General Public License
 along with the GNU MP Library; see the file COPYING.LIB.  If not, write to  along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,  the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 MA 02111-1307, USA. */  MA 02111-1307, USA. */
Line 28  MA 02111-1307, USA. */
Line 29  MA 02111-1307, USA. */
 #include "longlong.h"  #include "longlong.h"
   
 /*  /*
    New algorithm for converting fractions (951019):    The conversion routine works like this:
    0. Call the fraction to convert F.  
    1. Compute [exp * log(2^BITS_PER_MP_LIMB)/log(B)], i.e.,  
       [exp * BITS_PER_MP_LIMB * __mp_bases[B].chars_per_bit_exactly].  Exp is  
       the number of limbs between the limb point and the most significant  
       non-zero limb.  Call this result n.  
    2. Compute B^n.  
    3. F*B^n will now be just below 1, which can be converted easily.  (Just  
       multiply by B repeatedly, and see the digits fall out as integers.)  
    We should interrupt the conversion process of F*B^n as soon as the number  
    of digits requested have been generated.  
   
    New algorithm for converting integers (951019):    1. If U >= 1, compute U' = U / base**n, where n is chosen such that U' is
    0. Call the integer to convert I.       the largest number smaller than 1.
    1. Compute [exp * log(2^BITS_PER_MP_LIMB)/log(B)], i.e.,    2. Else, if U < 1, compute U' = U * base**n, where n is chosen such that U'
       [exp BITS_PER_MP_LIMB * __mp_bases[B].chars_per_bit_exactly].  Exp is       is the largest number smaller than 1.
       the number of limbs between the limb point and the least significant    3. Convert U' (by repeatedly multiplying it by base).  This process can
       non-zero limb.  Call this result n.       easily be interrupted when the needed number of digits are generated.
    2. Compute B^n.  
    3. I/B^n can be converted easily.  (Just divide by B repeatedly.  In GMP,  
       this is best done by calling mpn_get_str.)  
    Note that converting I/B^n could yield more digits than requested.  For  
    efficiency, the variable n above should be set larger in such cases, to  
    kill all undesired digits in the division in step 3.  
 */  */
   
 char *  char *
Line 66  mpf_get_str (digit_ptr, exp, base, n_digits, u)
Line 51  mpf_get_str (digit_ptr, exp, base, n_digits, u)
      mpf_srcptr u;       mpf_srcptr u;
 #endif  #endif
 {  {
     mp_ptr up;
   mp_size_t usize;    mp_size_t usize;
   mp_exp_t uexp;    mp_exp_t uexp;
     mp_size_t prec;
   unsigned char *str;    unsigned char *str;
   size_t str_size;  
   char *num_to_text;    char *num_to_text;
   long i;                       /* should be size_t */  
   mp_ptr rp;    mp_ptr rp;
     mp_size_t rsize;
   mp_limb_t big_base;    mp_limb_t big_base;
   size_t digits_computed_so_far;    size_t digits_computed_so_far;
   int dig_per_u;    int dig_per_u;
   mp_srcptr up;  
   unsigned char *tstr;    unsigned char *tstr;
   mp_exp_t exp_in_base;    mp_exp_t exp_in_base;
     int cnt;
   TMP_DECL (marker);    TMP_DECL (marker);
   
   TMP_MARK (marker);    TMP_MARK (marker);
   usize = u->_mp_size;    usize = u->_mp_size;
   uexp = u->_mp_exp;    uexp = u->_mp_exp;
     prec = u->_mp_prec + 1;
   
