[BACK]Return to log.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpfr

Annotation of OpenXM_contrib/gmp/mpfr/log.c, Revision 1.1.1.2

1.1       maekawa     1: /* mpfr_log -- natural logarithm of a floating-point number
                      2:
1.1.1.2 ! ohara       3: Copyright 1999, 2000, 2001, 2002 Free Software Foundation.
1.1       maekawa     4:
                      5: This file is part of the MPFR Library.
                      6:
                      7: The MPFR Library is free software; you can redistribute it and/or modify
1.1.1.2 ! ohara       8: it under the terms of the GNU Lesser General Public License as published by
        !             9: the Free Software Foundation; either version 2.1 of the License, or (at your
1.1       maekawa    10: option) any later version.
                     11:
                     12: The MPFR Library is distributed in the hope that it will be useful, but
                     13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
1.1.1.2 ! ohara      14: or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
1.1       maekawa    15: License for more details.
                     16:
1.1.1.2 ! ohara      17: You should have received a copy of the GNU Lesser General Public License
1.1       maekawa    18: along with the MPFR Library; see the file COPYING.LIB.  If not, write to
                     19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
                     20: MA 02111-1307, USA. */
                     21:
                     22: #include <stdio.h>
                     23: #include "gmp.h"
                     24: #include "gmp-impl.h"
                     25: #include "mpfr.h"
1.1.1.2 ! ohara      26: #include "mpfr-impl.h"
1.1       maekawa    27:
                     28:   /* The computation of log(a) is done using the formula :
                     29:      if we want p bits of the result,
                     30:                        pi
                     31:          log(a) ~ ------------  -   m log 2
                     32:                    2 AG(1,4/s)
                     33:
                     34:      where s = x 2^m > 2^(p/2)
                     35:
                     36:      More precisely, if F(x) = int(1/sqrt(1-(1-x^2)*sin(t)^2), t=0..PI/2),
                     37:      then for s>=1.26 we have log(s) < F(4/s) < log(s)*(1+4/s^2)
                     38:      from which we deduce pi/2/AG(1,4/s)*(1-4/s^2) < log(s) < pi/2/AG(1,4/s)
                     39:      so the relative error 4/s^2 is < 4/2^p i.e. 4 ulps.
                     40:   */
                     41:
                     42: /* #define DEBUG */
                     43:
                     44: int
1.1.1.2 ! ohara      45: mpfr_log (mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode)
1.1       maekawa    46: {
1.1.1.2 ! ohara      47:   int m, bool, size, cancel, inexact = 0;
        !            48:   mp_prec_t p, q;
1.1       maekawa    49:   mpfr_t cst, rapport, agm, tmp1, tmp2, s, mm;
                     50:   mp_limb_t *cstp, *rapportp, *agmp, *tmp1p, *tmp2p, *sp, *mmp;
                     51:   double ref;
                     52:   TMP_DECL(marker);
                     53:
1.1.1.2 ! ohara      54:   /* If a is NaN, the result is NaN */
        !            55:   if (MPFR_IS_NAN(a))
        !            56:     {
        !            57:       MPFR_SET_NAN(r);
        !            58:       MPFR_RET_NAN;
        !            59:     }
        !            60:
        !            61:   MPFR_CLEAR_NAN(r);
        !            62:
        !            63:   /* check for infinity before zero */
        !            64:   if (MPFR_IS_INF(a))
        !            65:     {
        !            66:       if (MPFR_SIGN(a) < 0) /* log(-Inf) = NaN */
        !            67:        {
        !            68:          MPFR_SET_NAN(r);
        !            69:           MPFR_RET_NAN;
        !            70:        }
        !            71:       else /* log(+Inf) = +Inf */
        !            72:        {
        !            73:          MPFR_SET_INF(r);
        !            74:           MPFR_SET_POS(r);
        !            75:           MPFR_RET(0);
        !            76:        }
        !            77:     }
        !            78:
        !            79:   /* Now we can clear the flags without damage even if r == a */
        !            80:   MPFR_CLEAR_INF(r);
        !            81:
        !            82:   if (MPFR_IS_ZERO(a))
        !            83:     {
        !            84:       MPFR_SET_INF(r);
        !            85:       MPFR_SET_NEG(r);
        !            86:       MPFR_RET(0); /* log(0) is an exact -infinity */
        !            87:     }
        !            88:
        !            89:   /* If a is negative, the result is NaN */
        !            90:   if (MPFR_SIGN(a) < 0)
        !            91:     {
        !            92:       MPFR_SET_NAN(r);
        !            93:       MPFR_RET_NAN;
