Annotation of OpenXM_contrib/gmp/mpfr/tests/tdiv.c, Revision 1.1
1.1 ! ohara 1: /* Test file for mpfr_div.
! 2:
! 3: Copyright 1999, 2001, 2002 Free Software Foundation, Inc.
! 4:
! 5: This file is part of the MPFR Library.
! 6:
! 7: The MPFR Library is free software; you can redistribute it and/or modify
! 8: it under the terms of the GNU Lesser General Public License as published by
! 9: the Free Software Foundation; either version 2.1 of the License, or (at your
! 10: option) any later version.
! 11:
! 12: The MPFR Library is distributed in the hope that it will be useful, but
! 13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! 14: or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
! 15: License for more details.
! 16:
! 17: You should have received a copy of the GNU Lesser General Public License
! 18: along with the MPFR Library; see the file COPYING.LIB. If not, write to
! 19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
! 20: MA 02111-1307, USA. */
! 21:
! 22: #include <stdio.h>
! 23: #include <stdlib.h>
! 24: #include <time.h>
! 25: #include "gmp.h"
! 26: #include "gmp-impl.h"
! 27: #include "mpfr.h"
! 28: #include "mpfr-impl.h"
! 29: #include "mpfr-test.h"
! 30:
! 31: #define check53(n, d, rnd, res) check4(n, d, rnd, 53, res)
! 32:
! 33: void check4 _PROTO((double, double, mp_rnd_t, int, double));
! 34: void check24 _PROTO((float, float, mp_rnd_t, float));
! 35: void check_float _PROTO((void));
! 36: void check_convergence _PROTO((void));
! 37: void check_lowr _PROTO((void));
! 38: void check_inexact _PROTO((void));
! 39: void check_nan _PROTO((void));
! 40:
! 41: void
! 42: check4 (double N, double D, mp_rnd_t rnd_mode, int p, double Q)
! 43: {
! 44: mpfr_t q, n, d; double Q2;
! 45:
! 46: mpfr_init2(q, p); mpfr_init2(n, p); mpfr_init2(d, p);
! 47: mpfr_set_d(n, N, rnd_mode);
! 48: mpfr_set_d(d, D, rnd_mode);
! 49: mpfr_div(q, n, d, rnd_mode);
! 50: #ifdef MPFR_HAVE_FESETROUND
! 51: mpfr_set_machine_rnd_mode(rnd_mode);
! 52: #endif
! 53: if (Q==0.0) Q = N/D;
! 54: Q2 = mpfr_get_d1 (q);
! 55: if (p==53 && Q!=Q2 && (!isnan(Q) || !isnan(Q2))) {
! 56: printf("mpfr_div failed for n=%1.20e, d=%1.20e, rnd_mode=%s\n",
! 57: N, D, mpfr_print_rnd_mode(rnd_mode));
! 58: printf("expected quotient is %1.20e, got %1.20e (%d ulp)\n", Q, Q2,
! 59: ulp(Q2, Q));
! 60: exit(1);
! 61: }
! 62: mpfr_clear(q); mpfr_clear(n); mpfr_clear(d);
! 63: }
! 64:
! 65: void
! 66: check24 (float N, float D, mp_rnd_t rnd_mode, float Q)
! 67: {
! 68: mpfr_t q, n, d; float Q2;
! 69:
! 70: mpfr_init2(q, 24); mpfr_init2(n, 24); mpfr_init2(d, 24);
! 71: mpfr_set_d(n, N, rnd_mode);
! 72: mpfr_set_d(d, D, rnd_mode);
! 73: mpfr_div(q, n, d, rnd_mode);
! 74: Q2 = mpfr_get_d1 (q);
! 75: if (Q!=Q2) {
! 76: printf("mpfr_div failed for n=%1.10e, d=%1.10e, prec=24, rnd_mode=%s\n",
! 77: N, D, mpfr_print_rnd_mode(rnd_mode));
! 78: printf("expected quotient is %1.10e, got %1.10e\n", Q, Q2);