   if (base >= 0)    if (base >= 0)
     {      {
Line 101  mpf_get_str (digit_ptr, exp, base, n_digits, u)
Line 88  mpf_get_str (digit_ptr, exp, base, n_digits, u)
      Also, if 0 digits were requested, give *exactly* as many digits       Also, if 0 digits were requested, give *exactly* as many digits
      as can be accurately represented.  */       as can be accurately represented.  */
   {    {
     size_t max_digits = (((u->_mp_prec - 1) * BITS_PER_MP_LIMB)      size_t max_digits = 2 + (size_t) (((prec - 2) * BITS_PER_MP_LIMB)
                          * __mp_bases[base].chars_per_bit_exactly);                                        * __mp_bases[base].chars_per_bit_exactly);
     if (n_digits == 0 || n_digits > max_digits)      if (n_digits == 0 || n_digits > max_digits)
       n_digits = max_digits;        n_digits = max_digits;
   #if 0
   /* This seems to work, but check it better before enabling it.  */
       else
         /* Limit the computation precision if only a limited digits are
            desired.  We could probably decrease both this, and avoid the +1
            for setting prec above.  */
         prec = 2 + (mp_size_t)
           (n_digits / (BITS_PER_MP_LIMB * __mp_bases[base].chars_per_bit_exactly));
   #endif
   }    }
   
   if (digit_ptr == 0)    if (digit_ptr == 0)
Line 123  mpf_get_str (digit_ptr, exp, base, n_digits, u)
Line 119  mpf_get_str (digit_ptr, exp, base, n_digits, u)
   
   str = (unsigned char *) digit_ptr;    str = (unsigned char *) digit_ptr;
   
   /* Allocate temporary digit space.  We can't put digits directly in the user  
      area, since we almost always generate more digits than requested.  */  
   tstr = (unsigned char *) TMP_ALLOC (n_digits + 3 * BITS_PER_MP_LIMB);  
   
   if (usize < 0)    if (usize < 0)
     {      {
       *digit_ptr = '-';        *digit_ptr = '-';
Line 134  mpf_get_str (digit_ptr, exp, base, n_digits, u)
Line 126  mpf_get_str (digit_ptr, exp, base, n_digits, u)
       usize = -usize;        usize = -usize;
     }      }
   
   digits_computed_so_far = 0;    up = PTR (u);
   
   if (uexp > usize)    if (uexp > 0)
     {      {
       /* The number has just an integral part.  */        /* U >= 1.  Compute U' = U / base**n, where n is chosen such that U' < 1.  */
       mp_size_t rsize;        mp_size_t ralloc;
       mp_size_t exp_in_limbs;        mp_ptr tp;
       mp_size_t msize;        int i;
       mp_ptr tp, xp, mp;  
       int cnt;  
       mp_limb_t cy;  
       mp_size_t start_str;  
       mp_size_t n_limbs;  
   
       n_limbs = 2 + ((mp_size_t) (n_digits / __mp_bases[base].chars_per_bit_exactly)        /* Limit the number of digits to develop for small integers.  */
                      / BITS_PER_MP_LIMB);  #if 0
         if (exp_in_base < n_digits)
           n_digits = exp_in_base;
   #endif
   
       /* Compute n such that [u/B^n] contains (somewhat) more than n_digits        count_leading_zeros (cnt, up[usize - 1]);
          digits.  (We compute less than that only if that is an exact number,        exp_in_base = (((double) uexp * BITS_PER_MP_LIMB - cnt)
          i.e., exp is small enough.)  */                       * __mp_bases[base].chars_per_bit_exactly);
         exp_in_base += 1;
   
       exp_in_limbs = uexp;        ralloc = (prec + 1) * 2;
         rp = (mp_ptr) TMP_ALLOC (ralloc * BYTES_PER_MP_LIMB);
         tp = (mp_ptr) TMP_ALLOC (ralloc * BYTES_PER_MP_LIMB);
   
       if (n_limbs >= exp_in_limbs)        rp[0] = base;
         rsize = 1;
         count_leading_zeros (cnt, exp_in_base);
         for (i = BITS_PER_MP_LIMB - cnt - 2; i >= 0; i--)
         {          {
           /* The number is so small that we convert the entire number.  */            mpn_mul_n (tp, rp, rp, rsize);
           exp_in_base = 0;            rsize = 2 * rsize;
           rp = (mp_ptr) TMP_ALLOC (exp_in_limbs * BYTES_PER_MP_LIMB);            rsize -= tp[rsize - 1] == 0;
           MPN_ZERO (rp, exp_in_limbs - usize);  
           MPN_COPY (rp + (exp_in_limbs - usize), u->_mp_d, usize);            if (rsize > prec)
           rsize = exp_in_limbs;              {
                 MPN_COPY (rp, tp + rsize - prec, prec + 1);
                 rsize = prec;
               }
             else
               MP_PTR_SWAP (rp, tp);
   