        !            94:     }
1.1       maekawa    95:
                     96:   /* If a is 1, the result is 0 */
1.1.1.2 ! ohara      97:   if (mpfr_cmp_ui (a, 1) == 0)
        !            98:     {
        !            99:       MPFR_SET_ZERO(r);
        !           100:       MPFR_SET_POS(r);
        !           101:       MPFR_RET(0); /* only "normal" case where the result is exact */
        !           102:     }
1.1       maekawa   103:
1.1.1.2 ! ohara     104:   q=MPFR_PREC(r);
1.1       maekawa   105:
1.1.1.2 ! ohara     106:   ref = mpfr_get_d1 (a) - 1.0;
1.1       maekawa   107:   if (ref<0)
                    108:     ref=-ref;
                    109:
1.1.1.2 ! ohara     110:   /* use initial precision about q+lg(q)+5 */
        !           111:   p=q+5; m=q; while (m) { p++; m >>= 1; }
        !           112:
1.1       maekawa   113:   /* adjust to entire limb */
                    114:   if (p%BITS_PER_MP_LIMB) p += BITS_PER_MP_LIMB - (p%BITS_PER_MP_LIMB);
                    115:
                    116:   bool=1;
                    117:
                    118:   while (bool==1) {
                    119: #ifdef DEBUG
1.1.1.2 ! ohara     120:     printf("a="); mpfr_print_binary(a); putchar('\n');
1.1       maekawa   121:     printf("p=%d\n", p);
                    122: #endif
                    123:     /* Calculus of m (depends on p) */
1.1.1.2 ! ohara     124:     m = (p + 1) / 2 - MPFR_EXP(a) + 1;
1.1       maekawa   125:
                    126:     /* All the mpfr_t needed have a precision of p */
                    127:     TMP_MARK(marker);
                    128:     size=(p-1)/BITS_PER_MP_LIMB+1;
1.1.1.2 ! ohara     129:     MPFR_INIT(cstp, cst, p, size);
        !           130:     MPFR_INIT(rapportp, rapport, p, size);
        !           131:     MPFR_INIT(agmp, agm, p, size);
        !           132:     MPFR_INIT(tmp1p, tmp1, p, size);
        !           133:     MPFR_INIT(tmp2p, tmp2, p, size);
        !           134:     MPFR_INIT(sp, s, p, size);
        !           135:     MPFR_INIT(mmp, mm, p, size);
        !           136:
        !           137:     mpfr_set_si (mm, m, GMP_RNDN);        /* I have m, supposed exact */
        !           138:     mpfr_set_si (tmp1, 1, GMP_RNDN);      /* I have 1, exact */
        !           139:     mpfr_set_si (tmp2, 4, GMP_RNDN);      /* I have 4, exact */
        !           140:     mpfr_mul_2si (s, a, m, GMP_RNDN);    /* I compute s=a*2^m, err <= 1 ulp */
        !           141:     mpfr_div (rapport, tmp2, s, GMP_RNDN);/* I compute 4/s, err <= 2 ulps */
        !           142:     mpfr_agm (agm, tmp1, rapport, GMP_RNDN); /* AG(1,4/s), err<=3 ulps */
        !           143:     mpfr_mul_2ui (tmp1, agm, 1, GMP_RNDN); /* 2*AG(1,4/s), still err<=3 ulps */
        !           144:     mpfr_const_pi (cst, GMP_RNDN);        /* compute pi, err<=1ulp */
        !           145:     mpfr_div (tmp2, cst, tmp1, GMP_RNDN); /* pi/2*AG(1,4/s), err<=5ulps */
        !           146:     mpfr_const_log2 (cst, GMP_RNDN);      /* compute log(2), err<=1ulp */
1.1       maekawa   147:     mpfr_mul(tmp1,cst,mm,GMP_RNDN);       /* I compute m*log(2), err<=2ulps */
1.1.1.2 ! ohara     148:     cancel = MPFR_EXP(tmp2);
1.1       maekawa   149:     mpfr_sub(cst,tmp2,tmp1,GMP_RNDN);     /* log(a), err<=7ulps+cancel */
1.1.1.2 ! ohara     150:     cancel -= MPFR_EXP(cst);
1.1       maekawa   151: #ifdef DEBUG
1.1.1.2 ! ohara     152:     printf("canceled bits=%d\n", cancel);
        !           153:     printf("approx="); mpfr_print_binary(cst); putchar('\n');
1.1       maekawa   154: #endif
                    155:     if (cancel<0) cancel=0;
                    156:
                    157:     /* If we can round the result, we set it and go out of the loop */
                    158:
                    159:     /* we have 7 ulps of error from the above roundings,
                    160:        4 ulps from the 4/s^2 second order term,
1.1.1.2 ! ohara     161:        plus the canceled bits */
        !           162:     if (mpfr_can_round (cst, p - cancel - 4, GMP_RNDN, rnd_mode, q) == 1) {
        !           163:       inexact = mpfr_set (r, cst, rnd_mode);
1.1       maekawa   164: #ifdef DEBUG
1.1.1.2 ! ohara     165:       printf("result="); mpfr_print_binary(r); putchar('\n');
1.1       maekawa   166: #endif
                    167:       bool=0;
                    168:     }
                    169:     /* else we increase the precision */
                    170:     else {
1.1.1.2 ! ohara     171:       p += BITS_PER_MP_LIMB + cancel;
1.1       maekawa   172:     }
                    173:
                    174:     /* We clean */
                    175:     TMP_FREE(marker);
                    176:
                    177:   }
1.1.1.2 ! ohara     178:   return inexact; /* result is inexact */
1.1       maekawa   179: }
                    180:
                    181:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>