! 79: exit(1);
! 80: }
! 81: mpfr_clear(q); mpfr_clear(n); mpfr_clear(d);
! 82: }
! 83:
! 84: /* the following examples come from the paper "Number-theoretic Test
! 85: Generation for Directed Rounding" from Michael Parks, Table 2 */
! 86: void
! 87: check_float(void)
! 88: {
! 89: float b=8388608.0; /* 2^23 */
! 90:
! 91: check24(b*8388610.0, 8388609.0, GMP_RNDN, 8.388609e6);
! 92: check24(b*16777215.0, 16777213.0, GMP_RNDN, 8.388609e6);
! 93: check24(b*8388612.0, 8388611.0, GMP_RNDN, 8.388609e6);
! 94: check24(b*12582914.0, 12582911.0, GMP_RNDN, 8.38861e6);
! 95: check24(12582913.0, 12582910.0, GMP_RNDN, 1.000000238);
! 96: check24(b*16777215.0, 8388609.0, GMP_RNDN, 1.6777213e7);
! 97: check24(b*8388612.0, 8388609.0, GMP_RNDN, 8.388611e6);
! 98: check24(b*12582914.0, 8388610.0, GMP_RNDN, 1.2582911e7);
! 99: check24(b*12582913.0, 8388610.0, GMP_RNDN, 1.258291e7);
! 100:
! 101: check24(b*8388610.0, 8388609.0, GMP_RNDZ, 8.388608e6);
! 102: check24(b*16777215.0, 16777213.0, GMP_RNDZ, 8.388609e6);
! 103: check24(b*8388612.0, 8388611.0, GMP_RNDZ, 8.388608e6);
! 104: check24(b*12582914.0, 12582911.0, GMP_RNDZ, 8.38861e6);
! 105: check24(12582913.0, 12582910.0, GMP_RNDZ, 1.000000238);
! 106: check24(b*16777215.0, 8388609.0, GMP_RNDZ, 1.6777213e7);
! 107: check24(b*8388612.0, 8388609.0, GMP_RNDZ, 8.38861e6);
! 108: check24(b*12582914.0, 8388610.0, GMP_RNDZ, 1.2582911e7);
! 109: check24(b*12582913.0, 8388610.0, GMP_RNDZ, 1.258291e7);
! 110:
! 111: check24(b*8388610.0, 8388609.0, GMP_RNDU, 8.388609e6);
! 112: check24(b*16777215.0, 16777213.0, GMP_RNDU, 8.38861e6);
! 113: check24(b*8388612.0, 8388611.0, GMP_RNDU, 8.388609e6);
! 114: check24(b*12582914.0, 12582911.0, GMP_RNDU, 8.388611e6);
! 115: check24(12582913.0, 12582910.0, GMP_RNDU, 1.000000357);
! 116: check24(b*16777215.0, 8388609.0, GMP_RNDU, 1.6777214e7);
! 117: check24(b*8388612.0, 8388609.0, GMP_RNDU, 8.388611e6);
! 118: check24(b*12582914.0, 8388610.0, GMP_RNDU, 1.2582912e7);
! 119: check24(b*12582913.0, 8388610.0, GMP_RNDU, 1.2582911e7);
! 120:
! 121: check24(b*8388610.0, 8388609.0, GMP_RNDD, 8.388608e6);
! 122: check24(b*16777215.0, 16777213.0, GMP_RNDD, 8.388609e6);
! 123: check24(b*8388612.0, 8388611.0, GMP_RNDD, 8.388608e6);
! 124: check24(b*12582914.0, 12582911.0, GMP_RNDD, 8.38861e6);
! 125: check24(12582913.0, 12582910.0, GMP_RNDD, 1.000000238);
! 126: check24(b*16777215.0, 8388609.0, GMP_RNDD, 1.6777213e7);
! 127: check24(b*8388612.0, 8388609.0, GMP_RNDD, 8.38861e6);
! 128: check24(b*12582914.0, 8388610.0, GMP_RNDD, 1.2582911e7);
! 129: check24(b*12582913.0, 8388610.0, GMP_RNDD, 1.258291e7);
! 130: }
! 131:
! 132: void
! 133: check_convergence (void)
! 134: {
! 135: mpfr_t x, y; int i, j;
! 136:
! 137: mpfr_init2(x, 130);
! 138: mpfr_set_str_raw(x, "0.1011111101011010101000001010011111101000011100011101010011111011000011001010000000111100100111110011001010110100100001001000111001E6944");