             if (((exp_in_base >> i) & 1) != 0)
               {
                 mp_limb_t cy;
                 cy = mpn_mul_1 (rp, rp, rsize, (mp_limb_t) base);
                 rp[rsize] = cy;
                 rsize += cy != 0;
               }
         }          }
   
         count_leading_zeros (cnt, rp[rsize - 1]);
         if (cnt != 0)
           {
             mpn_lshift (rp, rp, rsize, cnt);
   
             if (usize < rsize)
               {
                 /* Pad out U to the size of R while shifting it.
                    (Reuse temporary space at tp.)  */
                 mp_limb_t cy;
   
                 MPN_ZERO (tp, rsize - usize);
                 cy = mpn_lshift (tp + rsize - usize, up, usize, cnt);
                 up = tp;
                 usize = rsize;
                 if (cy)
                   up[usize++] = cy;
                 ASSERT_ALWAYS (usize <= ralloc);  /* sufficient space? */
               }
             else
               {
                 /* Copy U to temporary space.  */
                 /* FIXME: Allocate more space for tp above, and reuse it here.  */
                 mp_limb_t cy;
                 mp_ptr tup = (mp_ptr) TMP_ALLOC ((usize + 1) * BYTES_PER_MP_LIMB);
   
                 cy = mpn_lshift (tup, up, usize, cnt);
                 up = tup;
                 if (cy)
                   up[usize++] = cy;
               }
           }
       else        else
         {          {
           exp_in_limbs -= n_limbs;            if (usize < rsize)
           exp_in_base = (((exp_in_limbs * BITS_PER_MP_LIMB - 1))              {
                          * __mp_bases[base].chars_per_bit_exactly);                /* Pad out U to the size of R.  (Reuse temporary space at tp.)  */
                 MPN_ZERO (tp, rsize - usize);
                 MPN_COPY (tp + rsize - usize, up, usize);
                 up = tp;
                 usize = rsize;
               }
             else
               {
                 /* Copy U to temporary space.  */
                 mp_ptr tmp = (mp_ptr) TMP_ALLOC (usize * BYTES_PER_MP_LIMB);
                 MPN_COPY (tmp, up, usize);
                 up = tmp;
               }
           }
   
           rsize = exp_in_limbs + 1;        {
           rp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);          mp_ptr qp;
           tp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);          qp = (mp_ptr) TMP_ALLOC (prec * BYTES_PER_MP_LIMB);
           mpn_divrem (qp, prec - (usize - rsize), up, usize, rp, rsize);
           rsize = prec;
           rp = qp;
         }
       }
     else
       {
         /* U < 1.  Compute U' = U * base**n, where n is chosen such that U' is
            the greatest number that still satisfies U' < 1.  */
         mp_size_t ralloc;
         mp_ptr tp;
         int i;
   
         uexp = -uexp;
         count_leading_zeros (cnt, up[usize - 1]);
         exp_in_base = (((double) uexp * BITS_PER_MP_LIMB + cnt - 1)
                        * __mp_bases[base].chars_per_bit_exactly);
         if (exp_in_base < 0)
           exp_in_base = 0;
   
         if (exp_in_base != 0)
           {
             ralloc = (prec + 1) * 2;
             rp = (mp_ptr) TMP_ALLOC (ralloc * BYTES_PER_MP_LIMB);
             tp = (mp_ptr) TMP_ALLOC (ralloc * BYTES_PER_MP_LIMB);
   
           rp[0] = base;            rp[0] = base;
           rsize = 1;            rsize = 1;
   
