Annotation of OpenXM_contrib/gmp/mpfr/acosh.c, Revision 1.1
1.1 ! ohara 1: /* mpfr_acosh -- Inverse Hyperbolic Cosine of Unsigned Integer Number
! 2:
! 3: Copyright 2001, 2002 Free Software Foundation.
! 4:
! 5: This file is part of the MPFR Library.
! 6:
! 7: The MPFR Library is free software; you can redistribute it and/or modify
! 8: it under the terms of the GNU Lesser General Public License as published by
! 9: the Free Software Foundation; either version 2.1 of the License, or (at your
! 10: option) any later version.
! 11:
! 12: The MPFR Library is distributed in the hope that it will be useful, but
! 13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! 14: or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
! 15: License for more details.
! 16:
! 17: You should have received a copy of the GNU Lesser General Public License
! 18: along with the MPFR Library; see the file COPYING.LIB. If not, write to
! 19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
! 20: MA 02111-1307, USA. */
! 21:
! 22: #include "gmp.h"
! 23: #include "gmp-impl.h"
! 24: #include "mpfr.h"
! 25: #include "mpfr-impl.h"
! 26:
! 27: /* The computation of acosh is done by
! 28:
! 29: acosh= ln(x+sqrt(x-1)*sqrt(x+1))
! 30: */
! 31:
! 32: int
! 33: mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mp_rnd_t rnd_mode)
! 34: {
! 35:
! 36: int inexact =0;
! 37: int comp;
! 38:
! 39: if (MPFR_IS_NAN(x))
! 40: {
! 41: MPFR_SET_NAN(y);
! 42: MPFR_RET_NAN;
! 43: }
! 44:
! 45: comp=mpfr_cmp_ui(x,1);
! 46:
! 47: if(comp < 0)
! 48: {
! 49: MPFR_SET_NAN(y);
! 50: MPFR_RET_NAN;
! 51: }
! 52: MPFR_CLEAR_NAN(y);
! 53:
! 54: if(comp == 0)
! 55: {
! 56: MPFR_SET_ZERO(y); /* acosh(1) = 0 */
! 57: MPFR_SET_POS(y);
! 58: MPFR_RET(0);
! 59: }
! 60:
! 61: if (MPFR_IS_INF(x))
! 62: {
! 63: MPFR_SET_INF(y);
! 64: MPFR_SET_POS(y);
! 65: MPFR_RET(0);
! 66: }
! 67:
! 68: MPFR_CLEAR_INF(y);
! 69:
! 70: /* General case */
! 71: {
! 72: /* Declaration of the intermediary variable */
! 73: mpfr_t t, te,ti;
! 74:
! 75: /* Declaration of the size variable */
! 76: mp_prec_t Nx = MPFR_PREC(x); /* Precision of input variable */
! 77: mp_prec_t Ny = MPFR_PREC(y); /* Precision of input variable */
! 78:
! 79: mp_prec_t Nt; /* Precision of the intermediary variable */
! 80: int err; /* Precision of error */
! 81:
! 82: /* compute the precision of intermediary variable */
! 83: Nt=MAX(Nx,Ny);
! 84: /* the optimal number of bits : see algorithms.ps */
! 85: Nt=Nt+4+_mpfr_ceil_log2(Nt);
! 86:
! 87: /* initialise of intermediary variable */
! 88: mpfr_init(t);
! 89: mpfr_init(te);
! 90: mpfr_init(ti);
! 91:
! 92: /* First computation of cosh */
! 93: do {
! 94:
! 95: /* reactualisation of the precision */
! 96: mpfr_set_prec(t,Nt);
! 97: mpfr_set_prec(te,Nt);
! 98: mpfr_set_prec(ti,Nt);
! 99:
! 100: /* compute acosh */
! 101: mpfr_mul(te,x,x,GMP_RNDD); /* (x^2) */
! 102: mpfr_sub_ui(ti,te,1,GMP_RNDD); /* (x^2-1) */
! 103: mpfr_sqrt(t,ti,GMP_RNDN); /* sqrt(x^2-1) */
! 104: mpfr_add(t,t,x,GMP_RNDN); /* sqrt(x^2-1)+x */
! 105: mpfr_log(t,t,GMP_RNDN); /* ln(sqrt(x^2-1)+x)*/
! 106:
! 107: /* estimation of the error see- algorithms.ps*/
! 108: /*err=Nt-_mpfr_ceil_log2(0.5+pow(2,2-MPFR_EXP(t))+pow(2,1+MPFR_EXP(te)-MPFR_EXP(ti)-MPFR_EXP(t)));*/
! 109: err=Nt-(-1+2*MAX(2+MAX(2-MPFR_EXP(t),1+MPFR_EXP(te)-MPFR_EXP(ti)-MPFR_EXP(t)),0));
! 110:
! 111: /* actualisation of the precision */
! 112: Nt += 10;
! 113:
! 114: } while ((err<0) ||!mpfr_can_round(t,err,GMP_RNDN,rnd_mode,Ny));
! 115:
! 116: inexact = mpfr_set(y,t,rnd_mode);
! 117:
! 118: mpfr_clear(t);
! 119: mpfr_clear(ti);
! 120: mpfr_clear(te);
! 121: }
! 122: return inexact;
! 123: }
! 124:
! 125:
! 126:
! 127:
! 128:
! 129:
! 130:
! 131:
! 132:
! 133:
! 134:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>