! 139: mpfr_init2(y, 130);
! 140: mpfr_set_ui(y, 5, GMP_RNDN);
! 141: mpfr_div(x, x, y, GMP_RNDD); /* exact division */
! 142:
! 143: mpfr_set_prec(x, 64);
! 144: mpfr_set_prec(y, 64);
! 145: mpfr_set_str_raw(x, "0.10010010011011010100101001010111100000101110010010101E55");
! 146: mpfr_set_str_raw(y, "0.1E585");
! 147: mpfr_div(x, x, y, GMP_RNDN);
! 148: mpfr_set_str_raw(y, "0.10010010011011010100101001010111100000101110010010101E-529");
! 149: if (mpfr_cmp(x, y)) {
! 150: fprintf(stderr, "Error in mpfr_div for prec=64, rnd=GMP_RNDN\n");
! 151: printf("got "); mpfr_print_binary(x); putchar('\n');
! 152: printf("instead of "); mpfr_print_binary(y); putchar('\n');
! 153: exit(1);
! 154: }
! 155:
! 156: for (i=32; i<=64; i+=32) {
! 157: mpfr_set_prec(x, i);
! 158: mpfr_set_prec(y, i);
! 159: mpfr_set_d(x, 1.0, GMP_RNDN);
! 160: for (j=0;j<4;j++) {
! 161: mpfr_set_d(y, 1.0, GMP_RNDN);
! 162: mpfr_div(y, x, y, j);
! 163: if (mpfr_cmp_ui(y, 1)) {
! 164: fprintf(stderr, "mpfr_div failed for x=1.0, y=1.0, prec=%u rnd=%s\n",
! 165: i, mpfr_print_rnd_mode(j));
! 166: printf("got "); mpfr_print_binary(y); putchar('\n');
! 167: exit(1);
! 168: }
! 169: }
! 170: }
! 171:
! 172: mpfr_clear(x); mpfr_clear(y);
! 173: }
! 174:
! 175: void
! 176: check_lowr (void)
! 177: {
! 178: mpfr_t x, y, z, z2, z3, tmp;
! 179: int k, c;
! 180:
! 181:
! 182: mpfr_init2 (x, 1000);
! 183: mpfr_init2 (y, 100);
! 184: mpfr_init2 (tmp, 850);
! 185: mpfr_init2 (z, 10);
! 186: mpfr_init2 (z2, 10);
! 187: mpfr_init2 (z3, 50);
! 188:
! 189: for (k = 1; k < 10000; k++)
! 190: {
! 191: mpfr_random (z);
! 192: mpfr_random (tmp);
! 193: mpfr_mul (x, z, tmp, GMP_RNDN);
! 194: c = mpfr_div (z2, x, tmp, GMP_RNDN);
! 195:
! 196: if (c || mpfr_cmp(z2, z))
! 197: {
! 198: fprintf(stderr, "Error in mpfr_div rnd=GMP_RNDN\n");
! 199: printf("Dividing ");
! 200: printf("got "); mpfr_print_binary(z2); putchar('\n');
! 201: printf("instead of "); mpfr_print_binary(z); putchar('\n');
! 202: printf("inex flag = %d\n", c);
! 203: exit(1);
! 204: }
! 205: }
! 206:
! 207: mpfr_set_prec(z2, 9);
! 208: for (k = 1; k < 10000; k++)
! 209: {
! 210: mpfr_random(z);
! 211: mpfr_random(tmp);
! 212: mpfr_mul(x, z, tmp, GMP_RNDN);
! 213: c = mpfr_div(z2, x, tmp, GMP_RNDN);
! 214:
! 215: if ((mpfr_cmp(z2, z) == 0 && c) || c == -1)
! 216: {
! 217: fprintf(stderr, "Error in mpfr_div rnd=GMP_RNDN\n");
! 218: printf("Dividing ");
! 219: printf("got "); mpfr_print_binary(z2); putchar('\n');
! 220: printf("instead of "); mpfr_print_binary(z); putchar('\n');
! 221: printf("inex flag = %d\n", c);
! 222: exit(1);
! 223: }
! 224: else if (c == 2)
! 225: {
! 226: mpfr_add_one_ulp(z, GMP_RNDN);
! 227: if (mpfr_cmp(z2, z))
! 228: {
! 229: fprintf(stderr, "Error in mpfr_div [even rnd?] rnd=GMP_RNDN\n");
! 230: printf("Dividing ");
! 231: printf("got "); mpfr_print_binary(z2); putchar('\n');
! 232: printf("instead of "); mpfr_print_binary(z); putchar('\n');