           count_leading_zeros (cnt, exp_in_base);            count_leading_zeros (cnt, exp_in_base);
           for (i = BITS_PER_MP_LIMB - cnt - 2; i >= 0; i--)            for (i = BITS_PER_MP_LIMB - cnt - 2; i >= 0; i--)
             {              {
               mpn_mul_n (tp, rp, rp, rsize);                mpn_mul_n (tp, rp, rp, rsize);
               rsize = 2 * rsize;                rsize = 2 * rsize;
               rsize -= tp[rsize - 1] == 0;                rsize -= tp[rsize - 1] == 0;
               xp = tp; tp = rp; rp = xp;                if (rsize > prec)
                   {
                     MPN_COPY (rp, tp + rsize - prec, prec + 1);
                     rsize = prec;
                   }
                 else
                   MP_PTR_SWAP (rp, tp);
   
               if (((exp_in_base >> i) & 1) != 0)                if (((exp_in_base >> i) & 1) != 0)
                 {                  {
                     mp_limb_t cy;
                   cy = mpn_mul_1 (rp, rp, rsize, (mp_limb_t) base);                    cy = mpn_mul_1 (rp, rp, rsize, (mp_limb_t) base);
                   rp[rsize] = cy;                    rp[rsize] = cy;
                   rsize += cy != 0;                    rsize += cy != 0;
                 }                  }
             }              }
   
           mp = u->_mp_d;  
           msize = usize;  
   
           {            {
             mp_ptr qp;              mp_limb_t cy;
             mp_limb_t qflag;              tp = (mp_ptr) TMP_ALLOC ((rsize + usize) * BYTES_PER_MP_LIMB);
             mp_size_t xtra;              if (rsize > usize)
             if (msize < rsize)                cy = mpn_mul (tp, rp, rsize, up, usize);
               {  
                 mp_ptr tmp = (mp_ptr) TMP_ALLOC ((rsize+1)* BYTES_PER_MP_LIMB);  
                 MPN_ZERO (tmp, rsize - msize);  
                 MPN_COPY (tmp + rsize - msize, mp, msize);  
                 mp = tmp;  
                 msize = rsize;  
               }  
             else              else
               {                cy = mpn_mul (tp, up, usize, rp, rsize);
                 mp_ptr tmp = (mp_ptr) TMP_ALLOC ((msize+1)* BYTES_PER_MP_LIMB);              rsize += usize;
                 MPN_COPY (tmp, mp, msize);              rsize -= cy == 0;
                 mp = tmp;              rp = tp;
               }  
             count_leading_zeros (cnt, rp[rsize - 1]);  
             cy = 0;  
             if (cnt != 0)  
               {  
                 mpn_lshift (rp, rp, rsize, cnt);  
                 cy = mpn_lshift (mp, mp, msize, cnt);  
                 if (cy)  
                   mp[msize++] = cy;  
               }  
   
             {  
               mp_size_t qsize = n_limbs + (cy != 0);  
               qp = (mp_ptr) TMP_ALLOC ((qsize + 1) * BYTES_PER_MP_LIMB);  
               xtra = qsize - (msize - rsize);  
               qflag = mpn_divrem (qp, xtra, mp, msize, rp, rsize);  
               qp[qsize] = qflag;  
               rsize = qsize + qflag;  
               rp = qp;  
             }  
           }            }
             exp_in_base = -exp_in_base;
         }          }
         else
       str_size = mpn_get_str (tstr, base, rp, rsize);  
   
       if (str_size > n_digits + 3 * BITS_PER_MP_LIMB)  
         abort ();  
   
       start_str = 0;  
       while (tstr[start_str] == 0)  
         start_str++;  
   
       for (i = start_str; i < str_size; i++)  
         {          {
           tstr[digits_computed_so_far++] = tstr[i];            rp = (mp_ptr) TMP_ALLOC (usize * BYTES_PER_MP_LIMB);
           if (digits_computed_so_far > n_digits)            MPN_COPY (rp, up, usize);
             break;            rsize = usize;
         }          }
       exp_in_base = exp_in_base + str_size - start_str;  
       goto finish_up;  
     }      }
   
