Annotation of OpenXM_contrib/gmp/mpfr/sinh.c, Revision 1.1.1.1
1.1 ohara 1: /* mpfr_sinh -- hyperbolic sine
2:
3: Copyright 2001, 2002 Free Software Foundation, Inc.
4:
5: This file is part of the MPFR Library.
6:
7: The MPFR Library is free software; you can redistribute it and/or modify
8: it under the terms of the GNU Lesser General Public License as published by
9: the Free Software Foundation; either version 2.1 of the License, or (at your
10: option) any later version.
11:
12: The MPFR Library is distributed in the hope that it will be useful, but
13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14: or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
15: License for more details.
16:
17: You should have received a copy of the GNU Lesser General Public License
18: along with the MPFR Library; see the file COPYING.LIB. If not, write to
19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
20: MA 02111-1307, USA. */
21:
22:
23: #include "gmp.h"
24: #include "gmp-impl.h"
25: #include "mpfr.h"
26: #include "mpfr-impl.h"
27:
28: /* The computation of sinh is done by
29:
30: sinh(x) = 1/2 [e^(x)-e^(-x)]
31: */
32:
33: int
34: mpfr_sinh (mpfr_ptr y, mpfr_srcptr xt, mp_rnd_t rnd_mode)
35: {
36: /****** Declarations ******/
37: mpfr_t x;
38: mp_prec_t Nxt = MPFR_PREC(xt);
39: int flag_neg=0, inexact =0;
40:
41: if (MPFR_IS_NAN(xt))
42: {
43: MPFR_SET_NAN(y);
44: MPFR_RET_NAN;
45: }
46: MPFR_CLEAR_NAN(y);
47:
48: if (MPFR_IS_INF(xt))
49: {
50: MPFR_SET_INF(y);
51: MPFR_SET_SAME_SIGN(y, xt);
52: MPFR_RET(0);
53: }
54:
55: MPFR_CLEAR_INF(y);
56:
57: if (MPFR_IS_ZERO(xt))
58: {
59: MPFR_SET_ZERO(y); /* sinh(0) = 0 */
60: MPFR_SET_SAME_SIGN(y, xt);
61: MPFR_RET(0);
62: }
63:
64: mpfr_init2 (x, Nxt);
65: mpfr_set (x, xt, GMP_RNDN);
66:
67: if(MPFR_SIGN(x)<0)
68: {
69: MPFR_CHANGE_SIGN(x);
70: flag_neg=1;
71: }
72:
73: /* General case */
74: {
75: /* Declaration of the intermediary variable */
76: mpfr_t t, te, ti;
77: int d;
78:
79: /* Declaration of the size variable */
80: mp_prec_t Nx = Nxt; /* Precision of input variable */
81: mp_prec_t Ny = MPFR_PREC(y); /* Precision of input variable */
82:
83: mp_prec_t Nt; /* Precision of the intermediary variable */
84: long int err; /* Precision of error */
85:
86: /* compute the precision of intermediary variable */
87: Nt = MAX(Nx, Ny);
88: /* the optimal number of bits : see algorithms.ps */
89: Nt = Nt + _mpfr_ceil_log2 (5) + _mpfr_ceil_log2 (Nt);
90:
91: /* initialise of intermediary variable */
92: mpfr_init (t);
93: mpfr_init (te);
94: mpfr_init (ti);
95:
96: /* First computation of sinh */
97: do {
98:
99: /* reactualisation of the precision */
100:
101: mpfr_set_prec (t, Nt);
102: mpfr_set_prec (te, Nt);
103: mpfr_set_prec (ti, Nt);
104:
105: /* compute sinh */
106: mpfr_exp (te, x, GMP_RNDD); /* exp(x) */
107: mpfr_ui_div (ti, 1, te, GMP_RNDU); /* 1/exp(x) */
108: mpfr_sub (t, te, ti, GMP_RNDN); /* exp(x) - 1/exp(x) */
109: mpfr_div_2ui (t, t, 1, GMP_RNDN); /* 1/2(exp(x) - 1/exp(x)) */
110:
111: /* it may be that t is zero (in fact, it can only occur when te=1,
112: and thus ti=1 too) */
113:
114: if (MPFR_IS_ZERO(t))
115: err = -1;
116: else
117: {
118: /* calculation of the error */
119: d = MPFR_EXP(te) - MPFR_EXP(t) + 2;
120:
121: /* estimation of the error */
122: /* err = Nt-(_mpfr_ceil_log2(1+pow(2,d)));*/
123: err = Nt - (MAX(d,0) + 1);
124: }
125:
126: /* actualisation of the precision */
127: Nt += 10;
128:
129: } while ((err < 0) || !mpfr_can_round(t, err, GMP_RNDN, rnd_mode, Ny));
130:
131: if (flag_neg == 1)
132: MPFR_CHANGE_SIGN(t);
133:
134: inexact = mpfr_set (y, t, rnd_mode);
135: mpfr_clear (t);
136: mpfr_clear (ti);
137: mpfr_clear (te);
138: }
139: mpfr_clear (x);
140:
141: return inexact;
142: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>