! 233: printf("inex flag = %d\n", 1);
! 234: exit(1);
! 235: }
! 236: }
! 237: else if (c == -2)
! 238: {
! 239: mpfr_sub_one_ulp(z, GMP_RNDN);
! 240: if (mpfr_cmp(z2, z))
! 241: {
! 242: fprintf(stderr, "Error in mpfr_div [even rnd?] rnd=GMP_RNDN\n");
! 243: printf("Dividing ");
! 244: printf("got "); mpfr_print_binary(z2); putchar('\n');
! 245: printf("instead of "); mpfr_print_binary(z); putchar('\n');
! 246: printf("inex flag = %d\n", 1);
! 247: exit(1);
! 248: }
! 249: }
! 250: }
! 251:
! 252:
! 253: mpfr_set_prec(x, 1000);
! 254: mpfr_set_prec(y, 100);
! 255: mpfr_set_prec(tmp, 850);
! 256: mpfr_set_prec(z, 10);
! 257: mpfr_set_prec(z2, 10);
! 258:
! 259: /* almost exact divisions */
! 260: for (k = 1; k < 10000; k++)
! 261: {
! 262: mpfr_random(z);
! 263: mpfr_random(tmp);
! 264: mpfr_mul(x, z, tmp, GMP_RNDN);
! 265: mpfr_set(y, tmp, GMP_RNDD);
! 266: mpfr_add_one_ulp(x, GMP_RNDN);
! 267:
! 268: c = mpfr_div(z2, x, y, GMP_RNDD);
! 269: mpfr_div(z3, x, y, GMP_RNDD);
! 270: mpfr_set(z, z3, GMP_RNDD);
! 271:
! 272: if (c != -1 || mpfr_cmp(z2, z))
! 273: {
! 274: fprintf(stderr, "Error in mpfr_div rnd=GMP_RNDD\n");
! 275: printf("got "); mpfr_print_binary(z2); putchar('\n');
! 276: printf("instead of "); mpfr_print_binary(z); putchar('\n');
! 277: printf("inex flag = %d\n", c);
! 278: exit(1);
! 279: }
! 280:
! 281: mpfr_set(y, tmp, GMP_RNDU);
! 282: c = mpfr_div(z2, x, y, GMP_RNDU);
! 283: mpfr_div(z3, x, y, GMP_RNDU);
! 284: mpfr_set(z, z3, GMP_RNDU);
! 285: if (c != 1 || mpfr_cmp(z2, z))
! 286: {
! 287: fprintf(stderr, "Error in mpfr_div rnd=GMP_RNDU\n");
! 288: printf("got "); mpfr_print_binary(z2); putchar('\n');
! 289: printf("instead of "); mpfr_print_binary(z); putchar('\n');
! 290: printf("inex flag = %d\n", c);
! 291: exit(1);
! 292: }
! 293: }
! 294:
! 295: mpfr_clear (x);
! 296: mpfr_clear (y);
! 297: mpfr_clear (z);
! 298: mpfr_clear (z2);
! 299: mpfr_clear (z3);
! 300: mpfr_clear (tmp);
! 301: }
! 302:
! 303: #define MAX_PREC 100
! 304:
! 305: void
! 306: check_inexact (void)
! 307: {
! 308: mpfr_t x, y, z, u;
! 309: mp_prec_t px, py, pu;
! 310: int inexact, cmp;
! 311: mp_rnd_t rnd;
! 312:
! 313: mpfr_init (x);
! 314: mpfr_init (y);
! 315: mpfr_init (z);
! 316: mpfr_init (u);
! 317:
! 318: mpfr_set_prec (x, 33);
! 319: mpfr_set_str_raw (x, "0.101111100011011101010011101100001E0");
! 320: mpfr_set_prec (u, 2);
! 321: mpfr_set_str_raw (u, "0.1E0");
! 322: mpfr_set_prec (y, 28);
! 323: if ((inexact = mpfr_div (y, x, u, GMP_RNDN) >= 0))
! 324: {
! 325: fprintf (stderr, "Wrong inexact flag (1): expected -1, got %d\n",
! 326: inexact);
! 327: exit (1);
! 328: }
! 329:
! 330: mpfr_set_prec (x, 129);
! 331: mpfr_set_str_raw (x, "0.111110101111001100000101011100101100110011011101010001000110110101100101000010000001110110100001101010001010100010001111001101010E-2");
! 332: mpfr_set_prec (u, 15);
! 333: mpfr_set_str_raw (u, "0.101101000001100E-1");