   exp_in_base = 0;    big_base = __mp_bases[base].big_base;
     dig_per_u = __mp_bases[base].chars_per_limb;
   
   if (uexp > 0)    /* Hack for correctly (although not optimally) converting to bases that are
        powers of 2.  If we deem it important, we could handle powers of 2 by
        shifting and masking (just like mpn_get_str).  */
     if (big_base < 10)            /* logarithm of base when power of two */
     {      {
       /* The number has an integral part, convert that first.        int logbase = big_base;
          If there is a fractional part too, it will be handled later.  */        if (dig_per_u * logbase == BITS_PER_MP_LIMB)
       mp_size_t start_str;          dig_per_u--;
         big_base = (mp_limb_t) 1 << (dig_per_u * logbase);
         /* fall out to general code... */
       }
   
       rp = (mp_ptr) TMP_ALLOC (uexp * BYTES_PER_MP_LIMB);    /* Now that we have normalized the number, develop the digits, essentially by
       up = u->_mp_d + usize - uexp;       multiplying it by BASE.  We initially develop at least 3 extra digits,
       MPN_COPY (rp, up, uexp);       since the two leading digits might become zero, and we need one extra for
        rounding the output properly.  */
   
       str_size = mpn_get_str (tstr, base, rp, uexp);    /* Allocate temporary digit space.  We can't put digits directly in the user
        area, since we generate more digits than requested.  (We allocate
        BITS_PER_MP_LIMB extra bytes because of the digit block nature of the
        conversion.)  */
     tstr = (unsigned char *) TMP_ALLOC (n_digits + BITS_PER_MP_LIMB + 3);
   
       start_str = 0;    for (digits_computed_so_far = 0; digits_computed_so_far < n_digits + 3;
       while (tstr[start_str] == 0)         digits_computed_so_far += dig_per_u)
         start_str++;      {
         mp_limb_t cy;
       for (i = start_str; i < str_size; i++)        /* For speed: skip trailing zeroes.  */
         if (rp[0] == 0)
         {          {
           tstr[digits_computed_so_far++] = tstr[i];            rp++;
           if (digits_computed_so_far > n_digits)            rsize--;
             if (rsize == 0)
             {              {
               exp_in_base = str_size - start_str;                n_digits = digits_computed_so_far;
               goto finish_up;                break;
             }              }
         }          }
   
       exp_in_base = str_size - start_str;        cy = mpn_mul_1 (rp, rp, rsize, big_base);
       /* Modify somewhat and fall out to convert fraction... */  
       usize -= uexp;  
       uexp = 0;  
     }  
   
   if (usize <= 0)        ASSERT_ALWAYS (! (digits_computed_so_far == 0 && cy == 0));
     goto finish_up;  
   
   /* Convert the fraction.  */        /* Convert N1 from BIG_BASE to a string of digits in BASE
   {           using single precision operations.  */
     mp_size_t rsize, msize;  
     mp_ptr rp, tp, xp, mp;  
     int cnt;  
     mp_limb_t cy;  
     mp_exp_t nexp;  
   
     big_base = __mp_bases[base].big_base;  
     dig_per_u = __mp_bases[base].chars_per_limb;  
   
     /* Hack for correctly (although not efficiently) converting to bases that  
        are powers of 2.  If we deem it important, we could handle powers of 2  
        by shifting and masking (just like mpn_get_str).  */  
     if (big_base < 10)          /* logarithm of base when power of two */  
       {        {
         int logbase = big_base;          int i;
         if (dig_per_u * logbase == BITS_PER_MP_LIMB)          unsigned char *s = tstr + digits_computed_so_far + dig_per_u;
           dig_per_u--;          for (i = dig_per_u - 1; i >= 0; i--)
         big_base = (mp_limb_t) 1 << (dig_per_u * logbase);  
         /* fall out to general code... */  
       }  
   
