Annotation of OpenXM_contrib/gmp/mpfr/hypot.c, Revision 1.1
1.1 ! ohara 1: /* mpfr_hypot -- Euclidean distance
! 2:
! 3: Copyright 2001, 2002 Free Software Foundation, Inc.
! 4:
! 5: This file is part of the MPFR Library.
! 6:
! 7: The MPFR Library is free software; you can redistribute it and/or modify
! 8: it under the terms of the GNU Lesser General Public License as published by
! 9: the Free Software Foundation; either version 2.1 of the License, or (at your
! 10: option) any later version.
! 11:
! 12: The MPFR Library is distributed in the hope that it will be useful, but
! 13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! 14: or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
! 15: License for more details.
! 16:
! 17: You should have received a copy of the GNU Lesser General Public License
! 18: along with the MPFR Library; see the file COPYING.LIB. If not, write to
! 19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
! 20: MA 02111-1307, USA. */
! 21:
! 22: #include <stdio.h>
! 23: #include <stdlib.h>
! 24: #include "gmp.h"
! 25: #include "gmp-impl.h"
! 26: #include "mpfr.h"
! 27: #include "mpfr-impl.h"
! 28:
! 29: /* The computation of hypot of x and y is done by
! 30:
! 31: hypot(x,y)= sqrt(x^2+y^2) = z
! 32: */
! 33:
! 34: int
! 35: mpfr_hypot (mpfr_ptr z, mpfr_srcptr x ,mpfr_srcptr y , mp_rnd_t rnd_mode)
! 36: {
! 37: int inexact;
! 38: /* Flag calcul exacte */
! 39: int not_exact=0;
! 40:
! 41: /* particular cases */
! 42:
! 43: if (MPFR_IS_NAN(x) || MPFR_IS_NAN(y))
! 44: {
! 45: MPFR_SET_NAN(z);
! 46: MPFR_RET_NAN;
! 47: }
! 48:
! 49: MPFR_CLEAR_NAN(z);
! 50:
! 51: if (MPFR_IS_INF(x) || MPFR_IS_INF(y))
! 52: {
! 53: MPFR_SET_INF(z);
! 54: MPFR_SET_POS(z);
! 55: MPFR_RET(0);
! 56: }
! 57:
! 58: MPFR_CLEAR_INF(z);
! 59:
! 60: if(MPFR_IS_ZERO(x))
! 61: return mpfr_abs (z, y, rnd_mode);
! 62:
! 63: if(MPFR_IS_ZERO(y))
! 64: return mpfr_abs (z, x, rnd_mode);
! 65:
! 66: /* General case */
! 67:
! 68: {
! 69: /* Declaration of the intermediary variable */
! 70: mpfr_t t, te,ti;
! 71: /* Declaration of the size variable */
! 72: mp_prec_t Nx = MPFR_PREC(x); /* Precision of input variable */
! 73: mp_prec_t Ny = MPFR_PREC(y); /* Precision of input variable */
! 74: mp_prec_t Nz = MPFR_PREC(z); /* Precision of input variable */
! 75:
! 76: int Nt; /* Precision of the intermediary variable */
! 77: long int err; /* Precision of error */
! 78:
! 79: /* compute the precision of intermediary variable */
! 80: Nt=MAX(MAX(Nx,Ny),Nz);
! 81:
! 82: /* compute the size of intermediary variable -- see algorithms.ps */
! 83: Nt=Nt+2+_mpfr_ceil_log2(Nt);
! 84:
! 85: /* initialise the intermediary variables */
! 86: mpfr_init(t);
! 87: mpfr_init(te);
! 88: mpfr_init(ti);
! 89:
! 90: /* Hypot */
! 91: do {
! 92: not_exact=0;
! 93: /* reactualisation of the precision */
! 94: mpfr_set_prec(t,Nt);
! 95: mpfr_set_prec(te,Nt);
! 96: mpfr_set_prec(ti,Nt);
! 97:
! 98: /* computations of hypot */
! 99: if(mpfr_mul(te,x,x,GMP_RNDN)) /* x^2 */
! 100: not_exact=1;
! 101:
! 102: if(mpfr_mul(ti,y,y,GMP_RNDN)) /* y^2 */
! 103: not_exact=1;
! 104:
! 105: if(mpfr_add(t,te,ti,GMP_RNDD)) /*x^2+y^2*/
! 106: not_exact=1;
! 107:
! 108: if(mpfr_sqrt(t,t,GMP_RNDN)) /* sqrt(x^2+y^2)*/
! 109: not_exact=1;
! 110:
! 111: /* estimation of the error */
! 112: err=Nt-(2);
! 113:
! 114: Nt += 10;
! 115: if(Nt<0)Nt=0;
! 116:
! 117: } while ((err <0) || ((!mpfr_can_round(t,err,GMP_RNDN,rnd_mode,Nz)) && not_exact));
! 118:
! 119: inexact = mpfr_set (z, t, rnd_mode);
! 120: mpfr_clear(t);
! 121: mpfr_clear(ti);
! 122: mpfr_clear(te);
! 123:
! 124: }
! 125:
! 126: if (not_exact == 0 && inexact == 0)
! 127: return 0;
! 128:
! 129: if (not_exact != 0 && inexact == 0)
! 130: return 1;
! 131:
! 132: return inexact;
! 133: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>