! 334: mpfr_set_prec (y, 92);
! 335: if ((inexact = mpfr_div (y, x, u, GMP_RNDN) <= 0))
! 336: {
! 337: fprintf (stderr, "Wrong inexact flag (1): expected 1, got %d\n",
! 338: inexact);
! 339: mpfr_print_binary(y); putchar('\n');
! 340: exit (1);
! 341: }
! 342:
! 343: for (px=2; px<MAX_PREC; px++)
! 344: {
! 345: mpfr_set_prec (x, px);
! 346: mpfr_random (x);
! 347: for (pu=2; pu<=MAX_PREC; pu++)
! 348: {
! 349: mpfr_set_prec (u, pu);
! 350: do { mpfr_random (u); } while (mpfr_cmp_ui (u, 0) == 0);
! 351: for (py=2; py<=MAX_PREC; py++)
! 352: {
! 353: mpfr_set_prec (y, py);
! 354: mpfr_set_prec (z, py + pu);
! 355: for (rnd=0; rnd<4; rnd++)
! 356: {
! 357: inexact = mpfr_div (y, x, u, rnd);
! 358: if (mpfr_mul (z, y, u, rnd))
! 359: {
! 360: fprintf (stderr, "z <- y * u should be exact\n");
! 361: exit (1);
! 362: }
! 363: cmp = mpfr_cmp (z, x);
! 364: if (((inexact == 0) && (cmp != 0)) ||
! 365: ((inexact > 0) && (cmp <= 0)) ||
! 366: ((inexact < 0) && (cmp >= 0)))
! 367: {
! 368: fprintf (stderr, "Wrong inexact flag for rnd=%s\n",
! 369: mpfr_print_rnd_mode(rnd));
! 370: printf ("expected %d, got %d\n", cmp, inexact);
! 371: printf ("x="); mpfr_print_binary (x); putchar ('\n');
! 372: printf ("u="); mpfr_print_binary (u); putchar ('\n');
! 373: printf ("y="); mpfr_print_binary (y); putchar ('\n');
! 374: printf ("y*u="); mpfr_print_binary (z); putchar ('\n');
! 375: exit (1);
! 376: }
! 377: }
! 378: }
! 379: }
! 380: }
! 381:
! 382: mpfr_clear (x);
! 383: mpfr_clear (y);
! 384: mpfr_clear (z);
! 385: mpfr_clear (u);
! 386: }
! 387:
! 388: void
! 389: check_nan (void)
! 390: {
! 391: mpfr_t a, d, q;
! 392:
! 393: mpfr_init2 (a, 100L);
! 394: mpfr_init2 (d, 100L);
! 395: mpfr_init2 (q, 100L);
! 396:
! 397: /* 1/nan == nan */
! 398: mpfr_set_ui (a, 1L, GMP_RNDN);
! 399: MPFR_SET_NAN (d);
! 400: ASSERT_ALWAYS (mpfr_div (q, a, d, GMP_RNDZ) == 0); /* exact */
! 401: ASSERT_ALWAYS (mpfr_nan_p (q));
! 402:
! 403: /* nan/1 == nan */
! 404: MPFR_SET_NAN (a);
! 405: mpfr_set_ui (d, 1L, GMP_RNDN);
! 406: ASSERT_ALWAYS (mpfr_div (q, a, d, GMP_RNDZ) == 0); /* exact */
! 407: ASSERT_ALWAYS (mpfr_nan_p (q));
! 408:
! 409: /* +inf/1 == +inf */
! 410: MPFR_CLEAR_FLAGS (a);
! 411: MPFR_SET_INF (a);
! 412: MPFR_SET_POS (a);
! 413: mpfr_set_ui (d, 1L, GMP_RNDN);
! 414: ASSERT_ALWAYS (mpfr_div (q, a, d, GMP_RNDZ) == 0); /* exact */
! 415: ASSERT_ALWAYS (mpfr_inf_p (q));
! 416: ASSERT_ALWAYS (mpfr_sgn (q) > 0);
! 417:
! 418: /* 1/+inf == 0 */
! 419: mpfr_set_ui (a, 1L, GMP_RNDN);
! 420: MPFR_CLEAR_FLAGS (d);
! 421: MPFR_SET_INF (d);
! 422: MPFR_SET_POS (d);
! 423: ASSERT_ALWAYS (mpfr_div (q, a, d, GMP_RNDZ) == 0); /* exact */
! 424: ASSERT_ALWAYS (mpfr_number_p (q));
! 425: ASSERT_ALWAYS (mpfr_sgn (q) == 0);
! 426:
! 427: /* 0/0 == nan */
! 428: mpfr_set_ui (a, 0L, GMP_RNDN);
! 429: mpfr_set_ui (d, 0L, GMP_RNDN);
! 430: ASSERT_ALWAYS (mpfr_div (q, a, d, GMP_RNDZ) == 0); /* exact */