 #if 0  
     if (0 && uexp == 0)  
       {  
         rp = (mp_ptr) TMP_ALLOC (usize * BYTES_PER_MP_LIMB);  
         up = u->_mp_d;  
         MPN_COPY (rp, up, usize);  
         rsize = usize;  
         nexp = 0;  
       }  
     else  
       {}  
 #endif  
     uexp = -uexp;  
     if (u->_mp_d[usize - 1] == 0)  
       cnt = 0;  
     else  
       count_leading_zeros (cnt, u->_mp_d[usize - 1]);  
   
     nexp = ((uexp * BITS_PER_MP_LIMB) + cnt)  
       * __mp_bases[base].chars_per_bit_exactly;  
   
     if (nexp == 0)  
       {  
         rp = (mp_ptr) TMP_ALLOC (usize * BYTES_PER_MP_LIMB);  
         up = u->_mp_d;  
         MPN_COPY (rp, up, usize);  
         rsize = usize;  
       }  
     else  
       {  
         rsize = uexp + 2;  
         rp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);  
         tp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);  
   
         rp[0] = base;  
         rsize = 1;  
   
         count_leading_zeros (cnt, nexp);  
         for (i = BITS_PER_MP_LIMB - cnt - 2; i >= 0; i--)  
           {            {
             mpn_mul_n (tp, rp, rp, rsize);              *--s = cy % base;
             rsize = 2 * rsize;              cy /= base;
             rsize -= tp[rsize - 1] == 0;  
             xp = tp; tp = rp; rp = xp;  
   
             if (((nexp >> i) & 1) != 0)  
               {  
                 cy = mpn_mul_1 (rp, rp, rsize, (mp_limb_t) base);  
                 rp[rsize] = cy;  
                 rsize += cy != 0;  
               }  
           }            }
   
         /* Did our multiplier (base^nexp) cancel with uexp?  */  
 #if 0  
         if (uexp != rsize)  
           {  
             do  
               {  
                 cy = mpn_mul_1 (rp, rp, rsize, big_base);  
                 nexp += dig_per_u;  
               }  
             while (cy == 0);  
             rp[rsize++] = cy;  
           }  
 #endif  
         mp = u->_mp_d;  
         msize = usize;  
   
         tp = (mp_ptr) TMP_ALLOC ((rsize + msize) * BYTES_PER_MP_LIMB);  
         if (rsize > msize)  
           cy = mpn_mul (tp, rp, rsize, mp, msize);  
         else  
           cy = mpn_mul (tp, mp, msize, rp, rsize);  
         rsize += msize;  
         rsize -= cy == 0;  
         rp = tp;  
   
         /* If we already output digits (for an integral part) pad  
            leading zeros.  */  
         if (digits_computed_so_far != 0)  
           for (i = 0; i < nexp; i++)  
             tstr[digits_computed_so_far++] = 0;  
       }        }
       }
   
     while (digits_computed_so_far <= n_digits)    /* We can have at most two leading 0.  Remove them.  */
       {  
         /* For speed: skip trailing zeroes.  */  
         if (rp[0] == 0)  
           {  
             rp++;  
             rsize--;  
             if (rsize == 0)  
               {  
                 n_digits = digits_computed_so_far;  
                 break;  
               }  
           }  
   
         cy = mpn_mul_1 (rp, rp, rsize, big_base);  
         if (digits_computed_so_far == 0 && cy == 0)  
           {  
             abort ();  
             nexp += dig_per_u;  
             continue;  
           }  
         /* Convert N1 from BIG_BASE to a string of digits in BASE  
            using single precision operations.  */  
         {  
           unsigned char *s = tstr + digits_computed_so_far + dig_per_u;  
           for (i = dig_per_u - 1; i >= 0; i--)  
             {  
               *--s = cy % base;  
               cy /= base;  
             }  
         }  
         digits_computed_so_far += dig_per_u;  
       }  
     if (exp_in_base == 0)  
       exp_in_base = -nexp;  
   }  
   
  finish_up:  
   
   /* We can have at most one leading 0.  Remove it.  */  
   if (tstr[0] == 0)    if (tstr[0] == 0)
     {      {
       tstr++;        tstr++;
       digits_computed_so_far--;        digits_computed_so_far--;
       exp_in_base--;        exp_in_base--;
     }  
   
   /* We should normally have computed too many digits.  Round the result        if (tstr[0] == 0)
      at the point indicated by n_digits.  */  
   if (digits_computed_so_far > n_digits)  
     {  
       /* Round the result.  */  
       if (tstr[n_digits] * 2 >= base)  
         {          {
           digits_computed_so_far = n_digits;            tstr++;
           for (i = n_digits - 1; i >= 0; i--)            digits_computed_so_far--;
             {            exp_in_base--;
               unsigned int x;  
               x = ++(tstr[i]);            if (tstr[0] == 0)
               if (x < base)              abort ();
                 goto rounded_ok;  
               digits_computed_so_far--;  
             }  
           tstr[0] = 1;  
           digits_computed_so_far = 1;  
           exp_in_base++;  
         rounded_ok:;  
         }          }
     }      }
   
   /* We might have fewer digits than requested as a result of rounding above,    {
      (i.e. 0.999999 => 1.0) or because we have a number that simply doesn't      size_t i;
      need many digits in this base (i.e., 0.125 in base 10).  */  
   if (n_digits > digits_computed_so_far)  
     n_digits = digits_computed_so_far;  
   
   /* Remove trailing 0.  There can be many zeros. */      /* We should normally have computed too many digits.  Round the result
   while (n_digits != 0 && tstr[n_digits - 1] == 0)         at the point indicated by n_digits.  */
     n_digits--;      if (digits_computed_so_far > n_digits)
         {
           /* Round the result.  */
           if (tstr[n_digits] * 2 >= base)
             {
               digits_computed_so_far = n_digits;
               for (i = n_digits - 1;; i--)
                 {
                   unsigned int x;
                   x = ++(tstr[i]);
                   if (x != base)
                     break;
                   digits_computed_so_far--;
                   if (i == 0)
                     {
                       /* We had something like `9999999...9d', where 2*d >= base.
                          This rounds up to `1', increasing the exponent.  */
                       tstr[0] = 1;
                       digits_computed_so_far = 1;
                       exp_in_base++;
                       break;
                     }
                 }
             }
         }
   
   /* Translate to ascii and null-terminate.  */      /* We might have fewer digits than requested as a result of rounding above,
   for (i = 0; i < n_digits; i++)         (i.e. 0.999999 => 1.0) or because we have a number that simply doesn't
     *str++ = num_to_text[tstr[i]];         need many digits in this base (i.e., 0.125 in base 10).  */
       if (n_digits > digits_computed_so_far)
         n_digits = digits_computed_so_far;
   
       /* Remove trailing 0.  There can be many zeros.  */
       while (n_digits != 0 && tstr[n_digits - 1] == 0)
         n_digits--;
   
       /* Translate to ascii and null-terminate.  */
       for (i = 0; i < n_digits; i++)
         *str++ = num_to_text[tstr[i]];
     }
   *str = 0;    *str = 0;
   *exp = exp_in_base;    *exp = exp_in_base;
   TMP_FREE (marker);    TMP_FREE (marker);
   return digit_ptr;    return digit_ptr;
 }  }
   
 #if COPY_THIS_TO_OTHER_PLACES  
       /* Use this expression in lots of places in the library instead of the  
          count_leading_zeros+expression that is used currently.  This expression  
          is much more accurate and will save odles of memory.  */  
       rsize = ((mp_size_t) (exp_in_base / __mp_bases[base].chars_per_bit_exactly)  
                + BITS_PER_MP_LIMB) / BITS_PER_MP_LIMB;  
 #endif  

Legend:
Removed from v.1.1.1.1  
changed lines
  Added in v.1.1.1.2

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>