! 431: ASSERT_ALWAYS (mpfr_nan_p (q));
! 432:
! 433: /* +inf/+inf == nan */
! 434: MPFR_CLEAR_FLAGS (a);
! 435: MPFR_SET_INF (a);
! 436: MPFR_SET_POS (a);
! 437: MPFR_CLEAR_FLAGS (d);
! 438: MPFR_SET_INF (d);
! 439: MPFR_SET_POS (d);
! 440: ASSERT_ALWAYS (mpfr_div (q, a, d, GMP_RNDZ) == 0); /* exact */
! 441: ASSERT_ALWAYS (mpfr_nan_p (q));
! 442:
! 443: mpfr_clear (a);
! 444: mpfr_clear (d);
! 445: mpfr_clear (q);
! 446: }
! 447:
! 448:
! 449: int
! 450: main (int argc, char *argv[])
! 451: {
! 452: mpfr_t x, y, z;
! 453:
! 454: #ifdef MPFR_HAVE_FESETROUND
! 455: int N, i;
! 456: double n, d, e;
! 457:
! 458: mpfr_test_init ();
! 459: #endif
! 460:
! 461: check_inexact();
! 462:
! 463: mpfr_init2 (x, 64);
! 464: mpfr_init2 (y, 64);
! 465: mpfr_init2 (z, 64);
! 466:
! 467: mpfr_set_str_raw(x, "1.00100100110110101001010010101111000001011100100101010000000000E54");
! 468: mpfr_set_str_raw(y, "1.00000000000000000000000000000000000000000000000000000000000000E584");
! 469: mpfr_div(z, x, y, GMP_RNDU);
! 470:
! 471: check_nan ();
! 472: check_lowr();
! 473: check_float(); /* checks single precision */
! 474: check_convergence();
! 475: check53(0.0, 1.0, GMP_RNDZ, 0.0);
! 476: check53(-7.4988969224688591e63, 4.8816866450288732e306, GMP_RNDD,
! 477: -1.5361282826510687291e-243);
! 478: check53(-1.33225773037748601769e+199, 3.63449540676937123913e+79, GMP_RNDZ,
! 479: -3.6655920045905428978e119);
! 480: check4(4.0, 4.503599627370496e15, GMP_RNDZ, 62, 0.0);
! 481: check4(1.0, 2.10263340267725788209e+187, GMP_RNDU, 65, 0.0);
! 482: check4(2.44394909079968374564e-150, 2.10263340267725788209e+187, GMP_RNDU,
! 483: 65, 0.0);
! 484: check53(9.89438396044940256501e-134, 5.93472984109987421717e-67, GMP_RNDU,
! 485: 1.6672003992376663654e-67);
! 486: check53(9.89438396044940256501e-134, -5.93472984109987421717e-67, GMP_RNDU,
! 487: -1.6672003992376663654e-67);
! 488: check53(-4.53063926135729747564e-308, 7.02293374921793516813e-84, GMP_RNDD,
! 489: -6.4512060388748850857e-225);
! 490: check53(6.25089225176473806123e-01, -2.35527154824420243364e-230, GMP_RNDD,
! 491: -2.6540006635008291192e229);
! 492: check53(6.52308934689126e15, -1.62063546601505417497e273, GMP_RNDN,
! 493: -4.0250194961676020848e-258);
! 494: check53(1.04636807108079349236e-189, 3.72295730823253012954e-292, GMP_RNDZ,
! 495: 2.810583051186143125e102);
! 496:
! 497: #ifdef MPFR_HAVE_FESETROUND
! 498: N = (argc>1) ? atoi(argv[1]) : 10000;
! 499: SEED_RAND (time(NULL));
! 500: for (i=0;i<N;i++)
! 501: {
! 502: do { n = drand(); d = drand(); e = ABS(n)/ABS(d); }
! 503: /* smallest normalized is 2^(-1022), largest is 2^(1023)*(2-2^(-52)) */
! 504: while (e>=MAXNORM || e<MINNORM);
! 505: check4 (n, d, LONG_RAND() % 4, 53, 0.0);
! 506: }
! 507: #endif
! 508:
! 509: mpfr_clear (x);
! 510: mpfr_clear (y);
! 511: mpfr_clear (z);
! 512:
! 513: return 0;
! 514: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>